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ABSTRACT

This thesis is concerned with the development of a computer-aided autonomous
navigation system for a visually-impaired person. The system is intended to
work in both indoor and outdoor locations and is based around the use of camera

systems and computer vision.

Following a review of the literature to identify previous work in navigation
systems for the blind, the location of accurate image features is shown to be a
vital importance for a vision based navigation system. There are many operators
that identify image features and it is shown that existing methods for identifying
which has the best performance are inconsistent. A statistically valid evaluation
and comparison methodology is established, centered around the use of McNe-

mar’s test and ANOVA.

It is shown that these statistical tests require a larger number of test images
than is commonly used in the literature to establish which feature operators per-
form best. A ranking of feature operators is produced based on this rigorous

statistical approach and compared with similar rankings in the literature.
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Corner detectors are especially useful for a navigation system because they
identify the boundaries of obstacles. However, the results from our testing sug-
gest that the internal angle of a corner is one factor in determining whether a cor-
ner is detected correctly. Hence an in-depth study of angular sensitivity of cor-
ners is presented. This leads to the development of a pair of descriptors, known
as CMIE and AMIE, which describe corners. Experiments show that these de-
scriptors are able to be computed at video rate and are effective at matching

corners in successive frames of video sequences.

Finally, a complete navigation system is presented. This makes use of both
a conventional colour camera and a depth sensor combined in a device known
as the Microsoft Kinect. It is shown that the system performs robustly in both
indoor and outdoor environments, giving audio feedback to the user when an
obstacle is detected. Audio instructions for obstacle avoidance are also given.
Testing of the system by both blindfolded and blind users demonstrates its effec-

tiveness.
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CHAPTER 1

INTRODUCTION

Sight is arguably the most important human sense; certainly a significant propor-
tion of the brain is dedicated to processing visual information. Electromagnetic
radiation is converted into electrical signals at the retina, the light sensitive cells
on the rear surface of the eye, and a series of regions in the brain convert the elec-
trical signals into what we term “seeing” — understanding the content. Humans
sight allows one to differentiate objects through colour, shape, distance and so
on. Because of this sense of sight, humans are able to move freely in any environ-
ment, indoor or outdoor, recognizing paths, objects, obstacles, animals and other
humans around them. Blindness, the lack of visual perception [1], is therefore a
serious disability for a person who needs to move around their environment, or

find objects within it.

A number of solutions have been developed to ameliorate the effects of

blindness, the most common one being guide dogs and white canes. Guide dogs
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are interactive and responsive, so they are preferable as a visual aid for blind peo-
ple, but white canes are more widespread because of their low cost, light weight
and portability. For a number of years, scientists have been trying to develop aids
that can make blind people more independent and aware of their surroundings.
Computer-based automatic navigation tools are one example of this, motivated
by the increasing miniaturization of electronics and the improvement in process-
ing power and sensing capabilities. Key to this is computer vision, the discipline

that attempts to understand the content of visual scenes.

The purpose of the research described in this thesis is to develop a navigation
aid for blind people based on computer vision. Vision is particularly attractive
for this because it is a passive sensing modality, unlike e.g. radar and sonar, and
sensors are low-cost and physically unobtrusive; this is considered in more detail

in the next section.

1.1 Research objectives

An autonomous navigation system for a fully or partially sighted person requires
enough information from the surroundings to detect and avoid obstacles. It is
especially important to identify head-level obstacles such as walls, cupboards
etc. To acquire this information, a variety of sensors could be used including
sonar, laser stripers and cameras [2]. Sonar and laser stripers are able to provide
the distance to objects and therefore have been previously used in developing
automated navigation solutions for robots and humans. However, all of these
sensors have limitations, such as the poor angular resolution of sonar because of
its wide beam-width [3] and the cost of laser stripers. There is no clear winner
in the choice of sensor; but the cheapness, small size, and ease of integration of

cameras make them attractive if one can overcome the difficulties of segmenting
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objects etc.

One of the main purposes of this research is to establish a series of processing
stages that can implement a navigation system using imagery captured from a
camera that is both robust and has good accuracy. In particular, recent advances
in local invariant feature detection and matching are attractive for developing
navigation systems. However, there are many choices of feature detectors, as
a result of which several researchers have carried out performance evaluation
studies [4-11]. The results of these studies are not consistent in terms of the
ranking of algorithms, which makes selection of a single feature detector for a
navigation system difficult. The precise reason for this is unclear, but different
datasets and evaluation frameworks are certainly contributing factors. Few of
these evaluations are based on statistical methods, so this thesis presents a statis-
tically valid evaluation of the performance of these local feature detectors with
a view to establishing whether any feature detector is genuinely better than the

others. The methodology used in doing this is, however, quite general.

During the course of this research, Microsoft released the Kinect sensor, prin-
cipally as an input device for gaming. The Kinect is able to capture both a con-
ventional colour image and corresponding depth values; it does so by projecting
an infrared light pattern into the environment and detecting where it appears on
objects. The Kinect is useful for tracking motion, especially human motion. A
Software Develpoment Kit (SDK) was released in November 2010 (for Windows
7 in June 16, 2011); the research community has adopted the Kinect with some
enthusiasm and it has been applied to a wide variety of applications [12-14],
including navigation for blind people. Consequently, this research, which ini-
tially used only 2-Dimensional (2D) images from cameras, also makes use of the
Kinect sensor in a hybrid 2D-plus-depth system — this overcomes some of the

shortcomings of a purely depth system, as later chapters will show.
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1.2 Contributions

This research has made a number of contributions, highlighted in the following
series of bullet points. A number of publications in the open literature have been

made and these are listed in the following section.

e Vision research has developed a substantial number of algorithms for tasks
such as matching, segmentation, stitching, tracking and navigation. How-
ever, not all of these algorithms are equally accurate and reliable. This the-
sis reviews the strengths and weaknesses of existing performance evalua-
tion measures, including Reciever Operating Characteristics Curve (ROC),
Precision-Recall (PR), F-measure etc, and explores the use of statistical tests
such as McNemar’s test and Analysis of Variance (ANOVA) as a more prin-

cipled alternative.

e Thesize and content of datasets can clearly affect algorithms’ performances.
These factors are explored using two datasets in widespread use in evalua-
tion studies. It is clear that the evaluation studies reported in the literature

are affected by both these factors [15].

e Corner points are particularly attractive for a navigation system because
they identify the object boundaries. Corner detection has, of course, been
well researched and a systematic review of the angular sensitivity of corner
detectors has been carried out using the statistical approach established in
this research. It is considered appropriate because of the sensitivity of fea-
ture detectors explored during their performance evaluation for matching

images under geometric transformations [16,17].

e Although many corner detectors exist, there are few corner descriptors. De-
scriptors are important because they allow corresponding corners in suc-

cessive frames of a motion sequence to be established. Here, two new de-
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1.3

scriptors are proposed specifically for corner points. They make use of the
corner’s angle and circular arcs around the corner for matching and are
named Circular Mean Intensity and Entropy (CMIE) and Angle, Mean In-
tensity and Entropy (AMIE). The performances of these descriptors is de-
termined and compared with the well-known Binary Robust Independent
Elementary Features (BRIEF) descriptor. The speed of AMIE and CMIE is

important for video rate operation in a visual navigation system [18].

A complete navigation system, based around corners and depth values
from the Kinect sensor, has been developed. Obstacles are found in images
from a camera using corner detection, while input from the depth sensor
provides the corresponding distance. The combination is both efficient and
robust. The system not only identifies hurdles but also suggests a safe path
(if available) to the left or right side and tells the user to stop, move left or
move right. The system has been tested in real time by both blindfolded
and blind people at different indoor and outdoor locations, demonstrating

that it operates as required [19].

Publications

. Kanwal, N., Bostanci, E., and Clark, A. E, “Matching Corners Using the

Informative Arc,” Revision submitted to IET Computer Vision.

. Bostanci, E.,Bostanci, B., Clark, A. F. and Kanwal, N.,“ A Fuzzy-adaptive

Multiple-motion Model for GPS-IMU Integration”, submitted to IET Elec-

tronics Letters.

Bostanci, E., Kanwal, N. and Clark, A. E, “Spatial Statistics of Image Fea-
tures for Performance Comparison,” Revision submitted to IEEE Transac-

tions on Image Processing.
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It is anticipated that a further journal submission, describing the complete navi-

gation system and its assessment will also be submitted.

1.4 Thesis outline

Chapter 2 reviews existing mobility aids and electronic travel aids for visually-
impaired people. There is also an in-depth literature review about vision-based
navigation systems for blind people. As image matching is fundamental to any
vision-based navigation system, state-of the-art feature operators and matching
schemes are also reviewed in the chapter. Furthermore, performance evaluation

techniques commonly used in vision research are reviewed.

Chapter 3 examines performance characterization methods. A number of
existing performance metrics are presented and are shown to yield inconsistent
results. A statistically-based approach, using McNemar’s test and ANOVA in a

null hypothesis framework, is presented and applied.

Chapter 4 explores the discrepancy in evaluation results as a consequence
of database content, by comparing the performances on one well-established
database with another of similar size. The effects of database size are also ex-

plored by employing subsets of a larger database. As a consequence of this anal-
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ysis some guidelines regarding data size are defined to be used for evaluating

vision algorithms.

Chapter 5 presents corner detection algorithms and examines their angular
sensitivity. Corner points are image features which are inherently rotation invari-
ant so corner detection algorithms should be able to detect all corner points hav-
ing the same angle but different orientation. To establish this, synthetic and real
image data consisting of geometric shapes were developed and the performances
of corner detectors is assessed using McNemar’s test. The overall performance
of corner detectors was also assessed and inconsistencies with the angular sensi-
tivity experiments identified. Moreover, the complementarity of corner detectors
(i.e., combining algorithms with different principles of operations) is explored to

ascertain whether this improves overall performance.

Chapter 6 proposes two new descriptors that achieve real-time matching of
corners. CMIE describes the entire neighbourhood around a corner point using
the mean intensity and entropy of circular arcs around it while AMIE employs
the “informative region” enclosed between the intersection of two edges. Match-
ing corner points using AMIE is particularly efficient because the angle between

the edges is used to identify only likely close matches.

Chapter 7 describes the complete navigation system. The system scans the
area in front of the user for obstacles; if it finds one, it looks for a possible safe
path to the left or right, issuing verbal warnings using a speech synthesiser.
There are checks in the algorithms to avoid undue warnings and false obstacle
detection. The system has been tested in both indoor and outdoor environments

and the results demonstrate the effectiveness of the system.

Finally, chapter 8 presents the conclusions drawn from this research and

makes suggestions for further work.



10

1.4. THESIS OUTLINE




CHAPTER 2

FROM WHITE CANE TO AUTOMATED
NAVIGATION SYSTEMS

2.1 Introduction

The focus of research into navigation systems for the visually impaired to date
has mainly focussed on allowing a person to negotiate their way through an
unknown, dynamically-changing environment through obstacle detection, envi-
ronment mapping, and path, direction and pose estimation. Despite all the ef-
forts, a navigation system for an autonomous robot or for a partially/fully blind

person is still an open-ended problem.

Existing mobility aids for visually impaired people, the most common of
which are white canes and guide dogs, are discussed in section 2.2. These have

been in use for a very long time but do not give full freedom of movement to

11
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a blind person. Therefore, research is in progress to develop automated tools
for this purpose. A number of active and passive sensors, developed as range
finders in robotics, can be used as the basis of travel aids for blind people. Dis-
tance measurement of obstacles for safe navigation is what is required and can
be achieved using these sensors. Different software and hardware solutions us-
ing these active and passive sensors for this purpose have been proposed and are

reviewed in section 2.3.

The camera, being a cheap and small vision sensor, is gaining more atten-
tion as the basis of autonomous navigation systems for humans and robots. Sec-
tion 7.3 describes some of the proposed navigation systems using cameras. These
systems work by matching captured images, for which local image feature based
matching has shown significant progress. Feature detection and matching play
a vital role in understanding image content and motion detection. Feature op-
erators include the detection and description of image features. Section 2.4.1 il-
lustrates some well-known scale- and rotation-invariant feature extraction tech-
niques (also called feature operators), and how these have been used in tracking

and navigation applications.

In the presence of a large number of feature extraction and matching tech-
niques, performance evaluation becomes pivotal to distinguish which are the
more effective. Section 2.5 reviews widely-used methods for evaluating the per-
formance of vision algorithms. These include ROC, PR, Sensitivity-Specificity
(SS), Accuracy, and F-measure. The discussion also identifies the inconsistency

of results reported in the literature using these performance metrics.
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Figure 2.1: White Cane: A travelling aid for visually impaired people

2.2 Mobility aids for a visually-impaired person

A person with partial or no sight can walk or travel from one place to another de-
pendently or independently. In the former situation, the user needs assistance to
be able to walk in an unknown environment, while in the latter the user can con-
fidently walk around being familiar with the environment and landscape such
as his or her own house, or another familiar place [20]. To navigate in an un-
known environment, the conventional aids are white canes and guide dogs. A
white cane (shown in Figure 2.1) is designed to find kerbs, steps and obstacles
that may be in the way [21]. Although it is a cheap and lightweight device, and
hence is very popular, its users have to rely on their own judgment and percep-
tion because the cane can only help them sense the obstacle. Similarly, the cane

is not very helpful in detecting head-level obstacles [22,23].

On the other hand, a guide dog is a very handy travelling aid for a visually

impaired person, but it needs to be highly trained (Figure 2.2 shows a trained
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Figure 2.2: A Guide Dog: travelling aid for visually impaired people [24]

guide dog puppy). Dogs are known for their intelligence, efficiency and loyalty,
and so are considered reliable as guide dogs for blind people. These dogs usually
respond quickly to approaching dangers; however, they are less commonly en-
countered because of their high cost, which ranges between $12000 and $20000.
The dogs themselves need a carer [25]. Despite the support a blind person can get
from a white cane or a guide dog, their use can be inconvenient and physically
tiring [23]. This helps explain why scientists are exploring less costly automated

solutions using high-speed hardware architectures and efficient algorithms.

2.3 Vision-based navigation systems

Autonomous robot navigation and navigation systems for visually impaired peo-
ple are two closely related fields of research which benefit from each other in
terms of both software and hardware developments. There have been quite a

few attempts to develop vision based solutions for blind and partially-sighted
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Table 2.1: Some range sensors commonly used in robotics
Sensors Type Technology Range
IR sensor Active | Infrared reflector [26] | 3-30cm
Optic sensors Active | Laser [27] 2cm-2.4m
Sonar Active | Ultrasonic waves [28] | 2cm-1m
Camera Passive | light waves 1lcm-40m depth of field
Stereo pair camera | Passive | light waves 1lcm-40m depth of field
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Figure 2.3: A navigation systems using an active sensor scanning frontal area to
find obstacles and their distances from user/sensor
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people using range sensors, which are also used in robotics [29-31], and which

are usually referred as Electronic Travelling Aid (ETA).

There are two types of sensors which are used for autonomous robot navi-
gation that can also be used for developing ETA for blind people. The first type
of sensors are termed Active sensors, whereas the second type are Passive [32].
The distinction between sensors is based on the source of energy used: active
sensors project some kind of signal into the environment whereas passive sen-
sors use energy from other sources. Table 2.1 gives a brief overview of some

commonly-used sensors and their range for distance estimation.

To develop an automatic navigation system, detecting obstacles and calcu-
lating of their distances are the main requirements. Figure 2.3 shows a block
diagram of a navigation system based on the input of an active sensor for ob-
ject detection and its distance estimation. Commonly-used methods for sensing
obstacles and finding their distances are time-of-flight, triangulation and phase
shift. Because all active sensors use their own energy to illuminate or scan the
area in front of them (such as infra-red light, laser, or sound waves), measuring
the distance of an obstacle using time-of-flight is the easiest way. This involves
measuring the time from the transmission of a pulse to the reception of its echo
(the ‘round-trip” time) [33]. Conversely, in the triangulation method the distance
is measured from the location of the sensor and its angle, which can be measured

from the reflection of a laser or ultrasonic wave [34].

The phase shift method is commonly used with high frequency waves such
as laser. A laser beam is sent to a target, some reflected light is monitored, and the
phase of the power modulation is compared with that of the transmitted light.
The phase shift obtained is 27t x time-of-flight X modulation frequency [35].
The output of these systems is reliable and efficient — though they are not pop-

ular among the research community, mainly because of cost and hardware in-
Y y
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Figure 2.4: A navigation systems using single camera to capture images and pro-
cess them to find obstacles and their distances from user/sensor

stallation. Some of the previously-developed systems using these sensors are

discussed in section 2.3.1.

Cameras are by far the most common passive sensors used for automated
navigation systems. They capture light through their shutter function, storing
the resulting signal in some storage material, such as a magnetic film or a digital
memory. Navigation and tracking systems with cameras are gaining more atten-
tion these days because of their small size, low-cost hardware, low power con-
sumption and the availability of cameras in many of the gadgets with on-board
processing capabilities, such as smart phones, iPads, and iPhones. The working

of a navigation system based on a single digital camera is shown in Figure 2.4.

Vision systems working on images captured from a single camera at differ-
ent times, or a stereo pair of cameras, need to perform some image processing
functions to find obstacles. This processing involves detecting interest points,

matching them in consecutive images or in the stereo pair, and calculating dis-
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tances. If the distance is less than some threshold, feedback is sent to the user,
perhaps warning the person of the distance and direction of obstacle when it is
in a critical range. Different methods have been used such as audio feedback,

vibrations and an audio beep.

2.3.1 Active sensors

The history of developing electronic travel aids for blind people dates back to
1945, when physicist Lawrence Cranberg developed a single-channel optical range
detector for obstacle detection for blind people [36]. This relatively successful at-
tempt encouraged researchers to develop sensor-based travel aids for visually
impaired people. This led to the development of the first practical laser-cane in
1973 [37]. This was based on optical triangulation, with three laser diodes as
transmitters and three photo-diodes as receivers. The cane could detect objects
from 1.5m to 3. m ahead of the user, with the additional function of detecting

head-level objects.

The most popular electronic mobility aids in use today are based on sonar
sensors that uses sound waves for obstacle detection, such as the sonic guide [38].
However, the sonic guide cannot detect all possible shapes of obstacles because
some of the objects absorb the sound waves. Pathsounder [39] uses a neck band
containing two ultrasonic transducers. The device was able to estimate distance
using sound waves, however it gave audio feedback for only three distance lev-
els, using a number of sound clicks.

The Mowat sensor,!

a commercially-available handheld ultrasonic device with
tactile output, was able to provide feedback about the distance of detected objects

using vibrations. Low vibrations meant objects were at a safe distance, while in-

'A commercial product by Wormald International Sensory Aids, 6140 Horseshoe Bar Rd.,
Loomis, CA 95650, USA
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creased vibration indicated that the obstacle was closer. In 1980, the Nottingham
Obstacle Detector was developed, again a handheld sonar device with auditory
feedback, with different musical tones to provide alarms at 8 different distance

levels [40].

A system known as MELDOG [41] used landmarks at road junctions and
a landmark map to allow safe navigation for a blind person in an unknown
environment. In this system, white lines and road edges were used as land-
marks, while the position was estimated using an odometer and near landmark
map. Obstacles were detected using sonar, and the user alarmed only in the
case of danger. The feedback system worked using electro-cutaneous stimula-

tion gloves, which send a pulse train signal to the user.

Drishti [42] is a combination of Differential Global Positioning System (DGPS),
a computer and an audio feedback system. It was developed to guide blind
users and help them travel in both familiar and unfamiliar environments inde-
pendently and safely. The system identified the user’s location outdoors using
its DGPS module and dynamically routed him or her. For indoor navigation, an
ultrasound positioning system was used to find the user’s location. The outdoor
and indoor processing modules could be activated using verbal commands. The
system used a small wearable computer which could communicate to a server
computer using wireless connection both for data analysis and navigation in-
structions, but it limits its use in a specific range and makes it highly-dependent

on good wireless connectivity.

The system proposed in [43] detected the nearest obstacle via a stereoscopic

sonar system, and sent vibro-tactile feedback to inform users about their location.
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2.3.2 Passive sensos

All of the navigation systems discussed above used active sensors and different
output mechanisms to give users sensing abilities. Solutions using cameras as vi-
sion sensors are much cheaper and dynamic than the systems based on sensors
such as sonar or laser sensors [2], which need a proper installation base and ac-
curate angle measurements to accumulate the required useful data. A number of
vision-based solutions using cameras have presented in the literature, including

both those for autonomous vehicle movement and for human mobility.

In [44], stereo camera-based depth recovery was proposed. It used a dispar-
ity map and depth information, converted into sound coding blocks which are
then transferred using simple sound transmitting devices. Similarly, in [45-47],
a stereo pair of cameras was used for obstacle detection, staircase detection and

zebra crossing identification.

vOICE [48] was a vision-based navigation system, consisting of a single cam-
era mounted on headgear. The captured image data were converted into fre-
quency tones representing image brightness. Here, the image pixel intensity was
used as a distance measure. A similar approach was used in NAVI [49], where
the captured image from a single camera was segmented into objects and back-
ground areas through an image segmentation technique. The segmented image
areas identified as objects were then used to estimate the distance using image
pixel intensities, translated into distance. Four distance categories were defined
to categorize intensity levels that correspond to four different distance levels.
Brighter pixels show closer objects whereas low intensity pixels represent back-
ground areas. This intensity representation of distance was converted into stereo

sound for feedback.

Image pixel intensities may give distance information but can also fail due
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to a number of reasons. For example, strongly reflective material, even at a far
distance, can cause the system wrongly to identify it as a close object. Similarly,
intensity-based object and background segmentation may be affected by uneven
light. Hence, precise understanding of image content plays a vital role in the
success of any vision-related algorithm. The identification of image points with
some characteristics or regions of interest such as edges, corners or blobs detec-

tion can bring stability and reliability, as shown by the systems discussed below.

Edges are used to find the depth map and disparity for two cameras in Opto-
phone, an electronic blind aid [50]. This depth map is then converted into sound
following the method proposed in vOICE [48]. However, Optophone works in-
telligently, using edge features for distance calculation, though it cannot be used
for obstacle detection due to the complex processing required to find edges cor-

responding to object boundaries.

In [51], a map-less method for robot navigation using homography estima-
tion from single camera images is shown. Mathematically, a homography is an
invertible transformation from a projective space to itself; in the computer vision
domain, any two images of the same planar surface are related by a homogra-
phy matrix [52], a 3 x 3 matrix representing translation and rotation (collectively
known as a transformation) between an image pair. The transformation between
two images can be calculated by finding the positions of corresponding image ar-
eas. This can be done by identifying distinctive image points (called local image
features) that can be matched in both images. A powerful yet efficient method to
select image correspondences is called Random Sample Consenses (RANSAC) it
randomly selects a few matched points, then finds an image transformation by
calculating a homography matrix, and repeats this a number of times. It then

gathers votes to identify which homographies are the most consistent.

The method presented in [51] follows the same mechanism and seems to be
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an improvement. However, the only drawback of the method proposed here is
that it focuses on matching lines found in an image, which limits its performance
to scenes with dense image content or navigation around objects only. This sys-
tem has also been integrated into an autonomous wheelchair for handicapped

people.

Computer vision systems are witnessing rapid development, with new fea-
ture operators being devised that may allow automated navigation systems to
have access to better information, such as scale-, rotation- and affine-invariant
point detection in images and their distance calculation [53]. The method adopted
in [54] for obstacle detection in cross-country environments using stereo cam-
eras is an example of using local invariant image features. The authors defined
a method to the categorized detected features to be part of an object called a
Projection and Quantification (PQ) method. The system defined a cone-like area
around a detected point; if any other feature fell within the volume of the cone,
it is considered part of the object. The PQ method projects 3-Dimensional (3D)
information from a stereo system into a surface plane, and determines the depth

information for a robot.

Tyflos [55] is a device developed for a blind person with two tiny cameras,
a microphone and an ear speaker, mounted into a pair of dark glasses and con-
nected to a computer. The system creates a virtual 3D space of surroundings and

detects changes using range and image data from a stereo pair of cameras.

2.3.3 Hybrid systems

Navigation systems developed using either active or passive sensors have their
own advantages and limitations. Depth recovery with active sensors is more ac-

curate than camera-based methods but the need for a proper installation base
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and an angle measurement for data acquisition makes their everyday use dif-
ficult [22]. Therefore, researchers are trying to develop hybrid technologies by
combining these two types of sensors, the hope being that this will result in more
stable and reliable navigation systems, some of which are briefly described be-

low.

Mobility Device, a project funded under the European Project Autonomous
system for mobility, orientation, navigation and communication (ASMONC) [56],
examines the mobility of partially-sighted people in outdoor urban environments.
The system was a combination of multiple sonar sensors and a stereo pair of cam-
eras. Its vision part used edges to detect objects and edges-based matching for

distance calculation, while the tracking part used Kalman filters.

Some examples of the combination of vision with ladar to develop a road
follower, and RoadCompass, a navigation project which used road vanishing
points for tracking purposes are presented in [57,58]. Similarly, an autonomous
driving robot for rural dessert roads was developed using the same combination

of sensors [59].

In [60], the system used optical markers for obstacle detection and distance
calculation, while the feedback system consisted of vibrotactile attached to a
waist belt. Similarly, an electro-tactile stimulus approach with stereo video cam-
eras and Global Positioning System (GPS) was used to acquire 3D information
in [61]. In [62], the obstacle avoidance and navigation in outdoor environments

were done with the aid of visual sensors, GPS, and electro-tactile simulations.

The Kinect is a device designed to be used with Microsoft Xbox 360 gaming
console. It allows the gamer to interact with games without the need for physi-
cal control, tracking the player’s movements and position in a three-dimensional

space with respect to itself in real time. The device has passive (colour camera)
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and active (infra-red project pattern, coupled with an infra-red camera) sensors
integrated to identify a player’s position and distance from the console. This
combination of sensors directly benefits vision researchers developing naviga-
tion systems for robots or blind people [63]. The Kinect was proposed as an
assistant for elderly people (see [64]), wherein a robot assistant uses the Kinect
depth sensor for wall detection and self-localization by integrating the map of
an environment. In [65], the authors proposed a segmentation scheme using the
Kinect to separate humans from background, and to find their distance for differ-
ent navigation and surveillance applications. Similarly, KinDetect [66], a project
to detect objects, uses a depth sensor. It divides the depth image from the Kinect
depth sensor into 5 x 3 grid and looks at depth values in each part. It was de-
veloped to work for structured indoor environments — working outdoors may
pose some challenge because the infra-red sensor may not get reflections from
non-reflective materials and may become ‘blind” due to strong energy exposure

such as sunlight.

The systems previously proposed using Kinect mostly used its depth sensor
input for distance estimation and ignored the camera as sensing device, over-

looking the complete capabilities of the device.

2.4 Local image features and obstacle detection

Generally, there are two types of approaches for matching and recognition tasks:
the model-driven approach and the data-driven approach. The model-driven
approach uses model libraries to find different objects in images [67]. This ap-
proach is feasible because most of the objects around us have geometric shapes
and therefore can be matched easily using a model-based-matching algorithm.

Although this is efficient and robust in finding shapes with a geometrical pa-
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rameter, it fails to accommodate slight deformations to basic models of shapes.
Another problem with the model-driven approach is that a system has to look
up the models stored in the library and therefore cannot recognize new, unusual

shapes.

The data-driven approach is a non-parametric modelling one. It allows the
generation of a model without attributing it to a specific shape category, in-
stead identifying image features and categorizing them to be part of an object
or background. The advantage of this method is that deformations and dynamic
changes in viewpoint can be identified at run-time. In this way, any type, size
and textured shape can be identified, matched and recognized in images [68,69].
Furthermore, they do not need prior knowledge of object shapes [70]. The only
drawback for this approach is the complex operations required to find and asso-
ciate features belonging to an object or shape in images. However, the advantage
of local features is that they are invariant to a number of geometric and photo-
metric transformations, making them suitable for the detection and recognition

tasks in videos and still images.

With the continuing rapid development in hardware speed and the contin-
uous progress in local feature detection and description techniques, local im-
age feature extraction has become more reliable in changing imaging conditions.
That is why they are considered better than other methods for real-time visual
applications such as tracking and navigation [70-73]. Different image features
can be useful for visual applications such as corners, edges, blobs, ridges etc., but
the selection of one of them depends largely on their computation time, repeata-

bility, stability and robustness to geometric and photometric transformations.
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Table 2.2: Some of the popular local feature operators for different image features

Features | Features Features Invariance to
Operators Descriptor | Transformations
Blobs Scale Invariant Feature Transform (SIFT) SIFT Scale & Rotation
Blobs Speeded Up Robust Features (SURF) SURF Scale & Rotation
Corners | Harris & Stephen’s (H&S) BRIEF Scale & Rotation
Corners | Harris Laplace (Harlap) any Scale
Corners | Harris Affine (Haraff) any Affine
Blobs Hessian Laplace (Heslap) any Scale
Blobs Hessian Affine (Hesaff) any Affine

2.4.1 Interest points and operators

Interest point extraction from an image is a fundamental step in many vision
applications, including tracking, navigation, panorama stitching, and mosaick-
ing [11,74]. Interest point extraction can be sub-divided into two main stages:
firstly, the detection of image interest points (‘features” or ‘keypoints’) with high
repeatability, robustness and uniqueness under varying imaging conditions and
transformations [11]; and secondly the computation of distinctive descriptors for
these detected interest points. In combination, these algorithms are called feature

operators.

An image is a collection of points which jointly represent a scene. These
points can be categorized into different groups based on their individual char-
acteristics or the information they carry, such as edges, corners and blobs [75].
A corner and an edge are image features that lie on the boundaries of image re-
gions, such as the boundary of an object. The difference between the two is that
edges represent the whole boundary while the corner is the point that lies at the
intersection of two or more than two edges. Contrary to corners and edges, a
blob is a dark image pixel surrounded with bright pixels, or a bright pixel sur-
rounded with dark pixels. A blob helps identifying image areas which are very

smooth and cannot be detected using corners or edges.
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The feature operators that have received recent interest in the literature in-
clude H&S [76], Features form Accelerated Segment Test (FAST) [77], Haraff
and Hesaff [78] and fast Hessian based detector [79]. State-of-the-art image fea-
ture descriptors include the SIFT [80], Principal Component Analysis (PCA)-
SIFT [81], Gradient Location and Orientation Histogram (GLOH) [10], SURF [79]
and BRIEF [82].

Table 2.2 presents some state-of-the-art detectors and descriptors for extract-
ing different image features [79-90]. A brief description of blob detectors and

descriptors is given below while corner detectors are discussed in chapter 5.

SIFT

For local invariant feature detection and matching, SIFT gained huge popular-
ity due to its strong detector and highly distinctive descriptor. Its detector finds
blobs at different scales using a scale space pyramid by approximating Laplacian
L2, + Liy values in the x and y directions. To improve localization accuracy, 3D
quadratic interpolation is used to sub-pixel accuracy. The SIFT detector is de-
signed to reject points lying at edges, therefore the Hessian response of detected

points is used for this purpose.

After detecting features at different scales, the gradients of these features are
calculated for the descriptor and its orientation. This is done by calculating the
histogram of gradient orientations and recording the dominant orientation for
every feature, which make these descriptors rotation invariant. SIFT uses a 128-
element descriptor to store the location, scale and gradient orientation informa-
tion of detected points. Furthermore, the normalization of this 128-bin descriptor

makes it moderately invariant to an illumination change in images.
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SURF

SUREF is a modification of the predecessor SIFT in terms of efficiency, proposed
by Herbert Bay et. al. [79]. The authors reintroduced the use of integral images,
that have been used in computer graphics since the 1980s and used by Viola and
Jones [91], to speed up the complex computations required to build scale space

(a convolution of an image using box filters) and descriptors.

The detection stage works in a similar way to SIFT, by finding interest points
at different scales and rejecting points with a strong blob response, which usu-
ally lie on the edges, using a determinant of the Hessian matrix. The difference
between SIFT and SURF is a reduction in the number of octaves and smaller
number of pixels in order to calculate a blob response. During scale space pyra-
mid construction, a number of octaves are calculated per scale to find blobs at
different scales. However, in SURF, four octaves per scale are considered suf-
ficient due to the smaller number of responses at higher octaves. Furthermore,
to reduce computations, the sampling intervals has also been increased for suc-
cessive octaves. Although considering 29, 4!, 6!" and 8" pixels for octaves 1
to 4 affect the overall accuracy of the detector, its authors claimed it to be in-
significant. Moreover, the localization accuracy is improved using 3D quadratic

interpolation [92].

The SURF descriptor uses the Haar wavelet response around a feature, which
is efficiently computed using an integral images — a feature only needs six oper-
ations to compute response in the x and y direction, irrespective of size. In [93],
further improvements were suggested to efficiently perform calculations over
integral images. SURF can store the information in two different descriptor
lengths, 64 or 128 bins. Both of these descriptors are claimed to be more effi-

cient and distinctive than SIFT.
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GLOH

A 128-bin descriptor proposed in [10] stores the neighbourhood information in
the form of a gradient, location and orientation histogram space. It calculates a
log-polar location grid with 3 bins in radius and 8 bins for angular directions,
leaving the central bin of the detected point. The gradient orientations are quan-
tized in 16 bins, which gives a 272-bin orientation histogram, but the descrip-
tor length is reduced using Principal Component Analysis (PCA) to 128 bins by
choosing only the largest eigenvectors for description [10]. The authors have also
contributed by developing four different scale-, rotation- and affine-invariant de-
tectors based on the H&S and Hessian detector known as Harlap, Haraff, Heslap
and Hesaff. Although GLOH can be used to describe any image feature, in the
literature the common detectors used with GLOH are the ones mentioned above

and described below.

Harris-Laplace (Harlap)

This is a combination of the Harris detector and Laplacian of Gaussian (LoG)
function for scale selection. The use of the Harris detector makes corners and
highly-textured points as dominant interest points, as opposed to blobs by the
SIFT and SURF detectors. It uses the multi-scale Harris detector to find corners

at different scales.

Harris-Affine (Haraff)

For this detector, the shape of a point’s neighborhood is used for detection us-
ing the second moment matrix proposed in [94]. This makes a detected point
stable and repeatable under affine and some perspective transformations of a

smooth surface. For a multi-scale Harris detected point, a second moment ma-
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trix of automatically-selected integrated and differentiated scales is calculated,
which then gives the shape of the neighborhood of a detected point and makes

it identifiable in images with a viewpoint change.

Hessian-Laplace (Heslap)

The Hessian-Laplace operator proposed in [78] searches for the local maximum
of the Hessian determinant to find blobs in images. It is rather similar to Harris-
Laplace. LoG is used for selecting maxima over multiple scales to identify stable
features at multiple scales. It claims to have better localization accuracy than Dif-
ference of Gaussian (DoG) along with better scale selection accuracy than Harris-

Laplace [95].

Hessian-Affine (Hesaff)

The Hessian-Affine detector is similar to the Harris-Affine detector. [85] sug-
gested the use of the trace and determinant of the Hessian matrix to select in-
terest points. The replacement of LoG is done because of its inability to reject
points where the signal changes in one direction only, such as on contours and
straight edges and being more sensitive to noise. The trace of the Hessian matrix
detects points for which the second derivatives change in only one direction and

therefore can be filtered.

BRIEF

A descriptor known for its speed in descriptor calculation and matching, it is

able to identify distinctive region around both corners and blobs. It is a binary
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Table 2.3: SIFT and SURF default parameter values. GLOH is the extension of
SIFT descriptor therefore it share similar parameter values as SIFT

process SIFT parameters value SURF parameters value
Read Image Raw Image Integral Image
Scale Space calculation # of octaves="% <mi"(im"geZ; :’(ig)t gmage*hdght)) # of octaves=4
samples per octave=3 samples per octave = 3
sampling step = 1 sampling step = 1,2,4
Scale space extremum detection | blob response < 300,00 blob response < 500,00
Non-maximum suppression In 8 x 9 x 9 neighbors In 8 x 9 x 9 neighbor
Orientation Assignment Gradient orientation histogram Haar Wavelet response
Descriptor length 128 bins 128 or 64 bins

descriptor that calculates intensity difference of image pixels such as

1 ifp(x) < p(y);

0 otherwise,

T(p;x,y) =

and stores them as an array of Os and 1s. Because the descriptor contains binary
numbers as descriptor information, its matching is efficient, requiring only an
exclusive OR operation (a boolean operator that returns TRUE if only one of its

operands is TRUE and FALSE otherwise).

2.4.2 Parameter tuning

The algorithms discussed above have a number of free parameters (contrast
threshold, sampling rate, number of octaves, etc). Tuning these parameters is
an important way to improve an algorithm’s performance. On the other hand,

tuning may actually compromise performance, as will be illustrated in the fol-
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Figure 2.5: Effect of number of octaves on matching performance, matching re-
sults of six images from Boat dataset using SURF descriptor

lowing discussion, where SIFT and SURF are used as test cases.

A brief description of the processing stages of SIFT and SURF, along with
their default parameter values, are given in Table 2.3. While constructing a scale
space, the number of octaves is calculated to find stable features across different
scales of an image (using Gaussian filters of different sizes). Originally, both al-
gorithms suggested that the number of octaves depends on the size of the image
and therefore, using the equation given in Table 2.3, the number of octaves for an
image is decided. For SURF however, authors suggest using only 4 octaves be-
cause of the small number of features that can be identified in higher octaves [79].
In order to increase or decrease the number of detected features, the size of the
scale space pyramid can be changed by changing the number of octaves or the
number of intervals per octave [96,97]. As shown in Figure 2.5, an increase in the
number of matches can be achieved by increasing the number of octaves from 2

to 6. For image 1 and 2, there is an 18% increase in matches, and the same per-
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Figure 2.6: Effect of different sampling rate on matching performance, matching
results of six images from Boat dataset using SURF descriptor

centage increase can be seen in other images as well. Undoubtedly, the increase
in the number of matches does not guarantee the increase in accuracy, as shown

in Figure 3.8b.

Another important parameter is the sampling rate, the number of points pro-
cessed in one sample of an octave. If the sampling rate is kept to unity, the
detector considers every image pixel in a scale space to find its blob response.
Changing its value from 1 to 2 or 4 means that every 2" or every 4! pixel will be
considered for a blob response calculation, which in turn will affect the number
of features detected in an image, as with more features the number of matched
points also increases. It has been suggested in [79] that increasing the sampling
rate for higher octaves reduces computation with no significant difference in per-
formance. Therefore, the SURF algorithm changes the sampling rate with respect
to the number of octaves. For any octave, the sampling rate is determined using

2(octavenumber—1) and it will be 2, 4 and 8 for the second to the fourth octaves re-
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Figure 2.7: Effect of changing blob response threshold on number of features
detected and matching performance of descriptor, results of matching image-1
and image-2 from Graffiti dataset using SIFT descriptor

spectively. Figure 2.6 shows a decrease in matched points as the sampling rate
for higher octaves is varied while other parameters, such as number of octaves
and blob response threshold, are kept constant. This indicates that an increase
in the number of interest points by reducing the threshold will cause more noise

pixels to be included and hence add more false positive matches.

In a scale space extremum detection stage, the threshold is the most useful
tuning parameter. In both SIFT and SURF, an image pixel qualifies as an in-
terest point if it is reasonably different from its surrounding pixels at some scale
(i.e.,blob response > threshold). This parameter plays a vital role in increasing or
decreasing the number of points detected from an image and has a significant im-
pact on the matching performance of an algorithm. Figure 2.7 shows the increase
and decrease in the number of features detected by SIFT for different threshold
values: the higher the threshold, the lower the noise will be in the image, but at

the same time the low threshold helps identify good features from low-quality
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Figure 2.8: Matching performance of SIFT descriptor for boat image-1 and image-
2 for different blob response threshold. Increase in % accuracy is shown with red
line.

images. Therefore, changing the threshold value may affect the performance of

an algorithm.

Itis evident from the above discussion that different parameters can be tuned
to extract the desired number of features from images, or to alter the matching
outcome between a pair of images. However, in this process, the performance of
an algorithm may be compromised. As Figure 2.8 shows, the number of matches
decreases for a higher threshold, but the percentage accuracy increases. There-
fore, parameter tuning is arguably not appropriate while comparing two algo-
rithms and should also be avoided. The original implementations of the SIFT,
SURF and GLOH algorithms were employed wherever required using binaries
made publicly available by their authors. However, the results of parameter tun-

ing given in Figures 2.5 to 2.8 were taken from open source implementations of
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SIFT by Hess? and OpenSURF by Evans®.

2.4.3 Feature matching

Matching is the step required to identify corresponding features in subsequent
video frames for tracking or navigation purposes. A number of matching algo-
rithms have been developed and used in the literature. For feature descriptor
matching, common techniques are similarity, nearest neighbour, distance ratio
nearest neighbour [10], and the correlation matrix [98]. Most of these algorithms
have efficient implementations such as using Kd-trees [99] and hashing [100]. In
nearest neighbour based matching, two features i and j are matched if the de-
scriptor for feature i (d;) is the nearest neighbour to the descriptor for feature
J (d;), and if the distance between them is below some threshold. The nearest
neighbour distance ratio is similar, except that the threshold is applied to the
distance ratio between the first and the second nearest neighbours. Thus, the
descriptors are matched if d; — d;/d; — di < T, where d; is the first and dj is the
second nearest neighbour to d;. In [10], different descriptor matching approaches
are compared and the nearest neighbour matching algorithm is identified to per-

form better than distance ratio nearest neighbour algorithm in terms of accuracy.

2.4.4 Tracking and navigation

Matching objects in multiple frames and calculating their distances for a mov-
ing person (blind /partially sighted) is required for automatic navigation. It can
only be achieved if we first detect one or more objects in a frame, and then track
them in subsequent video frames. In [101] authors present a new feature called

“transition” to detect and track an obstacle in video frames by keeping a history

Zhttp:/ /robwhess.github.com/openSIFT/
3http: / /www.chrisevansdev.com/computer-vision-openSURF.html
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of the detected features. In [102], Harris corners along with SIFT descriptors are
used for object recognition that can be used for tracking. Similarly, a number
of algorithms proposed for shape-based object detection, such as a polygonal
representation of a curve, are used to develop a non-parametric algorithm for
shape identification in [103]. Template matching and optical flow were also used
to track objects in real time [104]. Algorithms were developed for MPEG-7 vi-
sual description in [84,105]. These methods are mostly related to shape descrip-
tion techniques. Gradient-based region description [106] and the wavelet-based
region description [107] are two other methods used for object detection and

matching in video imagery.

Currently the best-known methods in the literature for point tracking are
homography-based matching [71], visual odometry, optical flow, particle filter-
ing and Kalman filters [108]. In the robotics research, Simultaneous Localization
and Mapping (SLAM) is a technique that can directly or indirectly help building
navigation systems for blind people. There are a number of publications to that
have implemented vision-based SLAM efficiently and effectively [72,109, 110].
SLAM also works by matching video frames to build a map of an unknown en-
vironment; it is done by keeping a track of the robot’s current locations. These
tracking methods are also used for indoor and outdoor vision-based augmented

reality applications [14,111,112]

Similarly, the use of visual odometry is also common in vision research. This
is a method of estimating the position and orientation of a moving object (a robot
or person) by analyzing the images taken from consecutive poses. This can be
done by constructing a pixel-wise optical flow field or matching image projec-
tions, as applied in [113] for visual odometry estimation for robot exploration on
different types of terrain. Another system used visual odometry on images from

an omni-directional camera mounted on top of a car [114] for outdoor robot navi-
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gation; their real time ego-motion system combined both optical flow and feature
matching approaches, the latter using SIFT features. It used homography to find
a column shift, which gives the displacement in feature positions, between two

consecutive frames.

In [115], a CENtre SURround Extrema (CenSurE) approach is used to pick
out blob-like features and provide a distinctive descriptor, with efficient imple-
mentation using integral images and Haar wavelets. The system is claimed to
give comparable accuracy to SIFT features but better time efficiency. In the case
of a single camera, only three to five points in an image need be used for visual
odometry using homography to find a relative pose between frames [116,117].
Here SIFT descriptors were calculated at FAST corners [118] detected at with
a scale space pyramid. To estimate the 3D rotation of ego-motion, a fixed-size
window was projected to find landmark correspondences on both images using

RANSAC.

In the last decade or so, Kalman filtering is gaining popularity in robotics, in
particular for tracking objects and estimating location and position of an object.
However, the problem with Kalman filters is that some prior knowledge about
the process and the measurement covariance matrices are needed, which are dif-
ficult to obtain in most cases [119]. Therefore, particle filters are now preferred
to Kalman filters. In [120], an adaptive colour-based particle filtering approach

is presented for object tracking.

The review of the literature given above reveals that many algorithms have
been proposed for every vision task. Deciding which one of these algorithms is
best suited for a particular problem is very difficult. For this purpose, statisti-
cians have defined a number of performance characterization measures. How-
ever, the selection of an appropriate performance measure is again vital and de-

mands an in-depth understanding of the domain (such as computer vision) and
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data (such as images) used for performance evaluation as well as the statistical
techniques involved. The discussion that follows aims to explore some perfor-
mance characterization methods used to evaluate vision algorithms, with a focus

on algorithms for image feature extraction.

2.5 Performance evaluation techniques

Performance can be defined as the accomplishment of a given task measured
against some known accuracy [121]. In computing, it is the measure of an algo-
rithm’s ability to complete the task for which it has been developed and produce
an accurate output. One example of an algorithm is counting the number of

people passing through a common point from camera images.

Benchmarking is the common method to set standards against which al-
gorithms’ relative performances can be measured. However, it requires prior
knowledge of data — for example, if we know that in every minute four people
pass through a corridor, then the output of a new algorithm can be compared
with the previous ones; but if there is no information about human traffic, then
comparing one algorithm’s performance with others is the only means of perfor-

mance assessment.

There are a number of performance measures already in use, such as ROC
curve, which was developed during World War II to analyze radar accuracy in
differentiating signals from noise [122] but has been adopted by other scientific
fields, including computer vision, to evaluate the performance of vision algo-
rithms [123-127]. It is a visual form of performance comparison where the curve

on a plot is used to represent an algorithm’s performance.

Similar to ROC curves, there are other visual performance metrics. These in-

clude PR [128] and SS [129] graphs. These measures were introduced to check the
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validity of ab algorithm’s output because calculating the accuracy of algorithms
alone was found to be misleading [130] for machine learning algorithms. That
is why it has become a convention to present a comparison of a newly-proposed
algorithm with existing methods using an appropriate performance evaluation
measure. In the context of navigation systems, a good matching algorithm is a
kind of a building block as its accuracy directly affects the overall system’s per-
formance. As discussed before, current research is more focused on using local
image features to match images, identify objects and obstacles. This is because of
their invariant behaviour under different geometric and photometric transforma-
tions. Due to the presence of a large number of feature detection and description
algorithms, their performance characterization has also been performed numer-

ous times in the past.

Repeatability is the most frequently employed evaluation measure for fea-
ture detectors [131,132]. Likewise, ROC and PR curves have been used to evalu-
ate interest point descriptors. For example, in [81] the precision-recall values
were calculated to compare the distinctiveness of SIFT and a modified form,
PCA-SIFT. Results presented for artificially-generated data proved PCA-SIFT to
be more robust than conventional SIFT. In [133] and [134], a comparative study
of filters for texture classification was performed using PR criteria. In [135], a
phase-based local feature descriptor was presented and its performance com-
pared with other descriptors using ROC curves. For all these studies, a single
detector’s output was considered using various descriptors. In [136], the eval-
uation of feature descriptors for a number of correctly-matched video frames is

presented using the same PR criterion as in [10].

Most comparative studies of local feature descriptors have ranked the SIFT
descriptor [80] and SIFT-like descriptors such as GLOH [10] as the best — though

it is claimed that SURF produces better results [79,136] using the criterion given
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in [10]. Similarly, a number of corner detectors have been developed in the past,
and a number of attempts have been made to assess their performances [76,118,

137-139]. H&S corner detector turns to be the best in most of these studies.

However, the reliability of these rankings is questionable because, in all of
these studies, no more than five image pairs have been used. The impact of the
dataset size on the error rate estimation, discussed in [140], can result in spurious

estimates of performance and hence incorrect rankings.

This thesis presents a thorough investigation of the use of performance eval-
uation measures, their statistical significance, reliability and the effect of the data
size used for performance characterization. This investigation commences in the

next chapter, which examines existing performance metrics in detail.
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CHAPTER 3

EVALUATION METHODS: RELIABILITY
AND STATISTICAL SIGNIFICANCE

3.1 Introduction

Most vision papers published in reputable journals now have to include some
evaluation work in order to demonstrate that the algorithm proposed is an im-
provement on existing ones. Generally, these evaluation results are presented in
tabular or graphical form. Neither of these is ideal because there is no indication
as to whether any performance differences are statistically significant. Moreover,
the size and nature of the dataset used for evaluation will obviously have a bear-
ing on the results, and neither of these factors is usually discussed. Clearly, there

is a need to improve upon this situation.

This chapter explores this evaluation problem and attempts to make some

43
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headway by employing statistical tests. Firstly, section 3.2 introduces the way
that vision evaluation studies are currently almost invariably performed and de-
scribes the measures that represent performance. Section 3.3 goes on to consider
a specific performance evaluation in detail and shows that the performance mea-

sures imply different results, a finding that calls into question their value.

Having demonstrated the problem with existing performance measures, sec-
tion 3.4 introduces a null hypothesis testing framework that can be employed to
assess the performance differences of vision algorithms. McNemar’s test has
been used in this framework and it is shown to be able to compare the perfor-
mances of a pair of algorithm in a statistically sound way. Section 3.4.4 then
examines whether using McNemar’s test with ‘ground truth” data can be used
as a figure of merit for assessing performance, and discusses whether this figure

of merit indicates statistical significance.

McNemar'’s test is for the analysis of paired data, and hence to compare more
than two samples one needs to perform McNemar’s test multiple times. Ac-
cording to statistical theory, multiple two-sample tests increase the probability
of Type-I error(false rejection of null hypothesis); corrections can be applied to
reduce Type-I errors , the best-known of which is the Bonferroni correction [141].
However, there are concerns regarding these corrections. There are other statisti-
cal tests which can reduce Type-I errors while performing multiple comparisons,
but they also have limitations. One widely-used such test is ANOVA, which is
described in section 4.6. ANOVA is a generalization of the well-known ¢-test for
comparing multiple samples simultaneously, i.e. it identifies statistically signif-
icant differences in means. The test can only be applied on data which are nor-
mally distributed, a significant constraint. Moreover, ANOVA does not identify

the sample from the population which has a significantly different mean.

The most important distinction between McNemar’s test and ANOVA is that
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Table 3.1: Confusion Matrix

Actual Actual
True False
Predicted | True Positive (TP) False Positive (FP)
True
Predicted | False Negative (FN) | True Negative (TN)
False

the former compares outcomes (success/failure) whereas the latter compares a
continuous measure. One can convert a continuous measure into a discrete out-
come using a threshold but not vice versa. Unlike ANOVA, McNemar’s test can
answer two questions: one, whether the two samples are statistically different;

and second, which one of them is better with a given confidence level.

Section 5.8 concludes this chapter by highlighting the shortcomings of eval-

uation methods and the rankings of algorithms presented in the literature.

3.2 Performance evaluation measures

To understand the behaviour and characteristics of any performance measures,
some numerical data will be used to motivate the discussion. A simple image
matching problem is selected (see chapter 4). Figure 3.1 presents a geometric
shape and a rotated version of it. If one wants to match these two shapes, the
easiest way is to match corresponding corner points. Solid and broken lines are
used to indicate the output of a notional matching algorithm. Corners 3 and 4
are correctly matched but corners 1, 2, 5, 6 and 7 are not. Furthermore, corner 2
and 6 are incorrect matches, while corners 1, 5 and 7 are unmatched. In fact, one

can identify four possible outcomes of a matching process, namely:
TP: obtained when an algorithm’s outcome is correct;

FP: obtained when an algorithm reports a result; that result is incorrect;
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Figure 3.1: A matching example: solid lines show true positive matches and
broken lines show false positive matches.
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Table 3.2: Confusion Matrix presenting matching example data

Actual | Actual
True False

Predicted 2 2
True

Predicted 2 1
False

TN: obtained when an algorithm reports a failure when it should do so;
FN: obtained when an algorithm reports a failure when it should not.
These results can be presented in a confusion matrix as shown in Table 3.1.

In Figure 3.1, points 2, 3, 4 and 6 are matched with b, ¢, d and f of the rotated
shape. By visual inspection, one can easily identify points 3 and 4 as true positive
matches, points 2 and 6 as false positive matches, points 1 and 5 as false negative
matches and point 7 as a true negative match. The resulting confusion matrix
is shown in Table 3.2. One can classify this algorithm’s performance as poor be-
cause it has identified more false matches than true matches. An ideal algorithm
should be able to correctly classify TPs and TNs with no FPs and FNs. However,
in practice there is always a trade-off between positive and negative results, mak-
ing it difficult to classify an algorithm’s performance using confusion matrix data
alone. Consequently, a number of derived metrics has been defined, such as Ac-
curacy, Precision, Recall, sensitivity and specificity which can be calculated from

these confusion matrix data. These are discussed later in detail.

Calculating one algorithm’s performance in isolation is of limited value; a
comparison with other algorithms” performances on the same data is usually
more meaningful. The results from each algorithm can be recorded in a confu-
sion matrix and the latter compared. However, it is much more common to de-
rive metrics, such as Precision (P) and Recall (R), from them and compare those

metrics. Equations for calculating all these measures from TP etc. are given in
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Figure 3.2: ROC space: Dotted line reflects random outputs of an algorithm,
while solid curve is the best expected performance of an algorithm and the bot-
tom right area shows high false positive rate and therefore, worst expected per-
formance.

Table 3.4.) Indeed, these metrics are usually plotted for visual evaluation. When
a number of algorithms are to be compared, a ranking is often produced from

graphs.

Figure 3.2 illustrates an ROC curve. It is important to appreciate what is plot-
ted here: each point on the curve summarizes the performance of an algorithm
with a specific set of tunning parameters; hence, the curve shows how the algo-
rithm’s performance varies as a tuning parameter changes. An algorithm whose
performance is close to the top-left corner of an ROC curve is performing better
than one whose curve is further away. In practice, ROC curves often cross as
illustrated in Figure 3.3; then one has be careful about the settings of the tuning
parameters of algorithms. In an attempt to identify an overall better algorithm
when ROC curves cross, several researchers calculate the Area Under the Curve

(AUC). However, this is not necessarily reliable [125]. These concerns are also
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Figure 3.3: Example of crossing curves

applicable to the other performance measures discussed below.

PR curves (plots of P against R) are somewhat analogous to ROC curves,
though the top right corner indicates good performance. (Many researchers plot
R against 1-P to have similar orientation as ROC curves.) Ideally, P ~ R ~ 1 rep-
resents good performance; however, R can be easily maximized at the expense
of P and vice versa. Hence, for ranking an algorithm, one often combines P and

R into the so-called F-measure.

Similarly, SS graphs are most commonly used in behavioural sciences but
are closely related to ROC curves. Its appearance can be similar to an ROC curve
if Sensitivity is plotted against 1 — Specificity. It is also interesting to see an
algorithm’s performance using simple measures such as True Positive Ratio (TPr)
against False Positive Ratio (FPr). Lastly, accuracy is probably the most popular
method for translating confusion matrix data into a single numeric performance

measure.
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Table 3.3: Output of a Notional Algorithm; Set A: original output of algorithm,
Set B: parameter tunning resulted in down sampling of negative examples, Set
C: tunning parameter resulted in a uniform increasing in all examples.

Set | TP TN FP FEN
3361 2370 1294 375
3361 198 101 375
3371 2380 1304 385

N = >

Table 3.4: Performance metrics based on Data presented in Table 3.3 to show if
these are variant to distribution of values in confusion matrix

Performance Description A B C
metric

Accuracy TP iINTEN | 07744 0.8820  0.7730
Precision TPTi—fFP 0.7220 0.9708 0.7210
Recall TPZ% 0.8996 0.8996 0.8974
True Positive Rate (TPR) % 0.7220  0.9708 0.7210
False Positive Rate (FPR) %ﬁm 0.3532  0.3378 0.3540
F-measure ZPZ—RR 0.8011 0.9339 0.7997
Sensitivity TPZ% 0.8996 0.8996 0.8975
Specificity %};]FP 0.6468 0.6622 0.6460
TPr r 04541 0.8330 0.4531
FPr £E 0.1749  0.0250 0.1752
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Changing the value of a tuning parameter may, for example, convert a false
positive into a true positive, affecting two cells of the confusion matrix. [124]
considered these kind of events in detail, identifying for example that if the data
in the confusion matrix change proportionally, the ROC curve is unaffected. To
illustrate this in more detail, Table 3.3 shows the results from a notional algorithm
with different tuning parameter settings A, B and C while Table 3.4 shows the

corresponding derived measures.

Set C in Table 3.3 has 40 more points than set A, 10 in each of the four cat-
egories. Because there are different counts in each of TP etc, the actual perfor-
mance is different, yet the TPR in Table 3.4 is unchanged. This is clearly undesir-
able. Similarly, R is invariant to this type of change, as are both sensitivity and
specificity. This means that these curves have some shortcomings for assessing

the performances of vision algorithms.

3.3 Comparing performance metrics

With so many performance metrics available, it is illuminating to discover whether
they all yield consistent results. If they do not, one could argue that they are ac-
tually measuring something other than performance, or are measuring different
aspects of performance. The previous section demonstrated that the common
performance measures produce different results on a ‘thought experiment’ but it
remains to be established that such performance measures produce inconsistent
results in practice. To that end, we now perform an experiment using a pair of
images drawn from the well-established Oxford database, described in detail in

Chapter 4. The pair of images are shown in Figure 3.4.

The particular problem that we shall explore relates to finding the transfor-

mation matrix or homography between the two images. As well as being worth-
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.

(b) Graffiti test image

Figure 3.4: Images from Graffiti dataset to perform local feature based matching

while for evaluation in general, this is highly relevant to the development a nav-
igation system for the visually impaired, as it gives a way of identifying the mo-
tion of objects relative to the observer. To determine the homography one first
determines matching features between the two images and uses them effectively
to solve a set of simultaneous equations, the result being a transformation ma-
trix. This homography-based approach has to be employed because each feature
detection algorithm detects a different number of interest points from images,

and at different locations.

Features from the two images are matched; from consistent matches (inliers
obtained using RANSAC) [142]), an estimated homography matrix is calculated,
which is then compared with the “true” homography provided with the imagery.

(How these ‘true” homographies were obtained is described below.)

The simplest way to compare two homographies is to see how closely they
project points. Therefore, some points from the reference image were projected
using the estimated homography and then compared with the true projection of

the point using the homography supplied by the Oxford group.

The spacing of these points to be projected is important: as explained by
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Figure 3.5: If black points are used to calculate homography matrix then red
points are those projected wrongly and green points are those correctly projected

Figure 3.5, if the points selected to calculate homography matrix are not evenly
distributed over the image, then the homography may represent the transforma-
tion of only that part of the image and therefore may well not project all points
correctly, as shown by red dots in image [143, 144]. Therefore, to test a homogra-
phy matrix, equally-spaced points are used to avoid any skew towards the points

selected for the calculation of the homoraphy.

For the data used here, the ‘true” homography matrix is provided by the au-
thors [10] and is available with the database as ‘ground truth.” These ground
truth homographies were calculated using hand-selected feature matches, re-
fined by an automatic procedure which apparently used H&S corners. This ap-
proach is viable providing any errors due to camera distortions are much smaller
than the errors due to inaccurate feature matches. If this were not the case,
matched points located towards the edges of the image (where lens aberrations
have more effect) would reduce the accuracy of the homography — but this has

not been observed in practice.

Similar to homography testing, this ground truth homography matrix can

be used to classify matched point (points detected and matched by algorithm it-
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self instead of selecting equally-spaced points) into four categories of confusion
matrix discussed above. The matched points are verified by projecting detected
points using the ground truth homography to find their actual locations in the
second image. So, for each detected point, the actual location is known and com-
pared with the algorithm’s estimated matched position. If the Euclidean distance
between the two is less than some threshold (such as T = 2) pixels then it is true
match; otherwise it is false one. The detected points which are not matched by
the algorithm are checked for being false negatives and true negatives. When the
detected point is projected using the ground truth homography and the projec-
tion is out of image boundary, it is classified as true negative. Conversely, if the
projection results in a pixel position inside the image, showing that the match

was present but the algorithm fails to identify it, is classified as a false negative.

More precisely, let P; = (x;,y;) be the location of a feature in the reference
image and P; = (xj,y;) the location of the corresponding feature in a test image.
Let P! = (x},y}) be the projection of P; onto the test image calculated using (3.1),
where Hg; is the ground truth transformation matrix represents the homography
between the pair of images:

P! = Hy x P; (3.1)

This projection is considered correct if
[P —Pjf| <7 (3.2)

for some threshold 7. This procedure is illustrated in Figure 3.11.

e A matched feature of reference image is true positive (ITP) if and only if

1P =Pyl <7 (33)
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e A match is considered false positive (FP) if and only if
[P} —Pj|| > (34)

To find false negative and true negative features, consider a non-matched
features of reference image is represented by P;;, a non-matched feature of
test image is represented by P;; and P{i represents the projection of non-

matched reference image feature onto test image.

¢ A non-matched reference image feature P; is false negative (FN) match if
and only if
VP;; 3Pj; (||Pj; — Pyl < 1) (3.5)

¢ A non-matched image feature is true negative (TN) match if and only if

VP;;(||Pj; — Py|| > 7) (3.6)

For comparison purposes, the images are matched using a sample detector and
descriptor (SIFT in this case) and the detected points are matched using a nearest
neighbour matching technique (described in chapter 2). Results are collected for
three different matching thresholds (0,0.7 and 1). A threshold of zero yields no
matched points, while for a threshold of 0.7, all points will be matched for which
the descriptor difference is less than 0.7. A threshold of 1 means that all points

are matched.

3.3.1 Do all metrics agree?

Table 3.5 presents TP etc for the three thresholds; this is equivalent to three con-

fusion matrices. Table 3.6 shows the corresponding measures calculated from the
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Table 3.5: Confusion Matrix values for three different nearest neighbour match-
ing (NN) thresholds, showing how negative outcomes are converted into posi-
tive outcomes by increasing threshold value

Matching Threshold | 0.0 0.7 1.0
TP 0 375 743
FP 0 114 1048
TN 727 640 0
FN 1064 662 0

data in Table 3.5 for these thresholds. The results are also plotted in Figure 3.6
using the curves commonly encountered in the literature. The shaded area in
each graph represents the space where the outcomes are consistent with good
performance. Let us consider an algorithm to be good if, in each graph, all three
points appear in the shaded region. So, according to this criterion, only two of
the plots (the accuracy and SS graphs) classify this algorithm as good. But does

this reflect the algorithm’s true performance?

The ambiguity in the accuracy graph is obvious because it says that algo-
rithm has same accuracy = 0.4, when all of the outcomes are negatively (7 = 0)
or positively (t = 1) classified! Similarly, the ROC, PR, TPr-FPr and F graphs
rate this algorithm at their lowest positions (zero values in each case) at zero
threshold when all outcomes fall in negative classes, overlooking a large number

of true negative results.

Although some measures do highlight poor performance, they do not do so
consistently; for example, the high specificity scores suggests that the algorithm
would be good at identifying negative outcomes correctly but completely ignores
a large number of false negative outcomes for thresholds of 0 and 0.7. Similarly,
the high true positive rate with a lower false positive rate in the ROC curve may
rank this an algorithm as having good performance at threshold 0.7, overlooking

the large number of false negatives. The same is the case with the PR curve
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each plot shows the area for acceptable performance of an algorithm.
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Table 3.6: Different performance metrics calculated from data shown in Table 3.5

Threshold 0.0 0.7 1.0

FPR 0.0000 0.1512 1.0000
TPR 0.0000 0.7669 0.4149
P 0.0000 0.3616 1.0000
R 0.0000 0.7669 0.4149

Specificity | 1.0000 0.8488 0.0000
Sensitivity | 0.0000 0.3616 1.0000

Accuracy | 0.4059 0.5667 0.4149
F-Measure | 0.0000 0.4915 0.5864

FPr 0.0000 0.0637 0.5851
TPr 0.0000 0.2094 0.4149

for thresholds of 0.7 and 1.0. Interestingly, with lower TPr for thresholds 0.7
and 1.0, the TPr-FPr graph seems more representative of the algorithms” actual

performances.

These results highlight some of the weakness of existing performance char-
acterization methods while assessing an algorithm’s performance. However,
evaluating one algorithm’s performance in isolation is usually not required, and
hence these methods have been widely used in the literature to compare algo-
rithms performances and produce rankings. To understand their behaviour for
comparing multiple algorithms, a number of feature extraction algorithms have
been selected for matching features in the same image data and their perfor-

mances are compared in the next section.

3.3.2 Comparing the performances of multiple algorithms

Table 3.6 summaries a number of well-known algorithms for interest point de-

tection and description; see chapter 2 for their detailed descriptions. Each algo-



CHAPTER 3. EVALUATION METHODS

59

True Positive Rate

Recall

1.0 7
0.8
0.6 /
0.4
—*— Haraff
—— Harlap
0.2 7 —&— Hesaff
; —A—  SuIe4
—¥— Sift
0.0 T T T T |
0.0 0.2 04 06 0.8 1.0
False Positive Rate
(a)
1.0 1
0.8+
06+
044
—+— Haraff
—— Harlap
0.2 —&— Hesaff
—&—  Surfé4
—¥— Sift
00 T T T T
0.0 0.2 04 0.6 0.8 1.0
1-Precision
(b)

Figure 3.7: Comparing ROC and PR plot for matching results of Graffiti image 1

and 2.



60 3.3. COMPARING PERFORMANCE METRICS

1.0
—*— Haraff
—— Harlap
0.8 1
o 0.6
5
)
1]
@
£
04
0.2 4
0.0 — . . . .
0.2 04 06 0.8 1.0
Threshold
(a)
1.0
—*— Haraff
—+— Harlap
—&— Hesaff
0.8
-

Accuracy
(=]
[=2]
|

04

0.2 T T T
0.2 04 06 08 1.0

Threshold
(b)

Figure 3.8: Comparing F-measure and Accuracy plots for matching results of
Graffiti image 1 and 2



CHAPTER 3. EVALUATION METHODS 61

1.0

0.8

e
>®
1

Sensitivity

e
=
1

0.2

02 04 06 08 1.0
Specificity

(@)

0.0

HRISE

0.

0.5
Haraff

e

TPr

00+ T
0.0 0.2 04 0.6 08

FPr
(b)

Figure 3.9: Comparing SS and TPr-FPr plots for matching results of Graffiti im-
age 1 and 2.



62 3.3. COMPARING PERFORMANCE METRICS

Table 3.7: Algorithms used to analyse different performance evaluation metrics

Feature operators

Detector Descriptor Descriptor length Matching
SIFT Gradient Orientation 128 bins Nearest Neighbour
Histogram

SURF Haar Wavelet Response 64 bins

SURF Haar Wavelet Response 128 bins "

Haraff Gradient Location and 128 bins "
Orientation Histogram (GLOH)

Harlap "

Hesaff 7 4 7

Heslap ’ " ’

rithm’s output is a list of matched points which are verified and categorized in a
confusion matrix using the ground truth homography, as described in section 3.3.
This process is repeated for different nearest neighbour matching thresholds and
the resultant graphs are shown in Figures 3.7, 3.8 and 3.9. The results presented
here are essentially the same as those in Table 3.6 but are produced for number

of different matching threshold values (between 0 and 1).

As mentioned before, the hope is that these graphs should show some sim-
ilarity in the ranking of algorithms based on their performance. The ranking
of algorithms can be determined by relationships of the curves in the graphs.
Unfortunately, there are obvious discrepancies in the results presented by ROC
and ROC curves. According to Figure 3.7b, both versions of SURF show an ap-
parently random behaviour (not good performance); but in Figure 3.7a, all al-
gorithms but SIFT have similar performance. Similarly, when both FN and TN
become zero (at a threshold of unity), the ROC curve shows that all algorithms
have same TPR and FPR and hence should be considered similar; but this is not

the case for the PR and TPr-FPr curves. Figure 3.8b shows a completely differ-
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ent behaviour, where the accuracies of SURF-64 and SURF-128 are significantly
better than all other methods except SIFT. This may be happening because, by
relaxing the constraint (increasing the threshold), all negative outcomes shift to
positive ones, and accuracy and ROC are invariant to this change (a consequence
of the combination of confusion matrix values they use). As mentioned earlier,
the SS graph in Figure 3.9a is closely related to the ROC curve and hence shares
similar properties. Similarly, Figure 3.8a shows SURF-64 and SURF-128 being
dominant as they have the highest F-measures, better than SIFT. Although the
PR and TPr-FPr ratio graphs mostly agree, the question will still remains valid:
do they characterize performance well? Indeed, one might conclude that any
algorithm can be presented as performing better than the others by intelligently

selecting the most suitable performance measure.

The major drawback of all these graphical methods is that even if they carry
any statistical significance, it is not shown. Even error bars do not necessarily
indicate that performances are necessarily different in the statistical sense. In
any case, these curves may well overlap each other, making it difficult to identify

which algorithm is better overall.

Due to these biased performance characterizations of algorithms by different
graphical evaluation methods, the author contents that the research community
should be looking for other reliable and statistically valid evaluation techniques.

The remainder of this chapter explores this.

3.4 Null hypothesis testing

A hypothesis is a way of describing a theory about data. In many cases, a hy-
pothesis can be proven to be right or wrong using evidence. A methodology has

been developed over the last few decades that allows for evidence-based deci-
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sions to be made about performance, particularly of drug trials. One starts with
the so-called null hypothesis that (say) a new drug is no better than a current one.

The formal definition of this null hypothesis will be
H,: there is no difference between the two drugs
One can also propose an alternative hypothesis:
Hj: the two drugs have different effects

By gathering the results of a trial employing the two drugs, one can amass evi-
dence as to which hypothesis is better. One assumes that the null hypothesis H,
is correct unless the evidence suggests that it cannot be; hence, null hypothesis
testing is inherently conservative. A number of tests can be used for null hy-
pothesis testing, including the x?-squared test, t-test, McNemar’s test, ANOVA,
and so on. An arbitrary level, «, is often used as a cut-off between a statistically

significant and a statistically insignificant result.

In this work, two statistical tests are used, McNemar’s test and ANOVA. As
we shall see, McNemar’s test works by exploring where one treatment succeeded
and the other failed, ensuring that well-understood binomial statistics apply; in-
deed, it is sometimes described as a form of the statistical sign test. The test is
non-parametric but statistically “‘weak” in that it requires a larger amount of evi-
dence to indicate dissimilarity of performance than other, statistically ‘stronger’
tests. The second test that will be used is ANOVA (“analysis of variance”), which
is perhaps best thought of as a generalisation of the t-test to many variates.
ANOVA is statistically stronger than McNemar’s test but imposes some require-
ments on the data, including that they are Normally distributed. To be able to
employ ANOVA, one needs to ensure that these requirements are met. However,
when ANOVA can be employed, less data are required for it to ascertain whether

performance differences are significant. Although using less data may reduce the
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Table 3.8: Truth table for McNemar’s test

Algorithm A | Algorithm A
Failed Succeeded
Algorithm B Nps Nyr
Failed
Algorithm B N fs Nss
Succeeded

confidence level as P gets affected by the amount of data used for analysis [145],
therefore, one has to be careful in evaluating algorithms using statistical tests as

well.

3.4.1 McNemar’'s test

McNemar’s test has been widely used in medical research [146-153]; however,
it has not been fully explored for vision related algorithms” performance char-
acterization. Therefore, this study explores the use of McNemar’s test in null
hypothesis testing to ascertain whether it can be used to produce more reliable

rankings than the graphical methods presented in the previous section.

McNemar'’s test is a non-parametric evaluation metric introduced by Quinn
McNemar in 1947 [154]. It is used to compare matched pair data using a 2 x 2
contingency table with a discrete measure to classify the data as similar or dis-
similar. The test is used to record the outcomes of two algorithms over multiple
tests and therefore it not only counts the number of time an algorithm passed or

failed a test but also take into account the total number of tests performed.

For example to compare Algorithm A with Algorithm B, a null hypothe-
sis can be formed by assuming that there is no difference between their perfor-
mances. One then assesses whether the evidence obtained from testing does or
does not support that hypothesis. From the results, one can build up a kind of

‘truth table’ for a pair of algorithms, which can then be used in McNemar’s test.
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Table 3.9: Converting Z-scores into confidence limits

Z value | Degree of confidence | Degree of confidence
Two-tailed prediction | One-tailed prediction

1.645 90% 95%
1.960 95% 97.5%
2.326 98% 99%
2.576 99% 99.5%

Such a table is shown in Table 3.8, where N, 7 is the number of tests for which
algorithm A succeeded and algorithm B failed, and so on. McNemar’s test in-

cludes calculating the so-called Z-score using

Ny — Npg| — 1
Z=1/x2 = [Ny — Nys| (3.7)

AV st +Nfs

where the —1 is a continuity correction. This is similar to the x? test:

2 (‘st_Nfs‘_l)z

= 3.8
X st + Nfs (38)

According to central limit theorem, Z should be reliable if Nir + Ny 2 20. If
Algorithm A and Algorithm B give similar results, then Z ~ 0; as their results
diverge, Z increases. It is interesting to note that this expression involves cases

where one algorithm succeeds and the other fails, whereas performance evalua-

tion in vision largely focuses on where both algorithms succeed.

McNemar'’s test involves comparing paired data and therefore has only one
degree of freedom. Similar to other statistical tests, one needs to set the level of
significance, , which is used to compare the probability of error for rejecting or
accepting the null hypothesis. For « = 0.05 (commonly used level of significance:
a 95% confidence level, meaning that the results from the algorithms are expected
to differ by chance only one time in 20), the critical Z value is 1.96 (refer Table 3.9

for two tailed prediction). The null hypothesis will be rejected if Z > 1.96 or
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P < « and accepted otherwise. Here, P is probability of Type-I error (incorrect

rejection of null hypothesis).

In the physical sciences, it is common to use a more exacting 1-in-1,000 crite-
rion [155]. Values for two-tailed and one-tailed predictions are shown in Table 3.9
as either may be needed, depending on the hypothesis used: if we are assessing
whether the performances of two algorithms differ, a two-tailed test should be
used; but if we are determining whether one algorithm is better than another, a

one-tailed test is needed.

Comparing many algorithms

McNemar'’s test compares only two algorithms. When several algorithms are to
be compared, it is necessary to consider that each pairwise comparison involves
a selection from a population of algorithms — the use of multiple comparisons
tends to increase the family-wise error rate. In such cases, there are several cor-
rections that one could use, the best-known of which is the Bonferroni correc-
tion [156]: for A algorithmes, if the significance level for the whole family of tests
is to be at most &, then each individual test needs to be performed with a sig-
nificance level of a/A. The Bonferroni correction is actually a first-order Taylor

series expansion of the more general Sidak correction, 1 — (1 — a)!/4.

However, there are some concerns over the use of any correction [141]. For
example, Bonferroni corrections control only the probability of false positives
and come at the cost of increasing the probability of false negatives; it may there-
fore be considered as being too conservative to control the family-wise error
rate [157]. There are some other corrections suggested in literature, such as Ben-
jamini & Hochberg (BH) [158] and Benjamini & Yekutieli (BY) [159] corrections

which control the expected proportion of false discoveries amongst the rejected
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Table 3.10: McNemar’s test for evaluating different algorithms for matching
Graffiti image 1 and 2 against ground truth using nearest neighbour threshold

Ground truth | Ground truth
Failed Succeeded
Algorithm 0 FP+FN
Failed
Algorithm 0 TP+TN
Succeeded

hypothesis a less rigid condition than the Bonferroni correction.

These corrections can be applied by adjusting P (calculated probability of
error for each test), and the results will be interpreted as: if P < « then reject
the null hypothesis and accept the alternate. A comprehensive table of P and
the associated corrected value using three different methods (Bonferroni, Ben-
jamini & Hochberg, Benjamini & Yekutieli) is generated for Z = 0-60 as Ap-
pendix A. The concerns over the application of these corrections are also obvious
from Appendix A, where each method can be made to produce different result
by adjusting P. If Bonferroni correction rejects null hypothesis (P < «), other two
corrections accept it (P > «), a point of concern. Applying the most conserva-
tive correction is the safest approach so in the rest of this thesis, the Bonferroni

correction has been applied to every McNemar's test result.

3.4.2 McNemar’s test for ROC-like analysis

The purpose of these tests is the same as for other evaluation measures, i.e. iden-
tifying algorithms which can match two Graffiti images (a reference and a test
image) more accurately based on matched features. From these, it is possible to
produce a performance-based ranking. McNemar’s test is usually applied to a
pair of algorithms; but if one algorithm is replaced by the true results (‘ground

truth’) then the result can be compared with the other performance metrics dis-
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Figure 3.10: McNemar'’s test results to analyze algorithms’ performances against
ground truth; Z-score close to zero indicates better performance

cussed earlier. To count an algorithms’s success and failure attempts in matching
two image, the ground truth homography between the image pair was used to

verify each matched point, as described in section 3.3.

The scores for McNemar'’s test were determined and are shown in Table 3.10.
Because the ground truth can never fail, the corresponding columns in the ta-
ble contain zero. The sum of false positives and false negatives are the cases
where ground truth ‘succeeded,” because of the correct information about ac-
tual matched points” location, but the algorithm did not and therefore produces
a wrong result. Similarly, the sum of true positives and true negatives are the

cases where the algorithm and ground truth agree.

Here, McNemar’s test is used to compare multiple algorithms (seven interest
point operators) in pairs; therefore, the Bonferroni correction needs to be applied
to reduce the family-wise error rate. There are two ways to apply any correction:

one is to adjust the level of significance to obtain similar value as the original sig-
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nificance level (usually 0.05 for a 95% confidence level); and the second method
is to adjust the P value for each binary test. Here, the first method, adjusting the
significance level a, was adopted for all tests. The number of algorithms under
comparison are seven therefore A = 7 so to attain 95% confidence, « needs to

increase as shown below:

1—(1—a)t/4

1-(1-0.32)17 =0.05

Now, &, = 0.32 is the corrected significance level indicating 95% confidence in-
terval for comparing seven samples. For this «,, the critical Z-score will be 0.468
and 0.92 for one-tailed and two-tailed tests respectively. Therefore, from here on-
wards the interpretation of McNemar’s test results is that any Z-score less than

0.92 shows no significant performance difference between algorithms.

Z-scores for algorithms” outcomes for each threshold are presented in Fig-
ure 3.10. A Z-score closer to zero shows that an algorithm performed more simi-
larly to the ground truth and hence exhibits good performance. The Z-score, PR
(Figure 3.7b) and TPr vs FPr graphs (Figure 3.9b) show somewhat similar rank-
ings i.e. with SIFT performing best, closely followed by Harlap. However, the

TPr-FPr graph has more similarity with the Z-scores.

3.4.3 Homography testing using McNemar’s test

Section 3.3 explains how an image pair is matched using a homography ma-
trix. In the previous analysis, the ground truth homography was used to verify
matched points, while in homography testing, the matched points obtained from
each algorithm is used to calculate an estimated homography (H,), which is then
compared with the ground truth homography (Hy;). Figure 3.11 shows a com-

parison between Hg; and H,. For McNemar’s test, some 1000 equally-spaced
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Figure 3.11: Transformation of a point by a homography calculated from feature
matches (dotted line) and the ground-truth homography (solid line). This is a
failure for T = 2 pixels.

Table 3.11: Z-scores generated by comparing estimated homographies by algo-
rithms with ground truth homography.

Operators/Threshold | 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Haraff 35 35 8.06 2218 0 1715 0 1533 448 2
Harlap 35 35 35 35 35 35 12.65 448 16.79 2
Hesaff 35 2445 19.08 18 17 16 1575 19.72 21.95 10
Heslap 35 35 22 18 15.23 18 18.33 10.34 0 0
SIFT 35 2538 19.87 125 113 10 889 179 1.50 0
SURF-128 35 1090 10.56 1029 10.11 101 10.17 10.38 1096 12.27
SURF-64 35 1441 1385 1343 1325 1325 1340 1390 14.69 16.53

points were selected from a reference image to be projected on a test image using
homography matrices estimated through matched points lists from an algorithm
under test and the ground truth homography. If the difference between two pro-
jections of a point is less than some threshold, then it is a success; otherwise, it is

a failure.

Table 3.10 is used to calculate the Z-scores shown in Table 3.11 and plotted
in Figure 3.12. There is a limitation of this test i.e. if the matched points between
two images are less than 4 then homography matrix estimation is not feasible.
These cases can be seen in the table with Z-scores of 35. However, this limitation
does not affect the overall test results because if there are less than 4 matched

points, the algorithm’s performance cannot be predicted anyway. To accept the
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Figure 3.12: Z-scores between algorithms and ground truth homographies for
Graffiti image 1 and 2. Z-score of 35 (added manually) denote the cases where
homography calculation was not possible due to less than 4 matched points

null hypothesis, one the Z-score should be less than the critical Z value of 1.69;
however, all scores are significantly higher than this, making it safe to reject the
null hypothesis. For an algorithm to have better performance than others, it

needs to show low Z-scores for different thresholds.

Later we will see if this comparison hold any predictive power and helpful

in avoiding any pairwise comparisons.

3.4.4 Paired comparisons of algorithms using McNemar’s test

Comparing algorithms” outcome with ground truth is a good way to perform
performance characterization. However, ground truth data are not available in
every case. Therefore, comparing pairs of algorithms is logical and more appro-
priate. The advantage of doing pairwise comparison is to see which of the algo-

rithms perform better under similar conditions and for the same data, which in
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Table 3.12: Z-scores between feature extraction algorithms for matching Graffiti
image 1 and 2. To find the better algorithm, follow the arrow-head direction in a
pairwise comparison (row-column)

Haraff Harlap Hesaff Heslap SURF64 | SURF128
SIFT T 889 |« 889 |« 1292 |« 1597 |« 540 | « 270
Haraff < 1265 |« 1575 | «+ 1833 | + 8.60 | «+ 5.00
Harlap — 927 |« 1319 | «+ 6.70 0.50
Hesaff +~— 927 1.10 | «+ 9.10
Heslap o t+ 720
SURF64 T 6.90

turn can help finding complementary algorithms, algorithms that exhibit differ-
ent failure modes. To see how pairwise comparison is different from comparing
an algorithm’s output with ground truth and producing figure of merit, the fol-

lowing test has been performed.

Homography testing is the criterion used for this comparative study, for the
same reasons as in section 3.3, yielding results such as those in Table 3.8. Test
scores are calculated for 1000 equally-spaced points per image. For each point,
if both algorithms project it within a 2-pixel distance from its correct location
(calculated using Hy;), both algorithms pass the test, and if projection from both
algorithms is more than 2 pixels distance it is counted as a failure. However,
if algorithm A projects the point within allowed distance, it is counted for N,
conversely it is Ng;. Calculated Z-scores are presented in Table 3.12. All scores
for McNemar’s test are calculated from matched points obtained at a matching

nearest neighbour threshold of 0.7.

It is interesting to see that the Z-scores given in Figure 3.12 for a threshold
of 0.7 correlate to the Z-scores between algorithms given in Table 3.12. In Fig-
ure 3.12, Haraff shows a Z-score of zero — which means, at 0.7 threshold, the
homography estimated from matches obtained from Haraff is close to the orig-

inal homography. Note that, in these tables, the arrow-head points towards the
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algorithm with the higher Z-score. The distance between Harlap and SIFT in
Figure 3.12 shows that their difference in the performance is significant, with
SIFT showing better performance (lower Z-score). This result is supported by
Z = 8.89 given in the pairwise comparison. It is evident that if we have ground
truth available then comparing algorithms’ performances with ground truth us-
ing McNemar’s test can give a figure of merit and therefore pairwise comparison
is not required. However, in the absence of ground truth data, pairwise compari-
son gives a reliable and statistically-significant ranking. This is not possible using

any graphical evaluation method.

3.5 ANOVA: Analysis of variance test

As described in section 3.4.1, performing multiple binary comparisons may in-
crease family-wise error rate (Type-I error), and there remains a point of con-
cern when applying a binary statistical test. ANOVA is a method that is used
to perform multiple (more than two) comparisons at the same time without in-
creasing the Type-I error. It is also used for null hypothesis testing for normally

distributed data, most commonly in psychological research [160].

ANOVA is used to compare whether more than two groups exhibit a statistically-

significant difference in their means (y)

Hoy=pm=mwm=u=...=ly (3.9)

where 7 is the total number of independent groups under comparison. If the
test result shows significant difference then there are at least two groups whose
means are significantly different from each other. There are different variants

of ANOVA test, based on the number of factors that vary. So-called “one-way”



CHAPTER 3. EVALUATION METHODS 75

ANOVA is used when one needs to compare data means grouped under a single
category; similarly two-way ANOVA is used to compare more than two pop-
ulation means based on two factors or categories, and so on. Before applying

ANOVA, there are some conditions for data which need to be checked:
e groups must be independent;
e data in each group must be Normally distributed;
e homogeneity of variance.

The homogeneity of variance criterion means the variances of the groups under
analysis should be similar, which can be ascertained using the F,;, test (Hart-
ley’s test) [161]. This test calculates the ratio of the maximum and minimum
group variances, called F,,x, and if this ratio is less than a critical value (obtained
from a table), the groups are assumed to have similar variances. However, if the
groups’ variances do not show homogeneity, then some mathematical treatment
is required to prepare the data for ANOVA. This treatment can be calculating
natural logarithm of the data or taking its square root. To avoid 0-based arith-
metic errors, adding 1 prior to calculation is acceptable. Moreover, the indepen-
dence and normality of the data can be checked by calculating mean, median
and mode of the data for each group. An equivalent mean, median and mode

indicates Normally-distributed data.

$§=3 (vi—9) (3.10)

ANOVA test involves simple algebraical calculations to compare groups by
calculating mean square difference between and within groups as shown in Ta-

ble 3.13, where SS is sum of square differences, calculated using Equation 3.10.
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Table 3.13: ANOVA test calculations for k number of groups and n number of
data instances per group.

Source of Variation | SS  df MS F

Between Groups | SS, k-1 MS, = S5y MS:;

Within Groups SS, n-k MS, = 5

Table 3.14: Single factor ANOVA test summary

Groups Count Sum Mean | Variance
Haraff 1000 | 576.2359 | 0.576 0.001
Harlap 1000 | 1005.323 | 1.005 0.107
Hesaff 1000 | 1093.451 | 1.093 0.161
Heslap 1000 | 1099.353 | 1.099 0.402
SIFT 1000 | 903.7948 | 0.904 0.123
SURF-64 1000 | 883.402 | 0.883 0.072
SURF-128 | 1000 | 1109.961 | 1.110 0.412

To calculate the mean square difference, SS is divided by the number of degrees
of freedom (df) for both between and within groups. Commonly, the F-test is
used in conjunction with the variance for comparing groups of total deviation
using MS between and within groups. F is compared with F;; (based on sig-
nificance level, a« can be determined from F — table [162]). If calculated F > F,,;
or if the probability of error P < a, then the null hypothesis should be rejected,
showing at least two of the groups” mean has statistically significant differences;
however, the test does not indicate which mean is different, a limitation of the

technique.

To compare the performances of the feature extraction algorithms of Table 3.7
using ANOVA, same image data has been used (Figure 3.4). The test used the
same homography matrix testing framework as section 3.4.3 for McNemar’s test.

As previously discussed, equally spaced points are projected using both ground
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Table 3.15: ANOVA test results for comparing group of algorithms shown in
Table 3.7 for their matching performance

Source of Variation SS daf MS
Between Groups 217.74 6 | 36.29
Within Groups 1276.86 6993 | 0.18
F p Ferit
198.75 | 1.1 x 107%* | 2.10

truth and estimated homography matrices. If a point P; is projected using both
homographies, then P, = H, X P; and P; = Hg; X P; are the projections of that
point using the estimated and ground truth homography matrices respectively.
Let d = |P; — P,| be the difference in their projected positions; this will be close
to zero if both homography matrices represent similar transformation and large
value otherwise. Hence, this d is used to calculate sum of square difference for

ANOVA:
SS = f(di —d)? (3.11)

i=1

Before applying ANOVA, the data are checked for basic homogeneity of vari-
ances. The distances of false matches makes the data variance too high and non-
homogeneous, so some data treatment is required as shown in Figure 3.13. Here,

the square roots of data have been used to make variances homogeneous, after

which ANOVA is applied and the result shown in Table 3.15.

The result based on F = 198.75 > F.,; = 210 and P = 1.1 x 1072 «
« = 0.05 suggests rejecting the null hypothesis and shows statistically significant
differences in the performances of interest point operators, in agreement with
the results obtained using McNemar’s test. The difference between the two tests
(i.e. McNemar’s test and ANOVA), is that the former used a distance threshold
to determine success and failure, but for the latter, d is summed for all points to

calculate sum of square differences.
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Sample Quantiles
Sample Quantiles

T T T T T T T
-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3

mean = 1.610, median = 0.838 mean = 1.099, median = 0.966

Figure 3.13: Heslap matching results for Graffiti image 1-2, left QQ normal
plot shows data which is not Normally distributed, while QQ normal plot on
the right shows Normally-distributed data after mathematical transformation
(square root of data)
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ANOVA is a method that can only highlight the truth about null hypothesis
but is unable to tell which group’s mean is different. Therefore, some other test is
usually applied for this purpose, such as the Student-Newman-Keuls or multiple

range test, Tukey-Kramer test or Scheffe test [163].

3.5.1 Multiple range test

This test was developed for multiple comparisons by David B. Duncan [164] us-
ing studentized range statistics g, to compare sets of means. The comparisons

involve calculating

2
o = X 1means iquare(MS) (3.12)

to find the standard deviation of the difference (s; = \/(75) between any two
means. The comparison starts by listing the samples’ means in decreasing order
and subtracting lowest mean from the highest one. This difference is compared
with Q,,, a studentized range value obtained from a Q table for n — 1 degrees
of freedom. If this difference is greater than Q,, = Quu * s4, then the mean’s
difference is statistically significant. The process is repeated by calculating the
difference of second lowest from highest mean and comparing it with Q,,, and so
on. The results can be summarized as Table 3.16, where any mean marked with

an asterisk has a sample mean whose difference is not statistically significant.

Table 3.16 presents the mean difference of algorithms compared using ANOVA
(the algorithms” means are shown in Table 3.14). The results are somewhat sim-
ilar to McNemar’s paired data comparison (Table 3.12). The Haraff detector
performs better than the others, exhibiting the lowest mean (0.576) and lowest
variance (0.001) in Table 3.14. However, from mean difference analysis using
multiple range test, there is no statistically significance performance difference

between Haraff, SIFT, SURF 64 and Hessian Laplace. Similarly, SURF 64 and
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Table 3.16: Multiple Range Test results for finding algorithms which has sta-
tistically significant difference in their means. “*” indicate statistically non-
significant difference in mean value.

SURF 128 0.534 0.227 | 0.206 0.105 | 0.017 0.011
Heslap *0.523 0.216 | 0.196 0.094 | 0.006 —

Hesalff 0.517 0.210 | 0.190 0.088 —
Harlap 0.429 0.122 | 0.102 —
SIFT *0.328 *0.020 | —

SUREF 64 *0.307 —
Operators | Haraff | SURF 64 | SIFT | Harlap | Hesaff | Heslap

SIFT’s performance are also similar.

Although using McNemar’s test these performance similarities do not ap-
pear, it is may be because, while preparing data for ANOVA, one has to apply
some mathematical treatments to fulfil its requirements — in this case, calculat-
ing the square roots of the data to make its variance homogeneous and normally
distributed. The nature of this mathematical treatment does affect the overall re-
sults, as can be ascertained by changing the mathematical function from square
root to natural logarithm. Currently there are no known conditions according to

which a mathematical function can be chosen for data normalization.

3.6 Remarks

Performance characterization is a sensitive problem and therefore needs to be
dealt with carefully. Graphical methods for evaluation appear to be unreliable
and sometimes misleading. The use of statistically reliable methods is more rig-
orous. To explore this, McNemar’s test has been used to carry out a statistically
valid performance characterization of vision algorithms relevant to navigation
for the blind (and many other applications). It is also important to note that Mc-

Nemar'’s test can be used to carry out tasks such as ranking algorithms based on
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their performance, in which case comparison between algorithms and ground
truth is sufficient. Conversely, by carrying out a study of pairs of algorithms al-
lows one to find those that are complementary. As McNemar’s test alone can be
criticised because it involves assigning an arbitrary threshold to distinguish suc-
cess from failure, a companion study using ANOVA has been carried out to see
whether a similar characterization is obtained. Although the testing procedures

for the tests are slightly different, still the results are broadly similar.

Another approach can be the use of multiple performance evaluation meth-
ods to rank algorithms. If more than one method yield the same ranking, one has
more confidence in the results. However, one has to be careful in the selection
of methods because those that are invariant to data distribution will not reflect
the actual performance; this is the case with ROC curves, which will not be con-
sistent a non-invariant method such as McNemar’s test. This study suggest the
use of ANOVA to identify whether there are performance differences between
several algorithms, subsequently employing McNemar’s test to rank them. Be-
cause ANOVA does not tell us which algorithms are significantly different from
each other, other tests can be applied for this purpose, the most common being

the multiple range test, Scheffe” and Tukey test [165].
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CHAPTER 4

SAMPLE SIZE AND VARIABILITY

4.1 Introduction

Performance evaluation studies in other domains regularly use statistical hy-
pothesis tests, such as the XZ test, t-test, McNemar’s test or variance analysis
test [146-153, 160, 166-168], though very few of them focus on the amount of
data and its variability. Ensuring the dataset is large enough and exhibits enough
variability is as important for vision research data as any other mathematical or
statistical discipline if the results are to be generalized. Even sophisticated and
statistically reliable evaluation techniques may produce misleading results if the
sample size is not sufficiently large. In vision research, the algorithms are widely
tested on a number of images, though the amount of image data employed is

rarely large in the statistical sense.

This chapter uses two widely-used databases of different numbers of images

83
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to ascertain whether the performance differences calculated for small number
of images reflect the general trends of algorithms. Section 4.2 introduces these
databases and their relevant sources. To avoid confusion, the term ‘database’
in this thesis refers to a collection of images which is intended for evaluation
purposes, while ‘dataset’ is one component of a database, typically images of the

same scene.

Firstly, in section 4.3, McNemar’s test is used to determine how many points
need to be projected from one image to another (using the procedure described
in the previous chapter) to produce consistent results. Then section 4.4 goes on
to explore how many times this projection procedure must be done in order to
identify performance differences consistently. This essentially determines how
large a dataset is required. Sections 4.5 and 4.6 present performance analysis of
multiple feature operators for standard datasets and explore the inconsistencies
appear in results for large and small database of images, using both McNemar’s
test and ANOVA. The two statistical tests are compared, both in terms of results

and ease of use.

Section 4.7 goes on to explore the interplay between image content and dataset
size. This is done by dividing datasets from large database into many small sub-
sets and ascertaining whether they produce similar ranking of algorithms as the
whole database; as the image content is same in all images, one might expect the

results to be consistent.

Finally, section 4.8 concludes the discussion by presenting some rules (or
rules of thumb) about selecting an appropriate dataset size and a proper eval-
uation framework for statistically-valid performance comparisons of multiple

algorithms.
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Table 4.1: Small database of images

Dataset | Transformation | Number of images
Bikes blur 6
Trees 6
Graffiti | viewpoint change 6
Wall 6
Bark zoom + rotation 6
Boat 6
UBC JPEG compression 6
Leuven illumination 6
Table 4.2: Large database of Images
Dataset Transformation | Number of images
Asterix 16
BIP zoom 8
Crolle 7
East-Park 10
East-South 9
Ensimag zoom + rotation 10
Laptop 21
Resid 10
Laptop_rs 13
Mars 18
Monet rotation 18
New York 35
VanGogh 16

4.2 Datasets

In order to assess the matching performance of an algorithm using the approach
described in the previous chapter, an image pair is required. This image pair
should belong to same scene or have some overlap which can be matched. There
can be different geometric transformations applied to images, such as rotation
and translation, obtained by rotating or moving the camera position. Similarly,
different photometric transformations may be present due illumination changes,

compression and blur can occur in images, due to the lighting conditions, image
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42. DATASETS

(c) UBC (d) Leuven

(h) Wall

Figure 4.1: Database 1: Small database of eight datasets
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(m) Van Gogh

Figure 4.2: Database 2: Large database of thirteen datasets



4.3. HOW MANY POINTS ARE REQUIRED TO PRODUCE CONSISTENT
88 RESULTS?

storing format and changes in the camera’s optical system respectively.

For local image feature matching, the most widely used database of images
was introduced in [10]. This database! comprises several datasets of real im-
ages with different geometric and photometric transformations; this was made
publicly-available and several subsequent studies have also used it [11,79,82,86—
90,132,136,169-184]. This work employs it too; and it is summarized in Table 4.1.

To assess whether the amount of data affects the relative performances of

2 This was col-

interest operators, this work also employs a second database.
lected by the researchers who devised the smaller database discussed above,
perhaps implicitly indicating that they believe the small database is really too
small. This larger database contains 191 images in 13 datasets (Table 4.2). Differ-
ent datasets within each database encompass geometric and photometric trans-
formations that include zoom, rotation, viewpoint change, blurring, change in il-
lumination and JPEG compression. All images in each dataset are planar scenes
or taken with a fixed camera position, so each image pair is related by a ho-
mography (transformation matrix), which is supplied along with the imagery as

‘ground truth.” The method of calculating ground truth homography matrices

between an image pair was discussed in chapter 3.

4.3 How many points are required to produce consistent

results?

The objective here is to establish the number of points that need to be projected
from one image to another using a calculated homgraphy in order for it to pro-

duce consistent results. This is done by starting with a small number of regularly-

1http 2// .robots.ox.ac.uk/~vgg/research/affine/
Zht tp://
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Table 4.3: Z-scores calculated between SIFT and SURF128 for different number
of points selected for homography testing between an image pair showed in first
column. Z-score of 0 means similar performance of both algorithms mostly oc-
curred.

Number of Points | 100 | 200 300 400 500 600 700 800 900 | 1000
Bark 1-2 375 | 375 | 375 | 425 | 425| 425 | 425| 425 | 425 | 425
Bark 1-3 0 0 0 0 4.8 4.8 4.8 4.8 4.8 4.8
Bark 1-4 0 0 0| 1.15 1.5 1.5 1.5 1.5 1.5 1.5
Bark 1-5 0 0 0 0 0 0] 459 11 | 11.53 | 11.53
Graffiti 1-2 0 0 0 0 0 0| 656 | 1196 | 15.59 | 16.19
Graffiti 1-3 889 | 889 | 889 | 889 | 11.66 | 1536 | 18.33 | 20.88 | 23.07 | 23.07
Graffiti 1-4 9.9 | 14.07 | 17.26 | 19.95 | 18.85 | 18.85 | 15.37 | 15.37 | 15.37 | 15.37
Graffiti 1-5 0 0 0 0 0 0 0 0 0 0

spaced points for projection, then increasing the number of points. When enough
points are projected, the results become consistent; if consistency is not reached

then clearly this method would be inappropriate for assessing performance.

Table 4.3 presents results for the well-known Graffiti and Bark datasets from
the small database of images. Both of these datasets contain images with complex
transformations: the Graffiti images have been taken from different viewpoints
while the Bark images are zoomed and rotated. McNemar’s test is applied to find
the number of correct and false projections for two algorithms, SIFT and SURF-
128, and the Z-scores between them are presented in Table 4.3. Shaded cells in
the table indicate the point at which a significant result is obtained, highlight-
ing the number of points required to obtain consistent results (for the particular
image data). It is also true that, for some image data, 100 points are enough to es-
tablish the performance differences between operators, such as for Bark images

1 and 4, where the result remained insignificant even for 1000 points (Z < 1.96).
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Similarly, for Graffiti image pairs 1-3, 1-4 and 1-5, the evaluation shows a simi-
lar trend for different numbers of points. However, for the rest of the images, at
least 700 points are required to obtain consistent results. From this, we are able to
conclude that, for homography testing, the number of points should be greater

than 700.

In principle, it would be helpful if the conclusion obtained using McNemar’s
test were confirmed by some other statistical test, perhaps ANOVA or the t-test.
Both ANOVA and the t-test requires the data to be normally distributed — which

is not in this case, as shown in Figures 4.3 and 4.4.

4.4 How many image pairs are required to produce consis-

tent results?

Having established that more than 700 points need to projected between a pair
of images, we are now able to ask how many image pairs are required to produce
consistent results. The same general approach as in previous section is adopted,
i.e. starting with a small number of image pairs and increasing the number; again
the aim is to find a point at which results become consistent. This establishes the
minimum number of images that is required in a dataset. Again, this is done

using McNemar'’s test for two algorithms, SIFT and SURF-128.

Five images from the each of the New York, Laptop, Mars and Asterix datasets
of the large database were selected as these contain the largest number of images
(35, 21, 18 and 16 respectively). A subset of 5 image pairs is used as starting
point because this is the size of the datasets in the small database. If the number
of images do not affect the performance evaluation results, than Z-scores of small

subsets should be similar to the result from the whole dataset. However, the re-
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Figure 4.3: Data (Projection error of 1000 image points by estimated homograpy
matrix) distribution generated by SIFT and SURF-128 for Graffiti images. First
column shows Q-Q normal plots where the data should be aligned to theoritical
line, and if not, shows non-normal distribution of data which can also be seen
from probability density distribution plots in the second column.
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Figure 4.4: Data (Projection error of 1000 image points by estimated homograpy
matrix) distribution generated by SIFT and SURF-128 for Bark images. First col-
umn shows Q-Q normal plots where the data should be aligned to theoretical
line, and if not, shows non-normal distribution of data which can also be seen
from probability density distribution plots in the second column.
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Table 4.4: Z-scores calculated between SIFT and SURF-128 to identify the mini-
mum number of image pairs required for performance evaluation. The Z-scores
less than 1.96 (critical Z-score) is considered non-significant. Z-score with “*"
sign represent a case where SURF-128 performed better than SIFT, in all other
cases SIFT outperformed SURF-128.

New York dataset (35 images)

Number of Image Pairs 5 10 15 17 34
Set1 1262 700 752 492 18.84
Set 2 *2.89 3.69 1583 21.42
Set 3 341 1829
Set 4 1.67
Set 5 12.17

Laptop dataset (21 images)
Number of Image Pairs 5 10 15 20
Set1 0.00 0.00 11.40 11.40
Set 2 0.00 11.40
Set 3 0.00
Set 4 11.36

Monet dataset (18 images)
Number of Image Pairs 5 10 15 17
Set1 26.27 26.53 3691 40.45
Set 2 3.47 3050
Set 3 25.61

Asterix dataset (16 images)
Number of Image Pairs 5 10 15
Set1 334 166 748
Set 2 099 6.89
Set 3 12.90
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sults presented in Table 4.4 show that if the performance difference between two
algorithms is insignificant for 5 pairs of images (set 4 of New York dataset in the
Table 4.4), it subsequently becomes significant when the number of image pairs
are increased. Similarly, set 2 of the same dataset shows that SURF-128 is sig-
nificantly better than SIFT; however, this result is not occur when the number of
image pairs were increased in the other sets. Similarly, there is no performance
difference between SIFT and SURF-128 for three sets of the Laptop dataset with
5 image pairs, but this changes for the sets containing 15 or more image pairs.
The same evaluation differences can be seen in the Monet and Asterix datasets.
From these results, a rule of thumb can be defined that at least 15 image pairs are

required to obtain consistent performance evaluation results.

4.5 Exploring the performances of feature operators

So far, only SIFT and SURF have been used in the results presented. These were
selected because they are widely used and because they have been found in pre-
liminary experiments to be representative of a wide range of feature operators.
However, there are many feature detectors and descriptors apart from SIFT and
SUREF, and the framework of null hypothesis testing using McNemar’s test or
ANOVA allows us to explore whether these operators have statistically signifi-
cant differences in performance. Hence, the set of feature operators described in
chapter 2 are used to evaluate their performances for large and small databases

of images.

As before, some 1000 uniformly-spaced points were selected from a reference
image and projected using both the ground-truth homography and estimated
homographies from all seven algorithms under study. Algorithms are compared

with each other using McNemar’s test and ANOVA in the null hypothesis frame-
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work discussed in chapter 3. Although it has been established that 5 image pairs
are not sufficient to draw statistically valid conclusions by comparing SIFT and
SURF-128 for small sets of image pairs, this database is used here because it has
been so widely used in the literature for evaluations [11,79, 82, 86-90, 132, 136,
169-184]. These results will give a way to ascertain any inconsistencies present

in the literature.

As discussed before, performing multiple binary comparisons tends to in-
crease the family-wise error rate, and this bias can be reduced using corrections.
Here, as seven algorithms are involved, the Bonferroni correction [141] is used
as described in chapter 3 to adjust the significance level. This results in the sig-
nificance level being &« = 0.32, for which the critical Z-score is 0.92 for two-tailed

test. Hence, any Z-score below 0.92 is considered statistically insignificant.

4.5.1 Results using the small database

Results for all eight datasets of the small database (shown in Figure 4.1) are
recorded in Table 4.5, grouped according to the image transformations involved.
An easy inspection method is to follow the ranks generated for each algorithm
in the last column for each dataset. None of the algorithms appears to be best for
matching images with all kind of transformations. Of course, we need to bear in
mind that the number of image pairs — 10 for first three sets and 5 for the last
two — are not sufficient to draw any statistically valid conclusion according to
the rule of thumb established earlier. According to these results, SIFT is robust
for matching all images except for viewpoint change. Similarly, Harris-affine
with GLOH descriptor appears to be a strong combination of detector and de-
scriptor for matching images under view-point change and change in illumina-
tion. SURF-128 showed, unexpectedly, to be the worst algorithms for matching

zoomed and rotated images, a contradiction of [79].
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Table 4.5: Z-scores of feature operators for datasets with different transforma-
tions in small image database. To find the better algorithm, follow the arrow-
head direction in a pairwise comparison (row-column). Last column presents the
overall score of the algorithm equal to the sum of arrows pointing towards the
algorithm in a row and a column (indicating its superiority over others). The Z-
score less than 0.92 shows similarity in performance therefor, does not contribute
towards score calculation. An algorithm’s rank is the sum of arrows pointing to-

wards it in a row or a column.

| Operators | SURF-64 SURF-128 Haraff Harlap Hesaff Heslap  Score |
Blurring (Bikes + Trees)
SIFT T 331 | < 1025 | < 4032 | <« 2887 |« 3855 |+« 946 5
SURF-64 T 399 | <« 4130 | « 3051 | < 3598 | « 13.84 5
SURE-128 < 4172 | < 3375 | < 4318 | «+ 15.04 5
Haraff T 1350 1+ 109 | T 33.86 0
Harlap <~ 1084 | 1 18.84 2
Hesaff 1T 32.64 1
Heslap 3
Viewpoint change (Wall +Graffiti)
SIFT T 420 079 | T 2698 |« 508 | T 1458 | «+ 1858 2
SURF-64 T 283 1 1978 | <~ 932 1T 10.61 | < 2266 3
SURE-128 T 1911 | < 239 | 1T 1248 | +— 19.84 4
Haraff — 1720 | < 950 | «+ 29.69 6
Harlap T 347 | «+ 1253 1
Hesaff —  26.67 5
Heslap 0
Zoom+Rotation (Bark + Boat)
SIFT — 2988 |+ 3013 | «+ 2208 | 1t 165 | <« 3110 | < 23.85 5
SURF-64 <~ 407 t 618| 1 2402 | <« 163 | T 6.05 2
SURF-128 1+ 1500 | 1 2833 + 223| 1+ 1329| 0
Haraff T 2263 |« 735 0.45 3
Harlap — 2656 | <+ 2456 6
Hesaff 1 8.18 1
Heslap 3
JPEG Compression (UBC)
SIFT — 1473 | 1+ 922 |« 874 t 872 |« 933 |« 247 4
SURF-64 T 1865 | T 467 | T 1718 | 1 1131 | 1 1446 0
SURE-128 <~ 1410 | < 473 |« 1290 | + 959 6
Haraff + 1411 1+ 196| + 800| 1
Harlap ~— 1285 |« 917 5
Hesaff 1T 8.89 2
Heslap 3
Change in Illumination (Leuven)
SIFT — 562 |« 805| 1t 1127 |« 3236 | + 1960 | «+ 16.87 5
SURF-64 — 369 | T 1438 | « 3197 | < 1776 | «+ 9.36 4
SURF-128 T 1525 |+ 3126 | <+ 1685 |« 711 3
Haraff — 3615 | < 2501 | « 2260 6
Harlap T 2180 | 1 23.82 0
Hesaff T 829 1
Heslap 2
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Table 4.6: Rankings of feature operators for small database, generated by the
counting number of arrow-heads pointing towards each algorithm in rows and
columns of Table 4.5. The table is sorted on total score of algorithms, hence the
top most is the one with highest rank in the pool.

Operators | Blur | View Point | Zoom + JPEG Change in | Overall Score
Change Rotation | compression | illumination
SIFT 5 2 5 4 5 21
SURF-128 | 5 4 0 6 3 18
Haraff 0 6 3 1 6 16
SURF-64 5 4 2 0 4 15
Harlap 2 1 6 5 0 14
Hesaff 2 5 1 2 1 11
Heslap 3 0 3 3 2 11

The overall ranking is shown by the order of algorithms in Table 4.6, accord-
ing to which SIFT, SURF-128 and Harris-affine show statistically better perfor-
mance when compared with other algorithms. Hesaff performed better only for

one type of images, i.e. matching images with different view-points.

4.5.2 Results using the large database

These experiments allow us to ascertain whether the small database contains
enough images to characterize the performances of algorithms: if differences
are obtained using a larger database, we should be concerned that there are not
enough. The larger database comprises 191 images in 13 datasets (Table 4.2), and

it was used in exactly the same way as described in the previous section.

In order to demonstrate an algorithm’s behaviour for a particular transfor-
mation between image pairs, a summary of these results is presented in Table 4.7.
This table identifies performance differences more clearly than ROC or Precision-
Recall curves and has the advantage of associating a statistical confidence with
each comparison. The Z-scores and directions of the arrows show that SIFT’s de-
tector and descriptor are effective in identifying stable features under geometric

transformations. The performance of SURF-128 closely follows that of SIFT but
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Table 4.7: Z-scores of feature operators for three different transformations. To
find better algorithm follow the arrow-head direction in pairwise comparison
(row-column). Last column presents the overall score of the algorithm equal to
the sum of arrows pointing towards the algorithm in a row and a column (indi-
cating its superiority over others). The Z-score less than 0.92 shows similarity in
performance therefor, does not contribute towards score calculation.

Operators ‘ SURF-64 ‘ SURF-128 ‘ Haraff ‘ Harlap ‘ Hesaff ‘ Heslap ‘ Score
Zoom (Asterix, BIP, Crolle)
SIFT «5.99 342 | <26.63 | +25961 | <-50.05 | +48.61 6
SURF-64 15.23 | <2048 | +20.25 | «+45.18 | +45.03 4
SURF-128 <2478 | <2259 | +45.20 | <4256 5
Haraff <2.02 | <3524 | +44.54 3
Harlap +35.85 | +42.13 2
Hesaff —26.68 1
Heslap - 0
Rotation (East Park, East South, Ensimag, Laptop, Resid)
SIFT +36.19 +46.09 | <«5.36 +8.15 | «-52.08 | +55.38 6
SURF-64 +17.68 | 129.35 125.08 | <28.22 | +28.79 3
SURF-128 141.77 134.80 | <1895 | +-21.10 2
Haraff —4.69 | <-52.87 | +-52.41 5
Harlap +49.51 | <-47.73 4
Hesaff <324 1
Heslap - 0
Zoom + Rotation (Laptop_rs, Mars, Monet, New York, VanGogh)
SIFT +10.66 <11.68 | +67.07 | <-58.86 | <64.57 | +88.36 6
SURF-64 1799 | <5540 | +47.89 | «+51.72 | +78.24 4
SURF-128 <6158 | «53.12 | +56.35 | +81.95 5
Haraff T11.21 13.68 | «<38.77 1
Harlap <5.58 | <44.29 3
Hesaff <40.28 2
Heslap - 0
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Table 4.8: Rankings of feature operators for larger database, generated by count-
ing the number of arrow-heads pointing towards each algorithm in rows and
columns of Table 4.7. The table is sorted by score of algorithms, hence the top
most is the one with highest rank in the pool.

Zoom | Zoom + Rotation | Rotation | Overall Score
SIFT 6 6 6 18
SURF-128 5 2 5 12
SURF-64 4 3 4 11
Haraff 3 5 1 9
Harlap 2 4 3 9
Hesaff 1 1 2 4
Heslap 0 0 0 0

Table 4.9: Ranking of algorithms based on sample size (number of images with
zoom + rotation) from Table 4.6 and 4.8.

Ranking based Score || Ranking based Score
on 10 image pairs on 59 image pairs

Harlap 6 SIFT 6
SIFT 5 Haraff 5
Haraff 3 Harlap 4
Heslap 3 SURF-64 3
SURF-64 2 SURF-128 2
Hesaff 1 Hesaff 1
SURF-128 0 Heslap 0

there is a significant difference between their performances, evident by Z-scores
such as 3.42, 11.68 and 46.09 for zoomed images, zoomed + rotated images, and

images with only rotation respectively.

Table 4.8 gives a summarized characterization of the performances of all al-
gorithms by collecting their scores from Table 4.7. A comparison of the rankings
produced for large and small databases shows broadly similar characterization,
because only SURF-64 and Haraff operators have changed their positions in the
table. Of course, one needs to keep in mind the difference in the image trans-
formation in both databases, which can be a critique to the comparison of these

results as being an unfair.
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To see a comparison between similar transformations, Table 4.9 presents a
ranking of algorithms for those image datasets featuring both zoom and rotation.
Again the order of algorithms highlights the performance on different amount of
data. Unfortunately none of the algorithms share similar positions in the tables.
Interestingly, Harlap with GLOH is at the top when there are smaller numbers
of image pairs, while SIFT secured second position; this is not the case for the
larger dataset. Having this level of dissimilarity in results suggests that the size
of the database used has a significant effect on the ranking — and this means that
existing evaluations based around the small database need to be treated with

some suspicion.

To confirm these results are not an artefact of the use of McNemar'’s test, the
same general procedure has also been carried out with ANOVA, and the mean

performances of these operators are compared using it in the next section.

4.6 ANOVA: Variance analysis of matching results for dif-

ferent sample sizes

ANOVA is applied to determine whether the average error in matching image
features by algorithms is same for all algorithms; a null hypothesis for ANOVA.
The experimental procedure adopted is the same as described in chapter 3i.e. ho-
mography testing, but instead of examining an algorithm’s output for pass or
fail, as was with McNemar’s test, here the Euclidean distance of projected point
using estimated and original homographies is summed, to give an overall error.
Hence, a lower mean error should depict better performance. As per the con-
ditions for using ANOVA, the data should be Normally distributed and there
should be homogeneity of variances. Therefore, before applying ANOVA, the

data are checked for this homogeneity of variances.
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The distances of false matches makes the data variance too high and inhomo-
geneous (using the F-max test [185]), so some data treatment is required. Here,
the square root of the data were calculated in an attempt to make them Normally

distributed and its variances homogeneous.

4.6.1 Result for small database

Table 4.10 presents ab analysis of interest point operators for small database of
images, grouped according to the type of transformation in datasets. To inter-
pret the results, the F and P are compared with F,,; and «(0.05) respectively: if
F > F.j; or P < & one can reject the null hypothesis and accept the alternative.
ANOVA is a test that handles type-I errors, so the a adjustment is not required

for this test.

For datasets containing images with two geometric transformations (zoom
and rotation) i.e. bark and boat, the algorithms show statistically significant per-
formance difference as F = 7591 >> F,; = 2.10. One can be confident in
this result as P is close to zero, indicating that the probability of these results
occurring by chance is low. The algorithms are sorted based on minimum mean
error and then for variance, and it is found that SIFT performs better than all
other algorithms; similarly, both versions of SURF and Haraff also exhibit good

performance.

For images with blur (Bikes and Trees datasets), SURF performed better than
the other algorithms. Although SIFT has low variance, its mean error is higher
than that of SURF. Datasets presenting change in viewpoint transformation, such
as Graffiti and Wall, are the most difficult images for these detectors because
the overlapped area in the image pair decreases as the viewing angle changes.

Hence, algorithms show high variance on these datasets. As expected, Harris
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Table 4.10: Performance analysis using ANOVA for small database of images

Source of Variation = Between Groups Within Groups | Groups Mean Variance
Zoom + Rotation (Bark and Boat) SIFT 1.50 1.14

Sum of Square (SS) 25973.8 3991675 | SURF-64 2.40 13.62
Degree of Freedom (df) 6 69993 | Haraff 2.49 14.74
Mean Square (MS) 4328.97 57.03 | SURF-128  2.56 5.19
F 7591 Heslap 2.62 23.15
P 6.8 x 107 Harlap 2.87 48.50
Ferit 2.10 Hesaff 3.72 292.87
Blur (Bikes and Trees) SURF-128 1.25 0.95

Sum of Square (SS) 4183.34 123537 | SURF-64 1.28 1.04
Degree of Freedom (df) 6 69993 | Heslap 1.42 1.59
Mean Square (MS) 697.22 1.76 | SIFT 1.43 1.18
F 395.03 Harlap 1.64 1.89
P 0 Haraff 1.82 2.67
F.i 2.10 Hesaff 1.92 3.03
Change in view point (Graffiti and wall) Harlap 1.88 8.07

Sum of Square (SS) 118817 1826445 | Hesaff 2.52 8.75
Degree of Freedom (df) 6 69994 | Haraff 2.60 8.84
Mean Square (MS) 19802.8 26.09 | SURF-64 3.40 17.12
F 758.89 Heslap 4.34 36.20
P 0 SURF-128  4.85 52.70
Ferit 2.10 SIFT 5.75 50.99
Change in illumination (Leuven) Haraff 1.84 3.70

Sum of Square (SS) 49404 436862 | SURF-64 1.92 3.48
Degree of Freedom (df) 6 35063 | SURF-128  2.03 3.70
Mean Square (MS) 8234 12.46 | SIFT 211 4.45
F 660.87 Hesaff 2.27 3.97
P 0 Heslap 2.28 424
Feri 2.10 Harlap 5.44 63.67
JPEG compression (UBC) Haraff 1.84 3.70

Sum of Square (SS) 49404 436862 | SURF-64 1.92 3.48
Degree of Freedom (df) 6 35063 | SURF-128  2.03 3.70
Mean Square (MS) 8234 12.46 | SIFT 211 4.45
F 660.87 Hesaff 2.27 3.97
P 0 Heslap 2.28 424
F..i 2.10 Harlap 5.44 63.67
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Table 4.11: ANOVA test results for datasets grouped according to images with

same transformation. Large database

Zoom Mean based groups’ ranking

Source of Variation Between Groups Within Groups | Groups  Mean Variance
SIFT 6.32 88.88

Sum of Square (SS) 1704064 9.671% | SURF-64  10.10 461.51
Degree of Freedom (df) 6 209991 | Haraff 12.22 474.49
Mean Square (MS) 284010.69 4605.29 | Heslap 12.55 2371591
F 61.67 SURF-128 12.58  1983.18
P 9.07 x 1077 Hesaff 1478 79556
Ferit 2.10 Harlap 1553  4718.77

Rotation

SIFT 3.11 52.95

Sum of Square (SS) 198418.2 97346697 | Haraff 3.27 63.67
Degree of Freedom (df) 6 671996 | SURF-64 3.52 154.15
Mean Square (MS) 33069.70 144.86 | SURF-128  3.70 147.36
F 228.28 Heslap 411 104.45
P 1.8 x 10-2%2 Harlap 443 141.58
Ferit 2.10 Hesaff 4.66 349.89

Zoom + Rotation

SIFT 1.56 1.28

Sum of Square (SS) 120086 12789590 | SURF-128  1.75 1.92
Degree of Freedom (df) 6 412993 | SURF-64 1.82 4.22
Mean Square (MS) 20014.34 30.97 | Harlap 2.40 13.36
F 646.29 Haraff 242 92.74
P 0 Hesaff 293 73.47
Ferit 2.10 Heslap 3.04 29.78

and the Hessian-based detectors with GLOH descriptor, which are considered

specialist for detecting this kind of transformation, performed better than SIFT

and SUREF for 10 image pairs.

For photometric transformations, two datasets are available, Leuven and

UBC. For both datasets, Haraff gave better results than SIFT and SURF. ANOVA

statistics in Table 4.10 show that there is significant difference in the performance

of algorithms for all datasets and P ~ 0 strengthens confidence over these results.
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4.6.2 Results for large database

ANOVA results for the large database of images are presented in Table 4.11.
Large database images can be divided into three categories based on image trans-
formations: datasets with zoom, datasets with rotations, and datasets with both
zoom and rotation. Results for all categories show high confidence levels be-
cause of the low P, especially in last category (zoom and rotation). In every
category, ANOVA rejects the null hypothesis, showing that there are significant

performance differences in feature operators’ performances.

An interesting question is whether these results are different from the ones
for the small database. To answer this, let us compare the last category results
(zoom and rotation) with the same category in the small database results (the
Bark and Boat datasets in Table 4.10). Both results reject the null hypothesis with
F > F,i. However, the ANOVA analysis shows some differences. Apart from
SIFT, all other algorithms change their positions in the ranking table. Haraff
performed much better when the number of image pairs is only 10 but when
these pairs are increased to 59, its performance worsens compared to the other

algorithms.

Generally, ANOVA test results are in agreement with McNemar'’s test, that
small sample size cannot be used to predict general performance trends of al-
gorithms. Therefore, the large number of evaluation studies using the small
database reported in the literature are questionable and may need to be repeated
using more sophisticated performance evaluation and with sufficiently large vol-
umes of data. However, before delivering a final verdict, it is also important to
ascertain whether the lack of agreement in the results produced for large or small

databases is due to image content. The following discussion will explore this.
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4.7 Does image content affects performance analysis?

Use of different sample sizes for performance analysis revealed statistically sig-
nificant performance differences of algorithms. However, it does not show if
these results will be different if images are changed; in other words, does image
content play a role in favour of any operator? To explore this effect, the larger
datasets of images are divided into smaller subsets of fifteen image pairs each
and McNemar’s test and ANOVA have both been used to study the behaviour

of the feature operators.

However, one need to keep in mind that a different amount of transforma-
tion has applied to each image in a dataset; the images in the Mars, Monet and
New York datasets are rotated at different angles compared to the first image
which is used to used to match with them, as shown in Table 4.12. All of these
operators are sensitive to these geometric transformations and may perform dif-
ferently for different amount of transformation. Theoretically speaking, a suffi-
ciently large sample size should overcome this problem and one should be able

to observe the general behaviour of algorithms.

Let us examine the results generated for different subsets of the four datasets
Laptop, Mars, Monet and New York. All of these sets have more than 15 images
and allow subsets of 15 image pairs to be selected. The performances of all op-
erators are compared for these datasets. McNemar’s test results are presented
in Tables 4.13 and 4.14 and show Z-scores between pairs of feature operators for

each subset and for the whole dataset (at the bottom of each set in bold).

The results for the subsets from Laptop, Mars and Monet are consistent with
the whole dataset, showing that the appropriate evaluation framework with suf-
ficient dataset size can predict the behaviour of the algorithms. However, for the

New York dataset, the better performing operator changes for different subsets.
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Figure 4.5: New York dataset
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Table 4.12: Geometric transformation (scale and angle) between each image pair

of four datasets calculated from original homography matrices

Image pairs New York Laptop Mars Monet
Scale Rotation | Scale Rotation | Scale Rotation | Scale Rotation

Image 1-2 1.01 9.83  0.89 0.01  1.00 580  1.00 5.80

Image 1-3 1.00 1971  0.83 010 1.00 13.30  1.00 13.30

Image 1-4 1.00 29.73 077 0.02  1.00 2333  1.00 23.33

Image 1-5 0.99 39.75  0.72 011  1.00 31.86  1.00 31.86

Image 1-6 1.00 49.83  0.66 011 1.00 40.12  1.00 40.12

Image 1-7 1.00 59.80  0.60 0.01  1.00 46.59  1.00 46.59

Image 1-8 0.99 6994  0.55 031 099 5539  0.99 55.39

Image 1-9 0.99 80.12 048 013 099 64.03 099 64.03

Image 1-10 0.99 90.09  0.45 018  0.99 7541 099 75.41

Image 1-11 0.99 100.04 0.42 0.08 1.01 -4593  1.01 -45.93

Image 1-12 0.99 109.74  0.39 0.04 1.01 -39.52  1.01 -39.52

Image 1-13 1.00 120.38  0.36 0.02 1.01 -35.36  1.01 -35.36

Image 1-14 1.00 130.15  0.34 039 1.01 -3141 101 -31.41

Image 1-15 1.01 13990  0.31 0.61  1.00 -27.63  1.00 -27.63

Image 1-16 1.01 149.74  0.28 015 1.00 -21.42  1.00 -21.42

Image 1-17 1.00 159.79  0.26 125 1.00 -16.64  1.00 -16.64

Image 1-18 1.00 169.71  0.23 1.28  1.00 -1255  1.00 -12.55

Image 1-19 1.00 16991  0.20 0.27

Image 1-20 1.01 -160.11  0.19 2.71

Image 1-21 1.01 -149.92  0.16 0.54

Image 1-22 1.01 -140.06

Image 1-23 1.01 -130.03

Image 1-24 1.01 -120.04

Image 1-25 1.01 -110.21

Image 1-26 1.00 -100.20

Image 1-27 1.00 -90.36

Image 1-28 1.01 -80.12

Image 1-29 1.00 -70.37

Image 1-30 1.00 -60.44

Image 1-31 1.00 -50.47

Image 1-32 1.01 -40.34

Image 1-33 1.00 -30.40

Image 1-34 1.01 -20.19

Image 1-35 1.00 -10.51
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Table 4.13: Performance comparison of SIFT and SURF with other operators for
subsets of large dataset where each subset contains 15 image pairs. The result of
each subset can be compared with the whole dataset result given at the bottom of
each set in bold fonts. Arrow-heads point towards the operator with better per-
formance on particular set of images. Z-scores less than 0.92 are non-significant
and hence do not point in any direction.

Subsets SURF-64 SURF-128 Haraff Harlap Hesaff Heslap

laptop 0 0« 12962 | «+ 375 | 566 | <+ 2298
laptop SIFT — 1118 | < 1140 | < 59254 | «+ 46.658 | <« 19.063 | < 62.282
laptop — 1118 <« 1140 <« 59.25| «+ 46,66 | < 19.08 <+ 6228
Mars 0 0 0 0 0] « 2.67
Mars SIFT 0 0 0 0 0] « 1789
Mars 0 0 0 0 0 <« 2.67
Monet — 1347 | < 3691 115 | « 27695 | « 6168| < 5560
Monet SIFT — 1871 | <« 37336 115 | « 27166 | < 58489 | < 59.523
Monet — 2027 <+ 4045 1154 | < 27.69 | < 6175 <« 6093
New york — 13526 | « 75202 | 1 1355 | t 22875 1 9.0387 1t 11172
New york 0.8157 | «+ 7.5884 | 1 10484 | 1 14404 1T 7.603 1 10929
New york | SIFT — 13599 | « 22101 | + 3.7275 1072 | « 10291 | <« 16.614
New york +— 1688 <+ 1883 {1 1230 | 1 2287 | ¢ 5.59 0.017
laptop 0|« 13417 | < 50709 | < 54801 | « 2152
laptop SURF-64 047 | « 56903 | + 44812 | «+ 11.386 | « 60.202
laptop 0468 < 5690 | <« 44.81| < 1149 <+ 60.20
Mars 0 0 0 0 1.79
Mars SURF-64 0 0 0 0 0.71
Mars 0 0 0 0 1.789
Monet — 33211 | 1 12123 | « 17124 | « 6022 | <« 53359
Monet SURF-64 — 29519 | 1t 186| ¢+ 95549 | <« 52601 | <« 53371
Monet — 3143 1 2019| « 776 | + 5477 < 5418
New york T 979 + 2292 t 2950| 1 1913] 1 2062
New york « 10332 | 1 59465 | 1 12491| 1 67651 | 1 8.7899
New york | SURF-64 « 11770 1+ 919| 1 1261 T 217 < 455
New york 136 1 2423 | 1 33.61 t 18.07 1 1217
laptop — 10536 | « 47246 | <« 45873 | < 22383
laptop SURF-128 «— 57318 | « 4535| ¢« 1090 | < 60.856
laptop < 5731 | < 4535| « 1094 <« 59.19
Mars 0 0 0] « 1.79
Mars SURF-128 0 0 0 0
Mars 0 0 0 < 178
Monet 1T 36824 | 1 15531 | <« 47605 | < 31.688
Monet SURF-128 1t 36715 1 16671 | <« 40042 | < 38258
Monet T 4001 1T 2070 | <~ 4159 <+ 36.02
New york 1t 20193 | 1 23.563 T 12.863 1 15231
New york 1t 15602 | 1 18.242 T 14.504 1 13.707
New york | SURF-128 1 19.015 1T 18776 T 89711 0.23
New york T 2978 | 1 3330 1t 1967 1 11.67
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Table 4.14: Performance comparison of Harris and Hessian based operators for
subsets of large dataset where each subset contains 15 image pairs. The result of
each subset can be compared with the whole dataset result given at the bottom of
each set in bold fonts. Arrow-heads point towards the operator with better per-
formance on particular set of images. Z-scores less than 0.92 are non-significant
and hence do not point in any direction.

Subsets Harlap Hesaff Heslap

laptop T 9.3991 T 89745 | < 14425
laptop Haraff 1T 25.017 T 53.802 | <« 79418
laptop T 25.02| 1T 5375| < 794
Mars 0 0 1.1547
Mars Haraff 0 0 0.7071
Mars 0 0 1.15
Monet — 2642 | < 62081 | <« 55426
Monet Haraff — 2642 | « 62177 | <+ 60.133
Monet — 2642 | < 6217 | < 60.75
New york T 12556 | + 2.6052 0.4138
New york 1T 7.9206 1.1107 1T 3.8999
New york | Haraff T 49357 | + 89805 | <+ 13.802
New york T 1481 | 4.67 | 8.92
laptop 0.8571 | <« 19.372
laptop Harlap T 39.068 | < 32.098
laptop T 39.03 | «+— 32.09
Mars 0| <« 3.6148
Mars Harlap 0| <« 26667
Mars 0| < 3.61
Monet — 54483 | « 43723
Monet Harlap +— 50938 | <« 48516
Monet <~ 5450 | < 49.90
New york — 11514 | < 8.3461
New york — 4.0682 0.596
New york | Harlap — 1099 | <+ 1537
New york — 1442 | <« 1793
laptop — 2238
laptop Hesaff +— 59425
laptop «— 59.40
Mars 1.5
Mars Hesaff 0
Mars 1.5
Monet 1T 14.051
Monet Hesaff 1 4.1503
Monet 0 2.99
New york 0.9843
New york Hesaff 1T 4.6988
New york — 4.2632
New york — 5.39
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Table 4.15: ANOVA test for New York dataset as a whole.

Groups Mean  Variance
SURF64 2.53 2.28
Harlap 2.56 2.57
SURF128 2.60 2.43
Hesaff 2.61 2.51
Haraff 2.63 2.56
Heslap 2.64 2.81
SIFT 2.64 2.61
Source of Variation Between Within
Groups Groups
Sum of Squares (SS) 474.40 791252.1
Degree of Freedom (df) 6 311619
Mean Square (MS) 79.07 2.54
F 31.14
P 1.23 x 10
Ferit 2.10

Table 4.16: ANOVA test for subsets from New York dataset. Each subset contains
tifteen image pairs

New York Dataset Subset (Imagel-16) Subset Image13-27) Subset (Image21-35)

Groups Mean  Variance | Groups Mean  Variance | Groups Mean  Variance
Harlap 2.34 2.16 | SURF64 2.78 2.63 | SURF64 2.40 1.96
SURF64 2.41 2.13 | Heslap 2.79 3.02 | Harlap 2.42 2.09
Haraff 2.44 2.26 | Hesaff 2.83 2.85 | SURF128 2.46 2.02
Hesaff 244 2.24 | SURF128 2.85 2.74 | Haraff 2.51 2.25
SIFT 248 2.33 | Harlap 291 3.27 | SIFT 2.52 2.36
Heslap 2.48 2.68 | SIFT 2.92 3.01 | Hesaff 2.56 2.36
SURF128 2.48 2.41 | Haraff 2.93 3.03 | Heslap 2.64 2.69
Source of Between Within Between Within Between Within
Variation Groups Groups Groups Groups Groups Groups
Sum of Squares (SS) 256.17  243110.6 360.13 308371.8 617.53 228337.8
Degree of Freedom (df) 6 104993 6 104993 6 101619
Mean Square (MS) 42.69 2.32 60.02 2.94 102.92 2.25
F 18.44 20.44 45.80

P 1.54 x 1072 475 x 1072 241 x 1076

Fepit 2.099 2.099 2.0989
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This appears to be principally because of the varying amounts of transformation
alluded to above: the first subset contains images with less rotation, while the
last subset has images with rotation up to 360°, as shown in Figure 4.5 and Ta-
ble 4.12. For these kind of data, the subset size needs to be large to accommodate

the maximum variation in transformation.

ANOVA results for whole New York dataset, given in Table 4.15, mostly
agree with subsets results shown in Table 4.16 in showing statistically significant
performance differences of feature operators (F >> F,;;) but do not yield similar
rankings based on low means and variances. The major problem with ANOVA
is that the data are required to be Normally distributed and the variances need
to be homogeneous; the data under analysis do not obey these rules and, even
though they have been transformed by calculating its square root — the best
of the standard transformations for these data — they do not fit a Normal dis-
tribution well. This transformation makes these rankings unreliable and so the

rankings produced by McNemar’s test are considered more trustworthy.

Apart from image content, the amount of transformation appears to be a fac-
tor that affects a feature operator’s performance, as the results for the New York
dataset highlighted the sensitivity of feature operators to rotation in images. The
feature operators evaluated in this chapter are blob detectors, for which the de-
scriptors are designed to be rotation invariant. However, corner points are image
features which are inherently rotation invariant, so it would be interesting to as-
certain the ability of corner detectors to identify corners at different angles and
orientations. Hence, the next chapter explores the angular sensitivity of corner

detectors in both synthetic and real images.
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4.8 Remarks

Appropriate evaluation method and sample size are vital foundations for any
evaluation study. Both of these factors need to be selected with good under-

standing of the data and evaluation framework.

Unlike previous studies, this research takes account of the size of the dataset
used in making comparisons. Contrary to previous evaluation studies [10, 131],
in which overlapping PR curves made it difficult to determine which algorithms
out-performed others, the results presented here are not only statistically reli-
able but also clearly indicative of differences in the performances of algorithms
for the same set of data. Table 4.9 reflects the changes in ranking when the eval-
uations were performed on datasets with different sample sizes. Therefore, one
needs to be very careful in drawing conclusions when the amount of data is not

sufficiently large.

The chapter laid out some valuable rules of thumb regarding data size for
performance evaluation of vision algorithms. The homography testing frame-
work proposed and used for the evaluation of feature operators should use a
minimum of 700 points. Similarly, it has been established that 5 images pairs are
not sufficient and should be increased to at least 15 image pairs for statistically

valid performance evaluation.

Using these rules, a number of feature operators are characterized based on
their performance and the results are compared with the standard dataset of 5
to 10 image pairs widely used for this purpose. The results show that the SIFT
detector and descriptor are more distinctive and robust for matching under dif-
ferent image transformations and give consistent performance regardless of the
type of images. Conversely, the Harris-based detector combined with the GLOH

descriptor (which is an extended form of SIFT descriptor) gives good perfor-



CHAPTER 4. SAMPLE SIZE AND VARIABILITY 113

mance only when there is a significant viewpoint change in images. It should
therefore be most useful when used in conjunction with another good feature

descriptor, such as SIFT or SURF.

Although McNemar'’s test is valuable in identifying performance differences
between algorithms, and thus has a place in evaluation studies, the fact that it
identifies cases where one algorithm succeeds while another fails also has an im-
portant place in algorithm development: when this is so, the algorithms are op-
erating in significantly different ways and a hybrid algorithm that incorporates
elements of both these intelligently is likely to achieve a much better performance

than either in isolation.
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CHAPTER 5

CORNER POINTS

5.1 Introduction

A corner may be defined as a point of intersection between two or more edges.
Just like blobs, edges and regions, these are interest points in images. How-
ever, they have some inherent properties which make them more distinctive and
informative, for example an associated angle that can be useful for a number
of matching-based applications. Corners can be grouped into three categories
based on their internal angle, i.e. convex, concave and plain corners with in-
tersecting edges making acute, obtuse or right angles respectively as shown in

Figure 5.1.

In digital image processing, a corner is an image region where there is a
change in gradient (directional change in image intensity) in both x and y di-

rections. A number of detectors have been designed to find corners, some well

115
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Convex corner Concave corner Plain corner

Figure 5.1: Corner types based on their internal angle

known ones being described in Section 5.2. As the previous chapters have estab-
lished, statistically valid performance evaluation is critical for choosing the best
detector for a vision application; hence, previous studies of evaluating corner

detectors also need reviewing critically.

Previously, corner detectors have been evaluated using qualities such as re-
peatability [11,118,131,132], detection accuracy, consistency, stability, and local-
ization accuracy [5,8,186-190]. The most important of these is the localization of
true corner points. The remaining criteria are application-based: for example, re-
peatability measures the usefulness of detectors for matching applications, while
stability refers to the appearance of corners in multiple images of the same visual
scene, good for stereo and tracking applications. This chapter evaluates some
state-of-the-art corner detectors for detecting corner points at different angles

and different orientations.

In previous evaluation studies, the amount of data used has been low, often
4 to 10 synthetic or real images with ground truth (i.e., knowledge of the true cor-
ner locations) [5,8,187,189,191-193] which is not sufficient. This evaluation uses
a significantly larger amount of data and a combination of evaluation methods.
Section 5.3 introduces the image data developed for this purpose, comprising

synthetically-generated digital images of geometric shapes and real images of
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them captured using a camera. In order to compare detectors” performance for
locating corner points at correct locations, the knowledge of the ground truth
is important. Therefore, methods for identifying corners’ true locations are also

described in this section.

In section 5.4, the conventional detection rate and F-measure have been used
for performance comparison over synthetic and real data. Moreover, angular
sensitivity of corner detectors is analyzed using McNemar’s test in section 5.5, to

ascertain whether or not results are consistent with conventional methods.

As mentioned before, most of the evaluation frameworks previously used
perform application-based performance analysis. Computing detection rate or
F-measure for the number of corner points in each image cannot characterize
an algorithm’s general behaviour as it overlooks the identification of non-corner
points as corners. To fill this gap, so-called ‘technology evaluation’ is still re-
quired to understand detectors’ general performance trends. Section 5.6 presents
a technology evaluation framework for corner detectors for both synthetic and
real images. The discrepancies between general and application-based perfor-

mance analyses are also highlighted and discussed in this section.

Both application-based evaluation and technology evaluations suggests that
some detectors work well on one type of data while others work better on oth-
ers; for example, some detectors are able to find acute angles better than obtuse
angles and vice versa. Therefore, it may be wise to combine the detectors to get
optimal results. To study the best combination, section 5.7 presents combined
results of detectors for synthetic and real data. Finally, section 5.8 concludes the
discussion and pinpoints some future directions in terms of hybrid corner detec-

tors.
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5.2 Corner detectors

As a corner is characterized by a region with intensity change in two different
directions, a simple way of finding a corner point is to select a square image
patch as a lookup window and the calculate sum squared difference between

this and a second image patch, selected by moving the lookup window:

S(x,y) =YY w(u,0)(I(u,0)—I(u—=x0— y))? (5.1)

If S(x,y) is high in all 8 directions, it will be classified as corner point. The prob-
lem with a square image patch is that it is not isotropic (non-uniform at different
orientations). However, a circular window’s response is normally isotropic, so a

weighted circular window is used in a Gaussian-profile mask in some detectors.

A number of corner detectors have been proposed during the last few decades,
so vision researchers understandably would like to know which one is the best to
use. Corner detectors are usually classified into two broad categories, template-
based and geometry-based. Methods based on the former find the similarity be-
tween a template and a sub-window of the same size in an image, whereas
geometry-based methods measure the differential geometric features such as
finding edges, calculating topology or using autocorrelation [194]. A number of
corner detectors can be found in surveys of corner detection methods [137,194];
in this work, a representative subset was employed: well-established detectors
(H&S [76], Smallest Univalue Segment Assimilating Nucleus (SUSAN) [137], the
detector used in the Kanada-Lucas-Tomasi Corner Detector (KLT) tracking algo-
rithm [138] and Shi & Tomasi (5&T) [139]); and more recent ones: FAST [118] and
Global and Local Curvature Points (GLC) [195]). The following section provides

a brief summary of these detectors and their principles of operation.
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5.2.1 Harris & Stephens (H&S)

H&S [76] used the principle of similarity between template and a sub-window
described at the start of this chapter; however, instead of using a moving win-
dow, it calculates the differential of the corner score with respect to direction for
each image point using autocorrelation. For further simplification, the eigenval-

ues of first-order derivatives of image pixels are calculated:

2 LI
A= © Y (5.2)
LI, I

Using this, the corner measure M can be calculated using
M = Ay — K(Aq + Ap)? = det(A) — Ktrace*(A) (5.3)

Depending on the magnitude of the eigenvalues, the following inferences can be

made
e if both A; and A; =~ 0 then the pixel is neither a corner nor edge;
e if A; = 0 and A, has some large positive value, the pixel is on an edge;
e if A; and A, both have large positive values, it is a corner point.

So instead of computing a sliding window response, calculating a determinant

and trace of matrix A is sufficient to find corner points.

5.2.2 SUSAN

SUSAN is a mask-based method of finding corner points [137]. It defines a circu-

lar mask (M) of radius r over image pixels and compares every image pixel (1)
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covered by the mask with its central pixel (nucleus, mg) using the function

aM) = Y o ) (5.4)

meM

where the exponent value is determined empirically. SUSAN uses a geometric
threshold to categorize pixels as corners or parts of an edge. Greater g helps
finding edge points, whereas small ¢ values let corner points be selected. The

following recurrence function defines how SUSAN score is calculated:

R<M>{ g—n(M) ifn(M)<g;

0 otherwise,

For a corner, n must be less than half of its maximum possible value [137].

5.2.3 The KLT corner detector

Described in [138], this is a similar detector to Harris & Stephens but uses a
greedy approach for corner selection, by selecting points with the smallest eigen-
values. From the eigenvalues of all image pixels, it selects points for which
A1 > T, where T is some threshold. Then the point with maximum A; from the
list is selected as a corner point and all other points which are in its neighbou-
hood (selected empirically) are removed from the list. The process is repeated
until the list is completely explored for new corner points. This operator does
not consider the difference between A; and A; and hence a large number of im-

age points can be determined to be corner points, unlike the H&S detector.
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Figure 5.2: FAST corner detection, showing radius of 3 and clockwise direction
of testing image pixels for corner detection

5.2.4 Shi & Tomasi (S&T)

S&T [139] found that the minimum of eigenvalue A; and A, should be greater
than some threshold to identify a corner point. These eigenvalues are calculated
from image derivatives shown in Equation 5.2. The S&T corner points are said to
be more stable for tracking applications, and the technique is hence widely used

(it is implemented in OpenCV).

5.2.5 Features from Accelerated Segment Test (FAST)

FAST: a corner detector described in [77]. Like SUSAN, it uses a circular mask
of radius r; however, instead of comparing all pixels in the circular mask area,
it considers the pixels on circle’s boundary for comparing with the nucleus, as
shown in Figure 5.2. If n contiguous pixels are all brighter than or darker than
the nucleus, then the nucleus pixel is a corner point. It uses a machine learning
approach for pixel selection, with the order of pixels in a circular arc selected

using the ID3 (decision tree learning) algorithm from a training set of images.
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FAST uses circular arcs of radius 3, 6, 9 and 12. By comparing results for different
radii, the authors found 9 and 12 to be the most effective in finding corner points

in a variety of images [77].

5.2.6 Global and local Curvature Points (GLC)

This detector uses a classical Curvature Scale Space (CSS) technique [196] to find
corners and is called the Global and Local Curvature method [195]. Conven-
tional CSS-based methods find contours in an image from its edge map, created
using any edge detector; T-junctions are identified from these contours for which
curvature is calculated at a high scale. The algorithm selects the points where the
curvature value is higher than some threshold T and not very close to some other
corner point. Lastly, selected points are tracked to the lowest scale for each con-

tour, the aim being to improve the localization accuracy.

For the GLC detector, corner points are identified as maximum local curva-
ture points, similar to CSS, but the difference lies in the use of an initial local
threshold for selecting candidate corner points. It then discards false corners us-
ing an adaptive local threshold and a region of support for selecting points with
only sharp angle. Consequently, this method should produce more accurate and

stable corner points than simple CSS-based methods.

5.3 Datasets

The principal characterizing feature of a corner is its internal angle. Hence, it
makes sense to ascertain whether the performances of corner detectors change
as the angle and orientation of the corner changes. A convenient way of estab-

lishing this angular sensitivity is to use regular geometric shapes, as a variety
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Figure 5.3: Some of the geometric shapes used for evaluation. The first row

shows 3-, 10- and 20-sided polygons, while the second row shows star-polygons
with 4, 11 and 30 arms.

of interior angles and orientations can be generated at known angles; e.g., the
corners of an equilateral triangle all have 60° internal angles but different orien-
tations. Of course, the vertices of polygons are frequently used in their own right
for object representation, recognition [197], 3D object pose estimation [198] and

3D shape retrieval [199].

Both synthetic and real image data have been developed and used for per-
formance evaluation of corner detectors. The primary consideration is that the
amount of data is large enough for statistically reliable results to be collected.
The following sections illustrate the method adopted to generate data and cor-
responding ground truth (actual corner locations) in both synthetic and real im-
ages. As discussed above, the algorithms compared cover a range of approaches
and encompass well-established and comparatively modern techniques. In all
cases, original implementations by their authors have been used where avail-

able, or the OpenCV implementations with their default parameter settings.
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Table 5.1: Distribution of corners in datasets, based on their angles

set | angle range | Number of corners
A 11-45° 766

B 45-90° 733

C 90-135° 417

D 135-164° 318

5.3.1 Synthetic data

To characterize the angular sensitivity of corner detectors, a large number of syn-
thetic images of geometric shapes were used. Geometric shapes were used for
several reasons: firstly, a corner detector should be able to produce 100% accu-
rate results on synthetic images; a large volume of data with exactly the same
parameters (such as number of corners and angle between edges corresponding
to corner points) can be reproduced easily; and human judgement is not involved
in determining the actual locations of corner points (“ground truth”). Both con-
ventional polygons and star-shaped objects were used. These have the desirable
property for evaluation of having the same angle at different orientations. The
corner locations were determined by first calculating the internal angle, 6. For
a polygon, this is 6 = 2F where S is the number of sides, while for a star it is
0 = %. The locations of the corners in a shape subscribed in a circle of radius r
are then given by x = xo +rcosnf and y = yo + rsinnf where n = {1,2,...,S}

and (xo, o) is the centre of the shape.

These equations were used to draw polygons and the exact pixel positions
of their corner points, using OpenCV'’s anti-aliased line drawing routine to join
these points together and its F111Poly function to fill them. Anti-aliased lines
and filled shapes were used to represent more closely what one would obtain

from a real-world camera.

Corners were produced from a minimum angle of 11° (star polygon with 60
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Figure 5.4: Some of the polygon images used for evaluation. Images size are
approximately 2800-4000 x 2800-4000; Not all images are of the same size.

points) and a maximum of 164° (20-sided polygon). It is impossible to achieve
exact similarity for all sides of a polygon due to the rasterization of pixels” posi-
tions in a digital image; all the angles in a polygon differ by about +1°. The angle

at a corner ¢ is measured by taking the scalar product of the vectors between a

Li.Ly

corner point V, and its neighbouring corner points V; and V3: cos¢ = L]

where L1 = V3 — V, and L, = V; — V5. The amount of data produced is shown

in Table 5.1.

5.3.2 Real image data and ground truth

Polygons and stars were generated on a computer and printed. These were pho-
tographed using a Nikon D300 camera equipped with a Nikkor 18-200 mm lens
in 16-bit RAW format and converted into 8-bit PNG using dcraw; typical im-
ages are shown in Figure 5.4. It was then necessary to establish the locations of
the corners as accurately as possible. In previous studies, the most commonly-

used method to identify corners” actual locations is human judgement: for ex-
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Figure 5.5: Estimations of corner locations on real images — red circle: human
guess; green circle: automatically detected; blue circle: mean of human- and
machine-identified locations.

ample, in [5] a corner location is taken as the mean of ten human-judged lo-
cations. This approach is acceptable for limited amounts of data but rapidly
becomes too time-consuming as the volume of data increases, and is certainly
not feasible for the 2,234 corners in this study (which the authors consider is the
smallest number from which statistically meaningful conclusions can be drawn
with any confidence). An automatic mean is provided by OpenCV’s routine
cvFindCornerSubPix! which purports to find the location of the intersecting
vectors to an accuracy of 0.1 pixel [200] in the chess-board patterns of calibra-
tion targets. However, sometimes it produces a systematic offset of the order
of 0.1 pixel towards the center of the gradient for intersecting vectors at angles
other than 90°. In the case of chess-boards, this error is cancelled out between

two touching squares; but this is not the case for the images employed here.

To establish whether this automatic method could be used instead of hu-

man estimation, at least ten people were asked to identify 24 corner locations

1http ://opencv.willowgarage.com/documentation/feature_detection.html
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Figure 5.6: Error analysis of three methods to find actual corner locations in two
synthetic images; Human Guess (HG), Corner Sub Pixel Accuracy (SPA) and
Average of (SPA and HG)

manually in selected synthetic and real images of polygons and their means
were compared with those generated using the above-mentioned technique; Fig-
ure 5.5 shows typical results. Red circles indicate the corner locations marked by
humans and used to initialize sub-pixel accuracy function; green circles are the
outputs of the function; and blue circles are the means of the two. The synthetic
images allowed the error to be determined for human and machine approaches,
illustrated in Figure 5.6, while the real images were used to ensure that the al-
gorithm is sufficiently robust. This procedure determined the mean of human
and machine results to be the best estimate of the actual corner locations, and
that the mean machine-identified locations were within one pixel of them, better
than that of a human. Consequently, to find the ground truth corner locations
in the dataset, their positions were marked approximately by a human and then
refined using cvFindCornerSubPix. Visual inspection confirmed that the re-

sults were accurate enough. Images were then grouped based on the internal
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angles of the corners contained; see Table 5.1.

Having obtained a dataset of suitable images and ground truth data of corner
locations, it only remains to establish how close a detected corner has to be to its
true position to be deemed a success. The criterion that has been used here is
that the detected corner must lie within a Euclidean distance of two pixels from

the actual corner location for it to be deemed a success.

5.4 Test 1: Detection Rate

The correctness of the detector is based on its localization accuracy and the num-
ber of corners detected. Localization accuracy was used in preference to other,
more complex, measures such as repeatability because the actual locations of
corner points are what are important for a corner detector. The number of false
corners detected by a detector based on this localization criterion yields a false-

positive rate, Ry:
number of FP corners

f= actual number of corners (5:5)

5.4.1 Detectors’ response on synthetic data

The test data comprises synthetic images with no noise, so one might expect that
no corner detector would mark a false positive corner. In Figures 5.7 and 5.8, an
Ry of zero indicates the best achievable performance of a corner detector. Unfor-
tunately, none of the detectors achieves this for all images, though H&S, SUSAN
and FAST-9 do so for polygons in which the corners are formed at angles greater
than 60°. The underlying principle of the H&S and SUSAN detectors is to find

changes in gradient in two directions simultaneously, so when the angle is less
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Figure 5.7: False positive rate of detectors for images containing stars with angles
of 11° to 56°.
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Figure 5.8: False positive rate of detectors for images containing polygons with
angles greater than 60°.



130 5.4. TEST 1: DETECTION RATE

than 45° they seem to accept more points near actual corners due to neighbour-
ing edge pixels. Though S&T corner (1994) detector is a modified form of the
detector proposed by KLT (1991), its Ry value shows that its modification helps
reduce the false positive rate — but, considering the data are synthetic, even
a small number of false positives is not acceptable. The behaviour of all these
detectors with real imagery, which inevitably contains noise, is likely to be sig-

nificantly poorer.

5.4.2 Detectors’ response on real data

When a corner detector is run on an image, there are several possible outcomes

for each corner in it:

TP: the corner is detected;

FN: the corner is not detected;

FP: a corner is identified where there is no corner in the image;
TN: all remaining pixels in the image.

Let us write N7p as the number of true positives found etc. Both false negatives
and false positives reduce a detector’s performance, so two measures which can
encapsulate them are P and R for ranking an algorithm, often combined into the
so-called F-measure, the harmonic mean of P and R. For characterizing the overall
performance of the corner detectors, F values are calculated across the entire
dataset. One can argue about the use of F to assess a detector’s performance
instead of detection rate as used for synthetic data. The logic behind this is the
nature real imagery (which contain noise not present in synthetic images) and it

become important to consider all negative outcomes along with positive results.
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Figure 5.9: Variation of F across images, where each image contains 3-60 corners
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corner () (o) corner | A (m) | B (o)
1 v v SS 10 (4 X SF
2 4 X SF 11 v X SF
3 X v FS 12 X X FF
4 v v SS 13 v v SS
5 X v FS 14 X v FS
6 X v FS 15 X 4 FS
7 X X FF 16 X X FF
8 X X FF 17 v X SF
9 X X FF 18 X v FS

Figure 5.10: Success criterion for McNemar’s test for synthetic images

Conventionally, one distinguishes algorithms simply on the basis of P, R, F,
or a plot of P and R. Figure 5.9 shows how F varies from image to image. H&S,
S&T, FAST-9 and GLC detectors achieve somewhat better F values than the oth-
ers. It is surprising that all detectors achieved F < 0.5: this is because all of
them have high false positive rates — and this is despite the images having ex-
cellent contrast and essentially consisting of straight edges and corners. To back
up the points made in chapter 3, all graphs in Figure 5.9 result in overlapping
and crossed curves, making it impossible to say that one detector is better than
the others. Hence, the value of F can really be used only to distinguish success

from failure: an algorithm fails if its F is less than some threshold.
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Table 5.2: Successes and failures for 417 corners at angles 90-135°

H&S Pass | H&S Fail
SUSAN Pass 187 36
SUSAN Fail 87 107

However, also as discussed in Chapter 3, consideration of F, P and R do
not take account of the number of corners processed. This can be remedied by
employing McNemar’s test. As in previous chapters, algorithms were assessed
in pairs; for each corner in the dataset, the algorithms’ results were categorized
as one of SS, SE, FS and FF, as shown in Figure 5.10; the number of each of these

determine the Z-score.

Table 5.2 shows a sample comparison, that between the Harris & Stephens
and SUSAN detectors for corners belonging to Set C in Table 5.1. From the 417
corners, both detectors found 187 corners accurately and misidentified 107 cor-
ners. However, the remaining 123 corners are what determine the Z-score and
hence the relative performances of the algorithms. Z-score 4.50 > Z.i;, giving

99.9% confidence that H&S out-performs SUSAN.

For comparing multiple algorithms, McNemar’s test tends to increase Type-
1 error. To reduce this Type-1 error for comparing the six corner detection algo-

rithms here, a is adjusted as follows:
1—(1—a)/4
1—(1-028)6=0.05
For « = 0.28, Z.it = 1.08; hence, a Z-score less than this value is considered
insignificant; for example, Z = 0.41 in Table 5.3 shows similar performance of

SUSAN and FAST-12. All six algorithms are compared in a similar way; the Z-

scores explaining overall performances are given in Table 5.3.
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Table 5.3: Z-score based on F-measure

SUSAN | S&T | KLT | FAST-9 | FAST-12 | GLC
H&S <201 | « 144 | < 490 041 | <361 097
SUSAN 166 | <333 | 1361 041 | 7157
S&T —425| <158 | <241 000
KLT T490 | 1302 | 1436
FAST-9 <361 1.03
FAST-12 192

The results presented in Table 5.3 illustrate performance differences much
more clearly than the plots of Figure 5.9. In terms of overall performance, FAST-9
and H&S and GLC are roughly equal (with Z < 1.08). To explore whether this is
the case for all types of corners, these detectors need to be compared separately
on each of the sets A-D (Table 5.1), and these results are presented in the next

section.

5.5 Test2: Angular sensitivity

The second test was to analyze the angular sensitivity of corner detectors. Actual
corners were divided into four groups based on their corresponding angles, as
shown in Table 5.1. McNemar’s test was employed to investigate the angular
sensitivity of corner detectors based on detecting multiple corners with same
angle but different orientation. The criterion for ascertaining success is shown in

Figure 5.10.

5.5.1 Synthetic images’ results

All six algorithms have been compared, with their Z-scores provided in Table 5.4.
To read the score between two detectors, select the row of detector A and the

column of detector B in the table; the direction of arrowhead indicates which
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corner detector performed better and the corresponding number gives the Z-
score of the result. High Z-scores indicate more confidence in identifying the
dominance of one detector over the other, while a Z-score less than Z . indicates

that the two detectors performed similarly.

According to Table 5.4, H&S, S&T and GLC are the best detectors in detecting
corners at acute angles (< 90°). However, in the case of obtuse-angled corners
(> 90°), GLC maintained its ability to detect corners along with S&T, but H&S
and SUSAN became unsuitable. Corners at angles greater than 135° are best-
detected by KLT and FAST-9. It is worth noting that, for acute-angled corners,
KLT appeared to be more sensitive (less Z-score), but for obtuse corners its high
false positive rate cannot be ignored. Therefore, combining the two test results,
KLT cannot be considered as being better than other detectors. Nevertheless,
overall the best results are produced by the S&T and GLC — though both failed
(along with other algorithms) in terms of detecting false corner, they perform

similarly regarding angular sensitivity.

5.5.2 Results for real images

Similar to the procedure with synthetic images, Z-scores were calculated for cor-
ners with internal angles in specific ranges in real images and results are pre-
sented in Table 5.5. S&T out-performed all other detectors in all cases i.e., the
detection rate is better irrespective of corner angle. Similarly, H&S scores were
out-performed by S&T due to the former’s well-known systematic error in de-
termining the locations of corners [201]. GLC with good scores for set B and set
C shows that the corners at angles 45° to 135° are accurately detected by this

detector.

FAST-9 and H&S appear to perform similarly, with Z ~ 0 for corners with
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Table 5.4: Pairwise comparisons of detectors for corner detection at different an-
gles in synthetic images. The direction of arrow-head points the better operator
in pairwise comparisons. Z less than 1.08 presents a statistically non-significant
performance difference.

[ SUSAN | S&T |  KLT [ FAST-9 | FAST-12 |  GLC | Score
Z-scores for corners at angles 11° to 45° (SET A)
H&S 1.5 00| <986 | <1929 | «+19.29 | <«+4.25 5
SUSAN 1.5 | <954 | <19.03 | «19.03 | <3.06 4
S&T +9.86 | +19.29 | «19.29 | <+5.20 5
KLT 1387 | «+13.87 18.27 2
FAST-9 0.0 | 7118.71 0
FAST-12 118.71 0
GLC - 3
Z-scores for corners at angles 45° fo 90° (SET B)
H&S +3.33 0.0 | «14.59 | «+14.93 0.62 11.51 3
SUSAN 13.33 | +14.14 | «+14.49 0.22 12.54 2
S&T <1459 | +14.93 0.62 11.51 3
KLT <2.85 113.64 | 115.20 1
FAST9 114.63 | 115.52 0
FAST-12 11.76 2
GLC - 6
Z-scores for corners at angles 90° to 135° (SET C)
H&S +4.51 00| <«676| <+560| <1293 0.0 4
SUSAN 1444 | <510 | <139 | «11.04 14.70 3
S&T +6.70 | <553 | <«12.89 0.0 4
KLT 1.06 +9.78 17.03 1
FAST-9 +10.45 15.05 1
FAST-12 113.59 0
GLC - 4
Z-scores for corners at angles 135° to 164° (SET D)
H&S 18.78 | 112.25 | 113.08 18.83 +1.08 | «1.12 2
SUSAN 18.31 19.59 12.46 +—6.46 | +8.23 2
S&T 1436 | <513 | «11.73 | <12.29 5
KLT <819 | «13.71 | «13.53 6
FAST-9 <1091 | <-9.58 4
FAST-12 0.30 0
GLC 0
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Table 5.5: Angular sensitivity test results for real images. The direction of ar-
rowheads point the better operator in pairwise comparisons. Z less than 1.08
presents a statistically non-significant performance difference.

GLC

[ SUSAN | S&T | KLT [ FAST-9 | FAST-12 | GLC [ Score
Z-scores for all pairs of detectors for corners at angles 10° to 45° (SET A)
H&S <343 | 1369 | 1318 | 71212 | <+ 499 | <341 3
SUSAN 7611 | 1584 | 1520 0.81 | < 6.23 1
S&T 017 | «+~1.18 | <+ 758 | +—6.23 5
KLT — 119 | 707 |+ 623 5
FAST-9 — 721 | + 488 4
FAST-12 0.62 0
GLC - 3
Z-scores for all pairs of detectors for corners at angles 45° to 90° (SET B)
Hé&S —4.38 024 | <169 | 1108 | <558 0.99 3
SUSAN 17441 | 1320 | 1532 | <112 | 12.68 1
S&T +—2.03 072 | <588 0.70 3
KLT 13.01| <« 453 | 1256 2
FAST-9 — 6.42 0.16 4
FAST-12 16.16 0
GLC - 6
Z-scores for all pairs of detectors for corners at angles 90° to 135° (SET C)
Hé&S «—221| 1393 | 14.53 087 | <« 267 | 71255 2
SUSAN 17483 | 1559 | 71294 00| 10.74 0
S&T 17165 | <280 | <510 0.83 4
KLT <383 | 583|250 6
FAST-9 333 | 1177 2
FAST-12 14.59 0
GLC - 4
Z-scores for all pairs of detectors for corners at angles 135° to 164° (SET D)

Hé&S 1115 | 1575| 19.75 00| <« 115| 1742 1
SUSAN 760 | 1990 | 71150 00| 1762 1
S&T 1751 | +5.66 —6.0| 1310 4
KLT —970 | <990 | <480 6
FAST-9 — 150 | 1722 2
FAST-12 17.62 0
1
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obtuse internal angles. For smaller angles, FAST-9’s performance is significantly
better than that of H&S. One might speculate that this is because corners at an-
gles > 135° start to appear rounded due to shaded and noisy pixels and therefore
identifying the precise location of the corner is difficult. Although KLT shows ex-
cellent performance for this set of corners, from the detector’s F-measure curve
in Figure 5.9 it can be seen that its exhibits a high false positive response: these
apparently good results could be due to false positives falling at true corner lo-
cations. In other words, when choosing a detector, one must consider both the

overall performance and the sensitivity to angle.

5.6 Isfinding corners enough?

The results calculated in section 5.4.2 using McNemar’s test are based on the
F-measure; some might consider them as transforming F-measure plots into nu-
merical comparisons. Similarly, the criteria developed in sections 5.4 and 5.5
for angular sensitivity focuses on identifying corners at the correct locations, ig-
noring the detection of non-corner pixels of images. True negative outcomes,
although not very useful while evaluating detectors for the data used in previ-
ous sections, is also important but ignored in the calculation of the F-measure.
Therefore, the evaluation framework used for these results cannot describe the

complete behaviour of algorithms.

To assess the behaviour of corner detectors comprehensively for classifying
all image points correctly, an evaluation framework is presented here where all
pixels in an image need to be detected according to their class. For this purpose,
instead of finding only corner pixels’ locations, all pixels in an image are defined
to be either corner or non-corner. The image that represents this classification, a

‘ground truth image’ has each pixel set to one of the following values:
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Figure 5.11: Ground truth image of a Pentagon

e 0 — background
e 255 — corner
e 200 — corner neighbourhood

A sample ground truth image is shown in Figure 5.11. This kind of ground truth
image was generated for all synthetic and real images. The actual corner loca-
tions are known in case of synthetic images but for real images, the corner loca-
tions were determined using a combination of automatic and manual method as

described in section 5.3.2.

In order to access individual detector’s performances, they were compared
using these synthetic and real images. To count pass and fail cases for McNe-
mar’s test, the following method was adopted: if a corner detector detects a
corner pixel in original image, it is matched against three values in the ground

truth image. If the detected location has value 0 in ground truth image, the de-
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Table 5.6: Comparison of corner detectors with ground truth synthetic images
of size 200 x 200. Algorithms are sorted on minimum Z-score and high % of TP
corners

Detector PP FF | PF | FP | Z-score | %TP Corners
Hé&S 1793702 | 0 | 452 | O 21.21 46.76%
FAST-12 | 1791102 | 0 | 496 | O 22.23 14.76%
SUSAN | 1788947 | 0 | 504 | O 22.41 51.20%
FAST-9 1791096 | 0 | 517 | O 22.69 19.73%
GLC 1789622 | 0 | 556 | 0 23.54 48.89%
S&T 1792747 | 0 | 629 | O 25.04 59.91%
KLT 1765464 | 0 | 1309 | O 36.15 48.44%

Table 5.7: Comparison of corner detectors with ground truth real images. Algo-
rithms are sorted on minimum Z-score and high percentage of TP corners

Detector PP FF PF FP | Z-score | %TP Corners
FAST-12 | 401214659 | 0 917 0 30.25 7.02%
SUSAN | 401210830 | 0 974 0 31.18 7.56%
H&S 401211691 | 0 | 1122 | O 33.47 11.29%
FAST-9 | 401172872 | 0 | 1740 | O 41.69 14.04%
GLC 401169192 | 0 | 2047 | O 45.22 9.51%
S&T 401091955 | 0 | 3285 | O 57.30 16.36%
KLT 378926953 | 0 | 44780 | 0 | 211.61 19.56%

tector failed and ground truth passed. If the detected location has value 255 or
200, both detector and ground truth passed. For rest of the pixels, both detector
and ground truth are considered as passes as the detector did not detect these
background pixels as corner pixels. The scores are presented recorded in Ta-
bles 5.6 and 5.7. In the table, PP means a detector’s pixel classification is correct,
FF means the detector and GT image both show wrong classification (which can
never be the case), PF shows detector’s failure, and FP show ground truth failure
(which again can never occur). Low Z-scores highlight a good corner detector,

showing similar behaviour to the ground truth.

This test focuses on correctly classified image pixels but does take into ac-
count the total number of corners correctly identified in the imagery. However,

the best detector should identify maximum number of corners in an image, so
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Table 5.8: Pairwise comparison of corner detectors for synthetic images using
ground truth images. Z-score less than 1.08 is considered non-significant.

SUSAN | S&T | KLT | FAST-9 | FAST-12| GLC | Score
H&S C 704 | <690 | < 1586 | < 1496 | < 1874 | < 265| 6
SUSAN 1446 | « 1645 | < 1477 | < 1752 | <261 | 4
S&T i 1488 |« 1194 | « 1480 | «171| 5
KLT 1896 | 1721| 11382 0
FAST-9 <1889 | 1564 2
FAST-12 1804 1
GLC - 3

Table 5.9: Pair wise comparison of corner detectors for real images using ground
truth images. Z-score less than 1.08 is considered non-significant.

SUSAN | S&T KLT FAST-9 | FAST-12 | GLC | Score
H&S 1151 | 4285 | +203.72 | + 1748 074 | <1711 | 4
SUSAN <3385 | +-203.59 | <1568 | 221 | <1867 | 6
S&T 19228 | 11485 | 13235 | 11481 | 1
KLT 119793 | 120372 | 119612 | 0
FAST-9 1499 | +644| 3
FAST-12 «—1981| 4
GLC — 2

the last column shows the percentage of correct corners identified by each detec-
tor. Hence, a low Z-score and high percentage of TP corners identifies the best
detector. From Tables 5.6 and 5.7, H&S worked very well for synthetic images
but for real, noisy images SUSAN and FAST-12 performed better than Harris &

Stephens.

Similarly, the same principle can applied to pairwise comparisons of detec-
tors. If both detectors detect a pixel as corner for which the ground truth image
pixel value is 200 or 255, then both detectors pass, otherwise only one of them

can pass; or both can fail if the ground truth image pixel value is zero.

These pairwise comparisons among detectors reveal similar results as gener-
ated while comparing detectors with ground truth, that H&S worked very well
for synthetic images but for real, noisy images SUSAN and FAST-12 performed

better than H&S as indicated by the rankings shown in Tables 5.8 and 5.9 con-
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Table 5.10: Combining H&S with FAST, SUSAN and GLC; Results are sorted
according to minimum Z-score and high percentage of corners detected

Z-score for % of Corners Z-score for | % of Corners
Detectors | Synthetic Images Detected Real Images Detected
vs GT (Synthetic Images) vs GT (Real Images)
H&S
+ 21.19 59.91% 30.53 16.98%
GLC
H&S
+ 22.16 56.18% 30.71 16%
FAST-9
H&S
+ 23.11 52.36% 30.66 16.27%
SUSAN
H&S
+ 2412 48.09% 31.03 14.22%
FAST-12

trary to the results reported in sections 5.5.1 and 5.5.2 shows S&T to be better
than H&S for synthetic images and FAST-9 appeared to be better for real images.
Both algorithms (H&S and S&T) share same working principle to find corner

pixels in an image, and hence can be considered as similar.

These results suggest that some detectors are better than others for different
corner angles; so combining them may give better results. The following section

explores this.

5.7 Complementarity of corner detectors

Different detectors have different principles of operation, and hence perform dif-
ferently on the same images. H&S and S&T use eigenvalues to find corner and
edge pixels, which appears to be a more effective approach than mask-based
methods like SUSAN and FAST. However, for real images, SUSAN and FAST
give better performance, so it is interesting to combine two detectors that work

differently to see whether overall performance on all kind of images is improved.
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Table 5.11: Combining S&T with FAST, SUSAN and GLC; Results are sorted on
minimum Z-score and high percentage of corners detected

Z-score for % of Corners Z-score for | % of Corners
Detectors | Synthetic Images Detected Real Images Detected
vs GT (Synthetic Images) vs GT (Real Images)
S&T
+ 20.74 61.6% 29.73 21.24%
GLC
S&T
+ 20.86 61.12% 30.22 18.67%
FAST-12
S&T
+ 20.98 60.71% 29.93 20.18%
FAST-9
S&T
+ 21.09 60.27% 29.79 20.98%
SUSAN

Based on individual performances on synthetic and real images, H&S and S&T
are combined with other detectors and their combined performances evaluated.
The results presented in Tables 5.10 and 5.11 indicate that combining either of
these two detectors with GLC leads the detection of more corner points with
fewer negative results, in both noisy real and noise-free synthetic images. These
results are obtained using the ground truth images described in section 5.6 to

predict general performance trends of combination of detectors.

5.8 Remarks

This chapter presented statistical approach for evaluating corner detectors us-
ing the non-parametric McNemar's test, which proved to be an improvement on
classical performance evaluation methods. More importantly, it has been shown
that statistical approaches to comparing performances can be used easily in the
vision domain. Statistically significant performance differences among detection

algorithms have been observed, both in terms of overall performance and with
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regard to performance in specific ranges of angle. With high Z-scores and low
false positive rates, H&S, S&T and SUSAN proved to be the best detectors of
those tested. The FAST detector, though time-efficient, was found to be signifi-
cantly more sensitive to the corner angle and therefore needs to be used in roles
where this is not important. Likewise, combined detectors’ results can be used to
direct research into hybrid corner detectors for more stable and reliable detection

of corner points at all angles.

The detection of corner points is important — but detecting corners is only
half of the story, as many applications require that they can be matched accu-
rately across multiple images. Recent research has produced a number of fea-
ture descriptors [79-90] that attempt to identify distinctive information around
an image feature, helping match it in other images. However, up till now, no
descriptor has been defined to explore a corner’s most distinctive property, its
internal angle; and furthermore, the time take to calculate the above descriptors
is too long for them to be used in real-time applications. Although it is true that
all other feature descriptors can be used for describing corner points, it would be
interesting to explore matching corners on the basis of their characteristic angle.
If this is possible, it provides an important foundation for a navigation system
for the blind. To this end, the next chapter presents two descriptors specifically
designed to match corner points in real time for vision-based tracking and navi-

gation problems.



CHAPTER 6

DESCRIPTORS FOR CORNER POINTS

6.1 Introduction

Corners are important features in images because they typically delimit the bound-
aries of regions or objects. Moreover, they also identify reproducible locations on
the boundaries of objects, making them important for identifying equivalent lo-
cations in stereo pairs or successive frames of video sequences. For real-time
applications such as the subject of this thesis, it is essential that corners are de-

tected and matched reliably and rapidly.

A descriptor collects information around a point of interest such as a corner
with the aim of being describing it sufficiently well for it to be matched uniquely
with the same corner of the same object in a different image. Detailed neigh-
bourhood information accommodates matching points in images under different

transformations. A number of descriptors have been presented in the literature,

145
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amongst which SIFT [80], SURF [79], GLOH [10] and BRIEF [82] are considered
state-of-the-art. SIFT and GLOH use the gradient direction of pixels in a spec-
ified region around an interest point, while SURF calculates the Haar wavelet
response of neighbouring image pixels for fast descriptor calculation and match-
ing. BRIEF is different from others in that it uses simple intensity comparisons
of neighbourhood pixels to generate a binary descriptor which can be matched
using Exclusive OR (XOR) binary operator, a very fast matching technique. Al-
though all of these descriptors can be used to describe corner points, none of
them exploit a corner’s inherent property, its internal angle. Of those listed

above, only BRIEF descriptor can be calculated in real time.

Two related descriptors are presented in this chapter which are compatible
with standard corner detectors: one encodes the entire circular region within
a corner and is called Circular Mean Intensity and Entropy (CMIE ), while the
other describes only the region within an object and is called Angle, Mean Intensity
and Entropy (AMIE ). Section 6.2 describes the informative region around a cor-

ner, which motivates the development of the CMIE and AMIE descriptors.

The method of selecting and describing whole circular region around corner
for CMIE is detailed in section 6.3. Similarly, the method of selecting only the in-
ternal part of an object by calculating corner’s internal angle for AMIE is given in
section 6.4. As mentioned before, real-time matching of corner points is essential
for a corner descriptor used in a navigation system, so the speed of calculating

and matching descriptors is examined in section 6.5.

The robustness to noise of AMIE and CMIE is explored in section 6.6. The
advantage of encoding only the region within an object is demonstrated and it
is shown that the accuracies of both descriptors are comparable to that of BRIEF

for vision application like template matching, tracking and surveillance.
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Figure 6.1: Circles of different radii around a corner point. The central red cell
represents the corner and black cells edge pixels. The values in the grey cells
represent the order in which the values around the arcs of radii 3, 5,7, 9, and 11
pixels are processed.

6.2 Describing the region around a corner

In devising a descriptor, one needs to bear in mind that matching descriptors
needs to be rapid if a system that uses them is to execute in real time; this
mitigates towards a short descriptor. Conversely, the descriptor must summa-
rizes the region around a corner sufficiently well that the number of incorrectly-
matched corners remains low. The approach adopted here, inspired by the sim-
plicity and effectiveness of FAST [118], is to encapsulate information gathered
from several circular arcs around a corner into a descriptor as these summarize

the corner concisely.

At each corner point, circles of different radii are used and the pixels on each
circle contribute towards the descriptor. There is a trade-off between the number
and spacing of circles, their radii, and the speed of matching; radii of 3,5, 7, 9 and
11 have been found to yield a descriptor that is able to distinguish different cor-

ners and still be calculated rapidly. Bresenham’s circle drawing algorithm [202]
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is employed to identify those pixels that lie on the required circles as shown in

Figure 6.1.
The simplest way to describe an image region around any circular arc of
radius r is the mean intensity of the n pixels p; that describe the arc

_ Yica pi

- (6.1)

Ur

However, many different sets of pixel values may yield the same mean, so fur-
ther information is required to make a descriptor unique. Entropy measures the
information content and has been used for characterizing texture [203] and for
image segmentation [204]; hence, it should be complementary to the mean and
the combination of the two should have much more discriminatory power than
either mean or entropy in isolation. The entropy E, of the pixels lying on the

circular arc is

E,=— Z pilog, pi (6.2)

where p; is the probability that the difference between two adjacent pixels is
equal to i. It can be calculated quickly using histograms and look-up tables.
Entropy is the measure of amount of image information, therefore, becomes zero
for flat areas of the image. The solution for this is to calculate entropy values for
small enough areas. Here the use of circular arcs for entropy calculation com-

pensates for the flat area issue.

A circle around a corner can be divided into two distinguishable arcs sepa-
rated by edge pixels. The arc whose mean is closer to the value of the corner is
denoted here as the “informative arc” while the remaining arc is the “outer arc”,
as illustrated in Figure 6.2. Figure 6.3 plots the entropies of the corners points de-
tected in Figure 6.2; it is evident that the entropies of informative arcs are higher

than those of outer arcs and whole circles.
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(a) Informative Circles (b) Informative Arcs

Figure 6.2: Circular arcs around corner points
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Figure 6.3: Entropy distribution around the corners in Figure 6.2
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The entropy values for whole circles around corner points are reasonably
close to those of informative arcs. Hence, employing complete circles in a de-
scriptor should be effective if the background outside a corner does not change
substantially, as one would usually find from frame to frame of a video, say.
However, if the background is not consistent, using a complete circle is likely to
cause mismatches and a descriptor employing only the informative arc should
perform better. Hence, two related descriptors are discussed and compared here,

one using complete circles and the other only informative arcs.

6.3 Describing complete circles: CMIE

The CMIE (Circular Mean Intensity and Entropy) descriptor encapsulates infor-
mation around the complete circles of Figure 6.2(a). The mean intensity and
entropy around each circle are calculated and stored in a descriptor (Figure 6.4):
the first five locations contain the mean intensities y, around the circles and the

remaining five contain entropies E,.

To find corresponding corner points in different images or video frames, the
Euclidean distance between the mean intensity and entropy parts of two CMIE

descriptors d; and d, is used

1 5

Du= |5 2(di, —da) (6.3)
i=1
1 10

D = \ 5 Z(dli —dy,) (6.4)
=6

where the subscript i relates to Figure 6.4. Two different thresholds are required,

one for the mean intensity part of the descriptor and the other for the entropy
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CMIE: | u3 | ps | u7 | o | p11 | Es | Es | E7 | Eo | Enx
AMIE: | us | us | p7 | po | un1 | E3 | Es | Ey | E9 | E11 | 03 ‘ 05 ‘ 67 ‘ B9 ‘ 011 ‘ ¢ ‘
index 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Figure 6.4: The content of the CMIE and AMIE descriptors (y, is given by 6.1, E,
by 6.2, 8, by 6.5 and ¢ is the orientation in radians)

part. Comparing two vectors containing two sets of five values is fast and, even
using exhaustive search, the time to find matches is rapid; this is discussed in

detail in section 6.5.

6.4 Describing informative arcs: AMIE

While CMIE describes the circular region around a corner, AMIE (Angle, Mean
Intensity and Entropy) contains information about only the informative arc. The
following two-step algorithm allows the informative arc of a corner to be deter-

mined.

1. Edge pixel identification. Edge pixels around a corner are first identified
on circles of radii of 3, 5, 7, 9 and 11 pixels, as with CMIE . While scanning the
circles, the eigenvalues (A1 and A,) at each pixel are used to find corner and edge
pixels as described in [76]: if A} ~ A, > 0 then the point is a corner butif A1 % A,
then the point lies on an edge. The result is two candidate circular arcs separated
by edge pixels on each circle (6.2). Noise and blurring effects lead to ambiguities
in the intersecting edges, so edge pixels are chosen to maximize the corner angle.
Arcs at different radii are allowed to have different angles as this accommodates

irregular boundaries.

2. Corner orientation detection. The second step is to identify which arc is
the informative arc. For this, the orientation of the corner point is determined

using a voting mechanism in which each circle can vote for either of the candi-
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date arcs or the entire circle; the latter is chosen when the number of edges found
is less than two — this accommodates incorrect responses from the detector due
to noise etc. The mean value of pixels in each candidate arc is compared with
the corner point’s value: if the difference between them is less than some thresh-
old (a normalized intensity threshold of 0.12 has been found empirically to be
effective), then the orientation is towards the first candidate arc; otherwise, it is
towards the second candidate arc. This calculation is carried out for each cir-
cle independently, the final orientation being chosen as that receiving the largest
number of votes. Once the orientation has been determined, the selected candi-
date arc is taken to be the informative arc. The angle of a circular arc of radius r

can easily be estimated as:

6, — 21 < no. of pixels in arc of radius r > 65)

no. of pixels in circle of radius r

The 6, values for the five informative arcs are calculated and stored in the AMIE
descriptor along with the orientation ¢ of the informative arc, represented by
1, 2 or 3 for the inner arc, outer arc or whole circle respectively; see Figure 6.4.
Arcs at different radii are allowed to have different angles as this accommodates

irregular boundaries.

The AMIE descriptor is computationally inexpensive and memory efficient,
involving only 16 values. Although the descriptor components are only simple
summary statistics of pixels, it will be shown in section 6.6 that the descriptor
is sufficiently discriminatory for use in applications requiring the matching of

corners.

Matching AMIE descriptors involves two steps. Given a corner to be matched
from one image in another, the first step is to find corners in the second im-

age whose descriptors have similar orientation and angle to the corner being
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Table 6.1: Time required for the steps involved in calculating the CMIE and AMIE
descriptors for 100 corner points

Processing step CMIE | AMIE
Circular templates 0.08 ms | 0.08 ms
Descriptor components | 1.62ms | 1.46ms
Total time 1.70ms | 1.54ms

matched, by calculating the Euclidean distance (Dy) of the angular part of two

descriptors d; and d:

1 15
= ) (A, —da) (6.6)

i=11

Dy =

If the corners are within ~ 10°, the point qualifies as a candidate corner. Then,
from the set of candidate corners, the second step is to find the best match based
on the Euclidean distances of the mean intensity and entropy values of the infor-

mative arcs; this is done in a similar way to CMIE , using (6.3) and (6.4).

CMIE encapsulates the information around complete circles, so is inherently
rotation-independent. AMIE has also been designed to be rotation-independent
because it summarizes the region within the informative arc, which is deter-
mined by the arc’s enclosing edges. However, the selection of the correct ori-
entation depends crucially on the localization accuracy of the corner detector:
if a corner is located inside the boundary, the orientation is towards the inner
part of the boundary, and conversely if located outside. To ensure that noise and
small systematic errors in locations do not cause problems, in practice a 3 x 3

region around each corner point is used for calculating its mean intensity.

Although CMIE and AMIE are rotation-invariant, they are not scale-invariant:
they are intended for use in applications involving matching frames in real-time

video, where scale changes of moving objects are typically small.
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6.5 Speed of computation

As mentioned above, the speed of calculating and matching descriptors is paramount
in real-time applications. The processing times required to calculate CMIE and
AMIE descriptor components are given in Table 6.1; note that AMIE is typically
faster to calculate than CMIE because fewer pixels are involved. There are two
mains steps: the first is to identify the locations of pixels on circles around a cor-
ner, while the second is to calculate the mean intensities and entropy values of
the pixels on the circles. The mean overall time to calculate the CMIE descriptors
of 100 corners comes to 1.70 ms on a desktop PC with Core 2 Quad CPU Q9550

2.83 GHz processors.

AMIE requires one more computational step than CMIE , that of calculating
an eigen decomposition for pixels around a corner point. If the detector is H&S or
S&T, this calculation is part of the corner detection process and the result of that
calculation can be used. However, to use AMIE with another corner detector,
the eigen decomposition for a patch size of 11 x 11 around the corner point is
calculated for edge pixel identification. This additional step takes 5.48 ms for 100
corners; the time for the remaining calculations is given in the last column of

Table 6.1.

To assess performances, AMIE and CMIE are compared below with the well-
established BRIEF descriptor, known for its fast computation and matching. BRIEF
is matched using the originally proposed Hamming distance [205] calculation

using OpenCV library.

As AMIE calculates the informative region around a feature, its computation
time varies with image content: corners with large angles take more time than
those with small angles. To achieve a fair analysis, a set of 28 images was se-

lected: video frames (shown in Figure 6.9), the UBC and Graffiti images from the
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Figure 6.5: Mean time per image required to calculate descriptors for ~ 800 cor-
ner points using AMIE , CMIE and BRIEF for 28 images of 640 x 480 pixels

well-known Oxford database, and some frames from Performance Evaluation
of Tracking and Surveillance (PETS)-2012! video data. The mean times taken
for detecting corner points, calculating descriptors and then matching them are
shown in Figure 6.5. Although the AMIE descriptor is longer than the CMIE one,
its two-step matching algorithm takes on average somewhat less time. The mean
time of 0.052 seconds per frame for descriptor calculation and matching makes
it suitable for real-time video applications. In fact, the time required to calculate

all three descriptors (AMIE , CMIE and BRIEEF) is similar.

6.6 Performance Characterization

This section compares the performances of CMIE and AMIE with BRIEF in two
ways: the first assesses their ability to accommodate image noise, as video frames

tend to be rather noisy, while the second involves the type of matching one

Thttp:/ /www.cvg.rdg.ac.uk/PETS2012
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would expect to encounter in real applications. Indeed, three such applications
are considered, matching for tracking or navigation, video surveillance, and tem-

plate matching.

6.6.1 Performance on noisy images

Applications aspiring to match corners in video frames require the descriptions
of corners to be robust to noise. To assess the degradation of the descriptors with
noise, the S&T corner detector was first used to locate the corners in a database
of 500 images [10] and descriptors of them were obtained using CMIE , AMIE
and BRIEF. Some 100 versions of each image were then produced with additive
Gaussian noise, the noise being added using Matlab’s imnoise? function. De-
scriptors were then calculated for each corner position in each noisy image; only
if the descriptor at the correct corner position was the best match for the noise-
free corner can one say that the corner has been matched correctly. This process
was repeated for noise variances ranging from 0.0001 to 0.01; the latter is equiv-
alent to 10% noise. These results are presented in Figure 6.6. BRIEF is clearly
more robust to noise than both CMIE and AMIE , particularly when the amount
of noise is low. However, there are significant discontinuities in the performance
of BRIEF for most of the standard image sets in Figure 6.6, an undesirable char-
acteristic. One might expect AMIE to be more susceptible to noise than CMIE
because its calculation involves edge pixels around the corner point, yet that is

not the case: AMIE generally out-performs CMIE.

Although the greater robustness of BRIEF is desirable, practical applications
rarely need exact corner-to-corner matching; instead, one usually wants a rough
outline of an object or an accurate estimation of a homography; providing there

is no systematic error in positioning, achieving many matches between features

2nt tp://www.mathworks.co.uk/help/images/ref/imnoise.html
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Figure 6.6: Percentage of correct matches between noise-free and noisy images
(the x-axis shows noise variance and the y-axis gives the percentage of true cor-

ners)
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will ameliorate the inaccuracy of the individual matches — this will be consid-

ered in detail in section 6.6.2.

6.6.2 Matching video frames (captured using hand-held camera)

Robust and fast matching is vital for tracking and navigation applications. Eval-
uating the performance of feature detectors on real-world video sequences in the
way used above for noise is notoriously difficult due to the need for ‘ground
truth.” To circumvent the need for knowledge of the locations of all corners in
all frames, the homography method described in chapter 3, based on that of [10]
and [14], is used: matches from a pair of frames is used to estimate the homog-
raphy between the frames; one image is then projected onto the other and image
subtraction or cross-correlation used to assess the accuracy of that projection.
If the transformation is accurately determined, then the subtraction of the pro-
jected image from the reference should result in a completely black image, while
cross-correlation should yield a single sharp peak. This is a better estimate of
real-world performance because it uses real video sequences rather than images
with artificially-added noise, and because the estimation of a transformation ma-
trix is similar to what is done in many practical applications involving matching

corners. Here, the video is captured using a moving, hand-held camera.

Figure 6.7 shows some of the matching results between frames and the cor-
responding cross-correlation peaks. Two pairs of frames are considered, frames
50 and 51, and frames 350 and 351. In each case, the two frames are first shown,
then the normalized cross-correlation surfaces between frames as 3D plots using
AMIE , CMIE and BRIEF respectively. In these plots x and y — axis are the image
sizes while z — axis shows the cross-correlation value. These surfaces all exhibit

a single, reasonably narrow peak, indicating that the matches are accurate.
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(b) Frames 350 and 351

Figure 6.7: Matching video frames using CMIE , AMIE and BRIEF (see text for
details)
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Figure 6.8: Mean difference between warped and original frame in the whole
video

The mean difference between projected and reference images across all 380
frames in the video sequence is shown in Figure 6.8. As expected, CMIE gives
the worst performance because it experiences a larger number of false matches,
essentially because it encodes the entire circular region around each corner. The
requirement for a pair of corners to have similar angles means that AMIE gen-
erates much fewer false matches and consequently its performance is visually

indistinguishable (and statistically insignificant) from that of BRIEF.

6.6.3 Template matching in a video sequence

To explore the effectiveness of the descriptors for template matching, a video
was captured using a hand-held camera. A template was cropped from the first
frame and matched in all subsequent frames of the video using CMIE , AMIE ,
BRIEF, and SIFT. In Figure 6.9, the positions of the template obtained using the

different descriptors is drawn on several frames of the sequence. In this case,
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(a) template (b) frame 0
(c) frame 200 (d) frame 400

Figure 6.9: A template from first frame of video sequence is matched in every
frame. Estimated position of template from matched points is shown with dif-
ferent colour boxes: red represent SIFT, green CMIE , grey AMIE and blue BRIEF.
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CMIE performed either similarly or a little better than AMIE , due to the similar

background of the template and the frames.

The homography for projecting the template into each frame was then de-
termined using matched points produced by all four descriptors; that obtained
using SIFT was taken as being the most accurate. Points in the template were
then projected into subsequent frames using homographies calculated from each
descriptors” matches. These homography matrices were tested using the homog-
raphy framework described in chapter 3: the estimated homography matrices
calculated using AMIE, CMIE and BRIEF were compared with that of SIFT for
1000 equally-spaced points and Z-scores were calculated for each frame. The Z-
scores for 1000 frames of the sequence are shown in the Figure 6.10. There are
three algorithms under comparison and hence, applying the Bonferroni correc-
tion to McNemar’s test, Zuir = 1.43 for & = 0.15. It is obvious from the graph
that for almost 900 frames the performances of all three algorithms are similar
to that of SIFT, with Z < Z.i. However, in the last frames there is a consider-
able amount of scale change as compared to first frame and therefore all three

descriptors’ performance decreased significantly, with Z > Z.

Those cases where the performances of all three descriptors dipped sharply
(around frames 240, 290 and 315) correspond to blurred imagery due to rapid
camera motion or auto-focus hunting; AMIE and CMIE appear to be less affected
by this than BRIEF but in no case did performance become unacceptable for any

descriptor.

6.6.4 Video surveillance (Performance on PETS-2012 videos)

The descriptors have also been tested on widely-distributed datasets for surveil-

lance, the PETS-2012 video data. These differ a little from the results of Fig-
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Figure 6.10: McNemar’s test between SIFT and other descriptors. Comparing
three algorithms using McNemar’s test needs « adjustment. According to Bon-
ferroni correction the a should be 0.15 for which the critical Z-score is 1.43. Hence
a Z-score less than 1.43 represents a non-significant performance difference be-
tween SIFT and other descriptor.
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Table 6.2: The mean warping difference of video frames and corresponding vari-
ances in sequences from the PETS-2012 dataset. The first column gives video
name, where BG = Back Ground, CC = City Center, RF = Regular Flow, and the
numbers 01, 02 etc. represent views. The time of the video is given in parenthesis.

BRIEF AMIE CMIE
Video d o2 d o2 d o2
BG-01(13-38) | 2.103 | 0.004 | 2.125 | 0.010 | 2.181 | 0.030
BG-02(13-06) | 2.033 | 0.064 | 2.059 | 0.067 | 2.122 | 0.075
BG-02(13-32) | 1.755 | 0.003 | 1.774 | 0.005 | 1.860 | 0.019
BG-02(13-38) | 1.864 | 0.018 | 1.886 | 0.020 | 1.963 | 0.028
BG-03(13-06) | 3.121 | 0.354 | 3.328 | 0.020 | 3.114 | 0.169
BG-03(13-19) | 3.701 | 0.277 | 3.898 | 5.318 | 3.757 | 0.133
BG-03(13-32) | 2.560 | 0.014 | 2.636 | 0.031 | 2.731 | 0.151
BG-03(13-38) | 2.603 | 0.112 | 2.619 | 0.079 | 2.685 | 0.126

BG-005 1.959 | 0.001 | 1.987 | 0.001 | 5.768 | 75.846
BG-006 1.858 | 0.004 | 1.881 | 0.002 | 2.622 | 11.319
BG-007 2.219 | 0.003 | 2.256 | 0.005 | 5.029 | 53.828
BG-008 2184 | 0.002 | 2.253 | 0.055 | 4.134 | 13.060

CC(12-34)-01 | 3.191 | 0.219 | 3.213 | 0.219 | 3.256 | 0.225
CC(14-55)-01 | 6.588 | 5.028 | 9.725 | 5.030 | 12.394 | 25.040
CC(14-55)-02 | 4.421 | 2443 | 4.924 | 17.134 | 5911 | 38.123
CC(12-34)-02 | 2.331 | 0.390 | 2.346 | 0.393 | 2.448 | 0.621
CC(12-34)-03 | 2.214 | 0.232 | 2239 | 0.229 | 2363 | 0.261
CC(14-55)-03 | 2.029 | 0.058 | 2.055 | 0.062 | 2.124 | 0.074
L1(13-59)-02 5299 | 2764 | 6.179 | 6.505 | 7.732 | 35.442
RF(13-57)-01 6.429 | 3.420 | 7.041 | 4.665 | 9.296 | 42.128
RF(13-57)-03 5732 10434 | 7251 | 0.031 | 6.602 | 1.083
RF(13-57)-04 4516 | 1.797 | 6.106 | 1.650 | 7.837 | 48.986
RF(13-59)-01 5289 | 2778 | 6.158 | 5.160 | 7.711 | 35.398
RF(13-59)-02 2461 | 1969 | 2731 | 2759 | 3.177 | 6.856
RF(13-59)-03 5611 | 1.652 | 7.009 | 1.620 | 6.517 | 5.752
RF(14-03)-01 5118 | 1.041 | 5350 | 1.485 | 6.472 | 14.523
RF(14-03)-02 2728 | 0.751 | 2.891 | 0.950 | 3.266 | 2.047
RF(14-03)-03 5377 | 0.254 | 6.170 | 4.968 | 5968 | 1.212
RF(14-06)-01 5.859 | 7.216 | 7.404 | 15.717 | 9.349 | 43.279
RF(14-06)-02 2960 | 1.814 | 3.412 | 3.241 | 4.153 | 8.561
RF(14-06)-03 4969 | 0.760 | 6.015 | 1.467 | 5.871 | 1.299
RF(14-29)-01 4835 | 0937 | 5392 | 3.106 | 7.303 | 31.851
RF(14-29)-02 3.607 | 2518 | 3.704 | 2.696 | 4.327 | 5.381
RF(14-29)-03 4572 | 0427 | 4790 | 0.721 | 4.615 | 0.481
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Table 6.3: Warping followed by subtraction of matched video frames from
the glspets-2012 video database, using homographies estimated from matched
points from descriptors under study. The frames along each row were obtained
using AMIE , BRIEF and CMIE respectively.

Dataset Back Ground City Center Regular Flow

AMIE

BRIEF

CMIE
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Table 6.4: Single Factor ANOVA test to compare BRIEF, AMIE and CMIE for
average matching difference of 34 videos given in Table 6.2.Here « is taken as
0.05

Mean Variance F P Ferit
BRIEF 3.605 2400 2911 0.05 3.085
AMIE 4.083 4513
CMIE 4.823 6.675

ure 6.6.2 in that the camera is stationary and the content moving. The same ap-
proach of determining the mean difference between warped and original frames
using an estimated homography from matched points was employed. To encap-
sulate the results for a number of videos, the overall mean difference per video is
reported along with its variance — the variance allows one to estimate easily the
spread of frame differences. A low mean difference value depicts good matching
performance of a descriptor, while a low variance shows that it produces similar
results for a whole sequence of frames. Examination of Tables 6.2 and 6.3 shows
that AMIE and BRIEF descriptors perform similarly, while CMIE give some un-
stable results with high variance for video sequences such as CC(14-55)01 and
BG-005. To ascertain whether the performance differences between AMIE and
BRIEF are statistically significant, ANOVA was applied to the mean differences
obtained for the 34 videos in Table 6.2 and the resulting statistics are shown in
Table 6.4. These show that the differences are not significant for « = 0.05; in
other words, we can be 95% confident in accepting the null hypothesis that there

is no difference in the performance of AMIE and BRIEF.

6.7 Remarks

AMIE and CMIE are easily-calculated descriptors that encapsulate information
around corners and integrate well with mainstream corner detection algorithms.

AMIE performs significantly better than CMIE when the background is subject
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to change because of its use of the informative arc rather than a complete cir-
cle around the point, an approach that could be used with any other descriptor
that describes a circular region around a corner. Furthermore, the use of the in-
formative arc in AMIE means it can be matched more quickly than CMIE. The
matching time of AMIE is comparable to that of BRIEF, a descriptor known for

its fast computation.

Assessment of the stability of corner descriptors shows that the per-corner
noise performances of AMIE and CMIE is a little poorer than those of BRIEF;
however, in practical applications where the number of corners matched is rea-
sonable, examination of datasets spanning applications such as template match-
ing and surveillance shows that the overall performance of all three descriptors

is similar.

The development of AMIE provides the key facility for developing a navi-
gation facility for blind people: it is quick to calculate and match, should work
in real time on even embedded processors, and robust to noise. The original
intention was that it would form the basis for the navigation system described
in the next chapter; however, the advent of the Microsoft Kinect sensor and as-
sociated software meant that a purely vision-based system could be improved
upon. Hence, the following chapter describes the final navigation system, which
is principally depth-based but uses corner detection and processing to make it
more robust. Regrettably, this system need not employ the descriptors described

and assessed in this chapter.
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CHAPTER 7

KINECT AIDED VISUALLY GUIDED
NAVIGATION SYSTEM

7.1 Introduction

A navigation system for a person with visual impairment involves identifying
the layout of the 3D space around them and then helping them negotiate their
way around obstacles en route to their destination. The traditional aid for this
is a white cane, swept from side to side in front of the person; however, com-
puter technology has the potential to provide less obtrusive and longer-range
aids. Arguably, the most appealing way to produce such a system is to use a
body-mounted video camera combined with computer vision. As a single cam-
era is unable to detect distance, a pair of cameras is normally used as they allow

computational stereo to determine the distance to obstacles.

169
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An even more attractive solution would be to detect distance directly, a ca-
pability offered by the Microsoft Kinect and similar devices. Section 7.2 intro-
duces this device. Although developed initially as a gaming input device for the
Xbox 360, the Kinect has become popular among vision researchers because of
both its low cost and the availability of software to acquire and work with data
from it [12]. The Kinect features both a conventional colour camera and a depth
sensor, the latter operating by projecting an infra-red structured light pattern and
using a camera sensitive in the infra-red to capture where it falls on objects, then
comparing the captured pattern with a reference one to determine disparity and
hence depth. In principle, one should be able to determine the placements of
obstacles using only the depth sensor; however, in practice, there are distance
estimation, structural and noise problems [206] which make it difficult to obtain
distance information from some objects because they are not reflective at infra-
red wavelengths. For example, occlusion results in shadows, creating blind spots
which cannot be used to obtain distances. Nevertheless, researchers have already
employed the Kinect to produce navigation systems. In [63], the Kinect was in-
tegrated with an array of vibrotactile elements to build an assistant for blind
navigation. Similarly, [66] used the Kinect to identify the distances to objects,
though in that work the sensor is static and the system uses only the distance

sensor’s data to determine an obstacle’s distance from user.

This research also uses a Kinect sensor but processes data acquired by both
its depth sensor and its camera. Section 7.3 provides context concerning the com-
puter vision processing and reviews briefly some local image features that can
be used for vision-based navigation. The nature of this processing, and the con-
struction of a complete navigation system that can be used by a visually impaired
person while walking, form the focus of this chapter. In particular, an attempt is

made to overcome the limitations of vision algorithms in detecting and matching
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Figure 7.1: Microsoft Kinect for Xbox-360

features subject to geometric and photometric transformations [15]. Section 7.4
presents the complete, working navigation system, results from which are pre-

sented in section 7.5.

The accuracy of this kind of systems is more important than its speed; hence,
the system is tested on two people, one blindfolded while and other visually im-
paired. Section 7.6 describes how a blindfolded person responded to the system’s
guidance and then how well the system guided a person with visual impairment.
The feedback from these users is also analysed in this section. Based on this feed-
back, section 7.7 examines the current limitations of the system and how these
can be addressed in the future. Finally, section 7.8 gives some concluding re-

marks.

7.2 Microsoft Kinect for Xbox 360

The Kinect was sensor developed by Microsoft to capture human motion for the
Xbox-360 gaming console, shown in Figure 7.1. It has two sensors, a camera and
an infra-red sensor designed to estimate a user’s motion while playing games.

Soon after its SDK release, researchers have not only used it to develop 3D games
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but also for a number of other interesting applications, including face tracking,

picture frame, and digital mirror [12].

However, one has to be careful while using Kinect to develop navigation
systems as the sensor is not flawless and has some limitations. For example, it
uses it projects infra-red light and uses its reflection to calculate the depth image.
These reflections may sometimes be sensed incorrectly or may be absent due to
non-reflective or irregular surfaces. Similarly, the infra-red light can be swamped
by strong light sources such as sunlight; and, most importantly, depth values
from the sensors are not stable even if it is stationary [206]. These inaccurate
depth data reduce the accuracy of the system. Furthermore, reflections from the
complete field of view e.g. floor are also obtained, so obstacle detection becomes

difficult without understanding the image content.

7.2.1 Calibrating the Kinect sensor

The Kinect sensors are located a short distance apart, so the first step in using
the Kinect in a vision system is to calibrate them individually and to determine
their separation; the latter is particularly important for this application as poor
measurement of the separation is manifested as disparity between the colour and

depth sensors.

To calibrate the Kinect, one can either use a dedicated Matlab toolbox [207],
or identify corners in both the colour and depth images as described in [208]
and [209]. The latter method was used here as it is similar to the algorithms
used in the navigation system, allowing it to be integrated into its initialisation
phase rather than as a once-only, offline calibration. To perform the calibration,
one captures images of a calibration target using both Kinect sensors, then iden-

tifies the same corner points in the colour and distance images manually. From
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Table 7.1: Calibration parameter values of the Kinect sensor used in this work.
fx fy and fy4, fyq are the focal lengths in x and y (to accommodate astigmatism
of the lens systems) of the colour camera and depth sensor respectively. p; and
p2 are radial distortion parameters, while ki, k» and k3 are tangential distortion

parameters.

fx =5.2922 x 10?
fy =5.2556 x 10

tx = 3.2895 x 107
ty = 2.6748 x 10°

fra = 5.9421 x 107
fya = 5.9104 x 107

ta = 3.3931 x 10?
tya = 24274 x 10°

ki = 2.6452 x 10!
k, = —8.3991 x 10!
k3 =9.1192 x 107!

p1 = —1.9922 x 1073
pa = 1.4372 x 1073

these values, camera distortion coefficients and transformation matrices can be

calculated using the process described in [208] and [209]. The various parame-

ters involved are summarised in the following formulae, while their calibrated

parameters are shown in Table 7.1.

Sensorgrcp =

Sensorpepi, =

Distortion Coefficients = (k1 k2 pl p2 k3

f x 0ty
0 0 1
f xd 0 fxd
0 f yd tyd (7.2)
0 0 1
(7.3)
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The rotation matrix R and translation matrix T that result from these are:

9.99 x 101 126 x 1073  —1.75x 1072
R=1]-148x10"2% 999x10° —123x102 (7.4)
1.75 x 1072 1.23 x 1072 9.99 x 10!

1.9985 x 102
T=|-74424 x 104 (7.5)
—1.0917 x 102

The Kinect distance sensor returns a depth ‘image” in which each pixel corre-
sponds to the distance of the object in a colour image pixel, with some transla-
tion and rotation due to the physical separation of the two sensors on the device.
Therefore, to find the depth of colour image pixels, one projects each depth im-

age point in real world by calculating their 3D coordinates using

Px thd%
Psp=1p, | = | ytya ?y—’; (7.6)
Pz dm

where d,, is the distance in metres calculated using

dyy = 0.1236 * tan ( ) +1.1863 (7.7)

_D_
28425

where D is the raw depth value obtained from the Kinect. This conversion is
important because the rotation and translation matrices R and T are calculated

in metres in the real world. From these 3D coordinates, 2D projections onto the
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colour image can be computed using

Py
Py = Py | = RP;p+T (7.8)
Pz
P
Py, = lﬁj (7.9)
P
Py, = % (7.10)

so that the colour image pixel corresponding to a depth image pixel can be de-
termined. To speed up the process, a 2D look-up table can be generated, indexed

on 2D projections of depth image pixels.

7.3 Low level image features for navigation systems

Image understanding and matching have been long-standing, important research
areas in devising safe navigation systems for both robots and humans [210].
Vision-based navigation systems commonly use feature-based matching in video
frames. These image features can be blobs, edges, corners or regions. A blob is
an image area with a significant intensity difference from its neighbourhood, e.g.
a dark spot in a bright region or a bright spot in a dark region [94]. An edge is the
boundary between image regions, usually identified in terms of colour or inten-
sity difference, and is important when segmenting image regions [211]. Similarly,
image regions are also used as features to be matched for segmentation tasks [85].
Finally, corner points are the image areas that correspond to sharp changes in the

direction of boundaries [76].

Although any of these local image features can be used for this application,
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(b) Edges detected using Sobel edge detector

(c) Corners detected using H&S detector (d) Blobs detected using SIFT detector

Figure 7.2: Results of local image feature detectors that can be used to develop a
vision based navigation system
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the sensitivity of infra-red sensor to reflective materials means that the use of
blobs for depth calculation can degrade the system’s performance, particularly
outdoors. Furthermore, extracting regions takes more time than corners but
gives less information about image content, for the reasons discussed in earlier
chapters. Figure 7.2 shows that if the detected features are edges or blobs, the
result is every textured area in the image. This might be useful for applications
where identification of the whole image content is required, such as segmenta-
tion, panorama stitching and homography estimation; however, in this naviga-
tion application, meaningful image areas such as obstacles are important, and
the result in Figure 7.2c shows that the corner points identify important image

content.

Corners are particularly attractive because they are fast to compute and lie
on the boundaries of obstacles. Consequently, corner points have been chosen to

find image locations that can correspond to obstacles.

After detecting interest points in images, matching them in subsequent video
frames is required for a navigation or tracking application. The best-known
methods in the literature for tracking features are homography-based match-
ing [71], visual odometry, optical flow and particle filtering. Visual SLAM [72]
and related systems have also been developed using matching of local image
features [115] or corners [118]. Despite all these efforts, there are limitations of
vision algorithms to detect and match features under geometric and photometric
transformations [15], resulting in low repeatability scores and unstable responses
at different scales, which makes it difficult to obtain consistent, continuous infor-
mation for safe navigation. This research explores whether one possible solution

is to combine different sensors, such as the Kinect camera and its infra-red sensor.
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Figure 7.3: Components of the navigation system, excluding the laptop or equiv-
alent on which all processing is performed

7.4 A Kinect-based navigation system

The navigation system described here requires a standard Kinect sensor, a bat-
tery and a laptop, all of which are carried in a backpack or shoulder bag by the
user. The Kinect is powered by a sealed lead acid 12V, 7 A battery shown in
Figure 7.3, the output of which is fed through a DC to DC converter to ensure a
stable 12V supply. The capacity of the battery is enough to power both Kinect
and laptop for 3 hours. The Kinect sensor is carried in front of the user using
a strap around their neck; although manageable, this is bulky and the authors
would expect a production system to re-package the sensors into a unit that is

physically smaller and easier to manage, perhaps shoulder-mounted.

7.4.1 Software issues

The proposed system uses the H&S corner detector to find corners in RGB images

acquired by the Kinect’s camera, with their depth being obtained from the depth
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Left Mask

Figure 7.4: Image masks showing which parts of the colour and depth images
are processed (in white) for a user travelling straight ahead (center mask). These
white regions are termed ‘safe navigation regions.” The equivalent masks used
to assess whether to turn to the left or right are shown to the sides of the center
mask.

lookup table constructed from 2D projections of depth image pixels using the

measurements described in section 7.2.1.

It is important to bear in mind that not all values from the Kinect distance
sensor are correct due to the problems alluded to in section 7.1. Hence, the sys-
tem searches for a sensible depth value in a 10 x 10-pixel neighbourhood around

colour image corners.

To enable a partially sighted person to navigate freely, the entire image is
divided into regions, shown in Figure 7.4. The white pixels in each region need
to be obstacle-free for the person to move in that direction, and there are sepa-
rate mask images for (from left to right in the figure) turning to the left, walking
straight ahead and turning to the right. These white regions are termed ‘safe nav-
igation regions’. The width of the safe navigation region in the middle mask im-
age is set to match the area in which a person might walk between video frames
at a reasonable walking pace, so is wider near the person and narrower at greater

distances. The minimum depth of each window is kept the same, half the length
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of an average human arm (0.3 m (later updated to 1.85m)) so that the person can

reach out to find any obstacle that has been detected.

7.4.2 Processing

The system checks for two types of obstacles, those that can completely block
progress and smaller ones such as chairs that can be avoided by changing di-
rection. For the former, the image feature detector may fail if the surface is
featureless so the system checks all depth values inside the safe navigation re-
gion (Figure 7.4) and if the mean depth becomes less than a threshold the user
is notified to stop using voice synthesis. Otherwise, the feature detector finds
corner points and, depending on the depth of corners, warnings may be issued
to change directions to the right or left. The system employs the processed depth
(I;) and colour (I.) images from the Kinect in a three-stage processing algorithm

described in the following paragraphs.

1. Pre-processing. Calibration parameters are applied to both input images
(I; and I;) so that distortions can be removed from them. Then, corner
points are found in the colour image while the depth image’s data are con-
verted into meters, from which the 2D projection of all points is found and
the 2D look-up table described in section 7.2 calculated. For fast process-
ing, this stage works in separate threads because calculations on I, and I,

are independent of each other.

2. Navigation processing. The central safe navigation region is scanned for
a wall-like obstacles by averaging the depth values. If the mean depth is
less than a threshold (0.3 m in this work), the system activates the alarm-
generation module and warns the user to stop. Otherwise, the system looks

for each corner point’s depth within the central safe navigation region. If
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(c) Right region

Figure 7.5: Navigation from analysing data in the image masks of Figure 7.4. In
(a), the user is asked to move to the left; in (b), the user can move forward; and
in (c) the user is given an alarm and encouraged to move to the right.
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one or more corner point appears to be close to the person (its distance is
less than the threshold), the system starts counting frames for which these
points remain a hazard. The walking speed of a blind person is typically 2
to 3 miles per hour [212] so if hazardous corner pixels remain in the active
region for five frames, it checks the right and left safe navigation regions
for a clear route, selecting the one with no wall-like obstacle and where the
nearest corners are further from the user. Once the left or right window
is selected the system initiates the alarm-generation module to inform the

user. If no obstacle is found, the system remains quiet.

3. Alarm. If an alarm is triggered during processing, voice synthesis is used
to alert the user, generating e.g. “stop please” if there is an obstacle in the
way. For a left or right turn, the system generates “slightly left is better” or

“slightly right is better”.

Figure 7.5 illustrates three different scenarios. Corner points are presented in five

different colours:
e yellow points are non-hazard corner outside the safe navigation regions;

e green points indicate potential hazards (d,, > 1m and inside the safe nav-
igation regions);

e blue points are potential hazards (1.0m > d,;, > 0.3m and inside the safe
navigation regions);

e red points are hazards (d,, < 0.3 m inside the safe navigation regions);

e black pixels indicate a blind spot in depth image.

In Figure 7.5b system does not find any wall or obstacle so all the corner points
are green and there will be no warning to the user. In Figure 7.5a there are some
points which lie inside central safe navigation region and cross the safe distance

threshold (red-coloured corners) so the system checks right and left safe naviga-
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tion regions and finds the left one to be the safer, and so prompts user to move
left. Conversely, Figure 7.5c shows where, after finding an obstacle in the central
safe navigation region, the system identifies the right as being safer and prompts

the user to move that way.

7.5 Results from real-world videos

This section presents results from illustrative real-world navigation sequences in
which the equipment was body-mounted on a blindfolded user, in both indoor
and outdoor sequences conditions. The current system can process Kinect data
at 5 frames per second (on an Intel Core 2 quad 2.83 GHz processor), which is fast
enough to warn the trial subject of any collisions. In each of Figures 7.6 to 7.9, the
tirst row of images was taken near the start of the video while the rest of the rows
show gradually decreasing distances from obstacles. The colour of the corner
points indicate whether they are potential hazards or not, using the annotation
scheme described in the previous section. Each row contains a sequence of three
frames of video showing a gradual decrease in distance from obstacle. The audio
output of the system is displayed at the bottom of each video frame, when there

is no warning the system remains silent, indicated by “—" as system’s output.
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Figure 7.6: The navigation system’s visual output on an indoor video sequence
of walking through a corridor coming in front of a wall
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(m) counting (n) Stop please (o) count start

Figure 7.7: The navigation system’s visual output on an outdoor video sequence,
walking towards a wall with noticeboard
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Figure 7.8: The navigation system’s visual output on an outdoor video sequence
with people walking around the subject



CHAPTER 7. KINECT AIDED NAVIGATION SYSTEM 187

(m) counting (n) counting (o) Stop please

Figure 7.9: The navigation system’s visual output on an outdoor video sequence
in which the subject encountered an obstacle
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Battery in
BackpacE

Figure 7.10: Hardware setup for testing the system

7.6 System testing

The proposed system aims to provide navigation assistance to visually-impaired
people, so testing by its probable users was crucial. To circumvent any potential
problems, a two-stage experiment was designed. In the first stage, a blindfolded
person was asked to use the system to navigate in an unknown environment
containing obstacles, while in the second stage, a visually impaired person was

requested to try the system and assess its accuracy in real time.

Figure 7.10 shows the hardware setup used to perform these experiments.
The durations of the experiments were kept short because the equipment was
bulky and heavy, though a belt through waist was also used to provide some
extra support and to distribute the equipment’s weight evenly. The Kinect and a

touchscreen monitor were mounted on a portable Central Processing Unit (CPU)
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Figure 7.11: System testing by a blindfolded person

and all of the three devices (CPU, Kinect and monitor) were powered by the
battery shown in Figure 7.3, which was placed in a backpack. The results of the

experiments, along with the users’ feedback, is given below.

7.6.1 A blindfolded user

Image 7.11 shows how a person with proper visual sense tries to sense the en-
vironment using the Kinect-based system instead of his own eyes. The system
was required to be calibrated according to the user’s height, setting the distance
threshold and the number of frames per response to match their walking speed.
(Initially, the system had been tuned to respond after 5 frames but, based on pre-

liminary user feedback, it was adapted to make this variable down to 2 frames
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per response.)

The user was able to move in different indoor and outdoor locations with
good confidence of the system’s guidance. However, as expected, the user found
the system response time to be slow. This appears to be because a person with
good visual sense does not naturally walk as slowly as a blind person walks, and
has difficulty walking at that pace. This became quite obvious when the same
user was asked to use a white cane as mobility assistant (shown in Figure 7.12).
Their stress level was high during this experiment, with the user keeping his
other arm close to his body to save himself from collisions. Similarly, the walking
speed was significantly slower — showing that using an unfamiliar mobility aid

affects the user’s confidence.

The following paragraphs are feedback from the blindfolded user who tri-

alled the navigation aid:

“Having tested with both the Kinect aided navigation system and the white
cane, as a novice user for both tools, I can say that the former is easier to use
since it requires less effort to navigate while I was blind-folded. It helped me
to navigate in a relatively crowded environment which I was not familiar
with and kept me from tripping on most obstacles in front of me. I hit some

of the obstacles while using the white cane.

One shortcoming of the navigation system may be that it cannot currently
provide a “feel” of the surface such as how rough or smooth the it is when
compared to a white cane since the system is sensing the environment from a

distance. I think this would be a good area to investigate as future research.

Owerall, I believe that the system is a very intuitive and natural way of
interacting with a visually-impaired person due to its environment sensing

and speech features.”
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Figure 7.12: A blindfolded person using white cane as mobility aid
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Figure 7.13: Calibrating Kinect-aided navigation system by letting a visually im-
paired person to walk using it along with white cane

7.6.2 A visually impaired user

Dr. Keith Currie, a born blind man, participated in the experiment to test the
Kinect-aided navigation system. Keith was enthusiastic and optimistic about
the whole experiment because of his interest in such kind of mobility aids. The
author admires his courage and bravery for testing a development system. Fig-
ure 7.13 shows him using the system along with a white cane, allowing him to

familiarize himself with the system and to calibrate it according to his needs.

In order to increase his comfort level with the system, the system was tuned
to communicate at every alternate frame, by saying “Move Ahead”, even if no ob-
stacle was detected. In this way, the user was able to know that the system was

working and he can take further steps without bumping into an obstacle. Fur-
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Go Ahead

Slight Left
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Slight Right Left / Right , L |
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Figure 7.14: Kinect-aided navigation system’s response when the user was walk-
ing through a corridor. Each response is after two frames therefore, actual num-
ber of frames processed is 800.

thermore, letting him use white cane along with the automated system helped
identify the best distance threshold for a blind person. Initially, the distance
threshold was set to 0.3 m, less than his white cane which was approximately
1.42m long. As a consequence, Keith was able to sense obstacles before the sys-
tem and therefore, did not find it helpful. However, after changing the distance
threshold to 1.8 m, the system was able to notify the user before the white cane,

improving its usefulness.
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(a) Lab (b) Lab

(f) Corridor

(g) Robotics Lab (h) Robotics Lab

Figure 7.15: Keith Curie walking at different locations using Kinect-aided naviga-
tion system
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The overall system’s value can only be judged from its users’ feedback, which
is given below, but to show the system’s verbal responses Figure 7.14 presents its
output for a sequence in which Keith walked from a corridor to an open space
(shown in Figure 7.15d). The system’s response at indoor locations was found
to be more appropriate and better-timed than in outdoor locations. This was not
unexpected because strong sunlight and shadows create blind spots in the depth

images captured by Kinect and these affect the system’s accuracy.

7.6.3 Feedback from the blind user, Dr. Keith Currie

“I first became aware of the Kinect-Aided Navigation system when I re-
sponded to a request for assistance from users of white canes and guide dogs.
I am a lifelong user of navigation aids, and agreed to participate in a number
of tests of the system in order to help determine its use-value for visually
impaired people. Despite possessing a deep interest in adaptive technologies,
I rarely make use of mobility aids that are more sophisticated than a standard
issue white cane on account of the prohibitive cost associated with such prod-
ucts. 1 was extremely excited by the prospect of investigating a device that
made use of relatively inexpensive technologies. The tests were performed
on two separate occasions: the first was conducted in a large office in the
computer sciences department, and the second was conducted partially in

square 1, concluding indoors in one of the work labs.

On the first occasion we tested the use of the system in conjunction with the
white cane, and on the second we tested it without making use of any other
mobility aids. My initial impression of the system after the first set of tests
was mixed, and I found that I tended to rely on my cane in preference to the
system throughout. I found it difficult to achieve the extremely slow pace the

system required in order to be effective. I was impressed by the range and
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sensitivity of the sensors, though the reach of the cane exceeded the reach of
the sensors and was thus able to detect obstacles before the sensors could.
I was additionally concerned that the device presently lacked portability; it
currently comprises a backpack and a small but heavy terminal that is sus-
pended in front of the user’s chest via a neck strap, and while the weight of
the device is hardly noticeable when it is first worn it becomes progressively
less comfortable. The system was also prone to crashing, and seemed to be-
come easily confused when it encountered multiple obstacles; this meant that

it was only effective for very short periods of time.

After the first test the system had been slightly recalibrated to accommodate
the length of my white cane, and the initial experiments we conducted on
the second day of testing seemed to indicate that the two mobility aids could
potentially be used in conjunction to significant effect. These experiments
were conducted outside, but unfortunately had to be abandoned as the sen-
sors proved unable to cope with direct sunlight. We subsequently tested
the system indoors, and without the white cane. I found that there was a
marked difference in my response to the system during these final experi-
ments. I seldom walk independently when outside of familiar environments,
but whenever I do so I am able to move about with a fair degree of confidence,
relying on my hearing and sense of balance when encountering and negoti-
ating obstacles; in this regard I found the system quite useful, as it was able
to provide me with fair warning of approaching obstacles before I encoun-
tered them directly. Despite being somewhat heavy to carry, the system does
not require the active use of the wearer’s hands, and this further improved
my confidence when using it. In addition, I found that I was more attentive
to the spoken instructions that the system provided than I had been on the

previous occasion, and was thus better able to gain a sense of the system’s
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perceptivity. I found that it was able to detect large obstacles such as walls
and pillars, but lacked the depth perception required to detect smaller objects,
leaving the user open to collisions with chairs, tables, and anything else at

waist height or lower.

After conducting these tests and reflecting on their outcome my overall im-
pression of the Kinect-Aided Navigation System is a positive one, but I be-
lieve it will require significant further development before it can be put to
meaningful use by the visually impaired community. The verbal instruc-
tions that it provides are easy to comprehend, but are limited to directional
advice and do not presently identify approaching obstacles. Perhaps other
audible indicators like bleeps or clicks might prove useful in this regard. An-
other significant problem with the system is that it requires the user to walk
at an extremely slow pace in order for it to prove effective, making it an inap-
propriate navigation aid for guide dog users, who generally walk at a rapid
pace. The tests prove that the device can be calibrated to work in conjunction
with a white cane, and indeed an additional aid like a white cane is necessary
at this time as the system is unable to identify those lower obstacles that the
cane is specifically designed to detect. With a little further development it
is conceivable that the system could be put to good use on its own, but it is
my conclusion that the designers will want to consider the use of the system
in conjunction with a white cane as the default for most future users. In
conclusion I am confident that, with some further refinement to its design
and sensitivity, the Kinect-Aided Navigation System will make a valuable
contribution to the field of assistive technology, and to the confidence and

mobility of any future users.”
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7.7 Current limitations and future directions

The system is capable of identifying obstacles at reasonable distances and speeds;
however, based on the users” feedback, it needs improvement in the following

aspects:
e equipment weight
o false reflections detected by the infra-red sensor in strong sunlight
e distance limitation of the infra-red sensor
e surface texture identification

As suggested by Keith, if an automated navigation system can be combined with
a white cane, one can have a safe and reliable mobility aid. This is mainly because
surface textures and low-level obstacles can be identified easily using a white
cane, whereas an automated navigation system can help locating head-level ob-
stacles and identify obstacles blocking one’s path. (Of course, one must also bear
in mind that Keith is familiar with using his cane but not the computer-based

system; one would therefore expect him to find the former to be easier to use.)

The audio output of the system was not appreciated by the blind user as
rightly it halts the environmental sounds which can be helpful in navigation,
however, during the developmental stage this type of output is considered more
helpful. In future this can be replaced by any other suitable form of output such

as beep sounds or vibrations etc.

All the problems experienced with the current system appear to be due to the
infra-red sensor. In the future, replacing it with some other depth sensor, such
as a laser striper, might yield more accurate responses. However, the concept
of combining vision with sensed imagery proves to work well. Android mobile

phones are equipped with GPS, inertial sensor and an RGB camera, a combina-
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tion that may well be worth exploring for this kind of systems.

7.8 Remarks

A navigation system for visually-impaired people has been designed, imple-
mented and assessed in both indoor and outdoor environments. Input from the
Kinect’s camera and distance sensor compensates for limitations of each individ-

ual sensor.

The system was tested on both a blindfolded user and a visually-impaired
person. Both users found system to be promising and highlighted its potential
in becoming a good navigational aid in future. Although some problems were
experienced with the Kinect in outdoor locations, it was found to be reasonably
reliable indoors. The proposed solution also provides a strong justification for
using hybrid technologies, because of the inability of all sensors to work under

all environmental conditions (sunlight, rain, etc.).

System testing by a single person is clearly not enough, because of some
genuine differences in peoples behaviour in different situations [23]. A guide
dog user can walk very fast as compared to a white cane user, similarly, a blind
person from birth can walk at a reasonable speed in know area (Dr. Keith was
familiar to university’s architectural layout). Therefore, it can be expected that a

different user may find the system more useful and reliable.
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CHAPTER 8

CONCLUSION

8.1 Thesis contributions

The aim of the research was to produce a robust, working navigation system for
the blind. At the start of project, a vision based approach using feature matching
seemed the most sensible, though the subsequent appearance of the Microsoft
Kinect made a hybrid video-and-depth approach more attractive. The major
problem with using features was that it was unclear which detector and descrip-
tor to use, largely because existing evaluations did not yield useful indicators
of performance on real world problems. Moreover, evaluations were not nec-
essarily statistically meaningful. Hence, a substantial part of the work reported
in chapters 3—4 is concerned with approaches to evaluation that are statistically
meaningful. Well-established tests such as McNemar’s test and ANOVA are able

to perform statistically meaningful comparisons and this work has established

201
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that they can be used to compare the performances of feature detectors and de-
scriptors. Furthermore, the results in chapter 4 indicate that the databases most
widely used for evaluations are barely large enough. The results in chapter 4
also suggest that performance depends on the angle through which features are
rotated, so chapter 5 presented a comprehensive assessment of the performances
of corner detectors with regard to angle, both of the corner itself and of its orien-
tation. Corner detectors were considered because more general feature detectors
do not run in real time on commodity hardware. This is believed to be the first

such assessment.

Chapter 6 presented a novel pair of descriptors for corners that allow the
boundaries of objects in successive frames to be matched. One of these descrip-
tors in particular encodes the angle of the corner, amongst other information. It
was shown that the performances of these descriptors are indistinguishable from

that of BRIEF, and that they can be calculated and matched in real time.

Having established this, chapter 7 presented a complete navigation system
using corners — but, because of the advent of the Kinect, it was no longer neces-
sary to match corners. The navigation system includes a number of features that
accommodate real-world problems such as spurious depth values from Kinect
and the provision of useful feedback to the user. Evaluations with both blind-
folded and blind people showed that the system is effective. This hybrid system
is more robust than a purely vision-based or purely Kinect-based system would

be because the deficiencies in one approach can be ameliorated by the other.

Although the research has demonstrated proof of concept, the equipment is
both bulky and heavy (and expensive, as a laptop or equivalent is involved).
Clearly, the miniaturization of electronic hardware continues apace, and it is
likely that both sensing and the processing will be available in a small enough

form factor within 5 years.
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Is this type of navigation system likely to replace the ubiquitous white cane?
The author thinks it unlikely in the short term, both because of the bulk and
weight issues mentioned above and because blind people are familiar with their
white cane. However, for a person who is newly blinded (due to age or accident),
this is less clear-cut. In particular, this kind of system is likely to be preferable to
a white cane in crowds. In the longer term, the author thinks it is highly likely

that vision-based systems will become more prevalent for blind navigation.

8.2 Future directions

Considering the shortcomings of performance evaluation metrics previously used
to assess the performance of vision algorithms (see chapters 3 and 4), the applica-
tion of statistical tests other than McNemar’s test and ANOVA can be explored.
However, the main limitation of most statistical tests is their data requirements,
such as a Normal distribution or the homogeneity of variance. Consequently, it
may be best to explore non-parametric tests, as they should be able to character-
ize an algorithm’s performance in a statistically valid way without transforming
actual data. Examples of such tests are the Wilcoxon signed-ranks test, Wilcoxon
matched pairs signed-ranks test, Spearman’s rank-order correlation coefficient,
Kendall’s rank correlation coefficient, the Kruskal-Wallis test, Friedman’s two-
way analysis of variance by ranks and the Kolmogorov-Smirnov test for a single

sample.

Another important factor affecting algorithms” performances is the amount
and type of data used. In future, the performance of feature operators, including
corner detectors, can be and should be performed on significantly larger amounts
of data with more variety of imagery. The investigations in chapter 4 are limited

to standard datasets, and capturing larger amount of image data — and with
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an automated method of generating ground truth — would clearly improve the

situation.

In chapter 5, a method of finding corner points in real images to establish
ground truth was proposed. This can be further refined by removing the most
erroneous part (human guess) of finding corner locations, replacing it by asking
the user to draw geometric shapes over objects in images; the corner points of
these geometric shapes can then be correlated to the object’s corner points. It
will only replace the human guess part of the technique and therefore will help
in reducing error. Non-geometric shapes can be handled using the end of lines

and dots as corner points.

The two descriptors proposed in this work, AMIE and CMIE, are not scale
invariant, so a logical extension of this work is to make them scale invariant —
but without compromising on execution speed, which is the main requirement

of any vision application in which they can be employed.

Based on the limitations of the Kinect-aided navigation system presented in
chapter 7, some modifications can be applied, such as replacing the infra-red sen-
sor with a laser striper. These are currently substantially more expensive but can
vastly increase the reliably of the system by giving much more accurate depth
reading in any environment. Similarly, the miniaturization of the processing
hardware can be achieved by using current mobile technology, such as Android
phones, which come with with camera, inertial sensor and GPS. Combining these
three sensors can add multiple functionalities to the navigation system, for ex-

ample using the GPS of the user to plan routes based on road maps.
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8.3 Closing remarks

A medical cure for blindness may be very far in the future but developing a good,
efficient and easy-to-handle automated navigation assistant for people with vi-
sual impairment seems relatively close. With rapid advancements in technology,
we can easily imagine a blind person walking comfortably through crowds with
a mobile-size guiding device in his/her shirt pocket. The way of getting to this

point is described by Elbert Hubbard as

“A little more persistence, a little more effort, and what seemed hopeless

failure may turn to glorious success.”

— The End —



206 8.3. CLOSING REMARKS




Appendices

207






APPENDIX A

CORRECTIONS TO REDUCE TYPE-I
ERROR

Following are the tables of P for different Z-values and the associated corrected
value using three different methods (Bonferroni,Benjamini & Hochberg, Ben-
jamini & Yekutieli). Table A.1 presents one-tailed test results, while Table A.2
contains results for two-tailed test.The concerns over the application of these cor-
rections are also obvious from these tables, where each method can be made to
produce different result by adjusting P. If Bonferroni correction rejects null hy-
pothesis (P < a = 0.05), other two corrections accept it (P > «).

209



210

Table A.1: Z-vlaues, corresponding P-value and corrected P-values for one tailed

prediction test

Z-value | P values (one | Bonferroni Benjamini Benjamini
tailed test) correction &  Yekutieli | & Hochberg
correction correction
0 0.500 0.500 1.000 0.500
1 0.250 0.250 1.000 0.254
2 0.148 0.148 0.719 0.153
3 0.102 0.102 0.504 0.107
4 0.078 0.078 0.392 0.083
5 0.063 0.063 0.322 0.069
6 0.053 0.053 0.276 0.059
7 0.045 0.045 0.239 0.051
8 0.040 0.040 0.216 0.046
9 0.035 0.035 0.193 0.041
10 0.032 0.032 0.180 0.038
11 0.029 0.029 0.166 0.035
12 0.026 0.026 0.152 0.032
13 0.024 0.024 0.143 0.031
14 0.023 0.023 0.140 0.030
15 0.021 0.021 0.131 0.028
16 0.020 0.020 0.127 0.027
17 0.019 0.019 0.124 0.026
18 0.018 0.018 0.120 0.026
19 0.017 0.017 0.116 0.025
20 0.016 0.016 0.112 0.024
21 0.015 0.015 0.107 0.023
22 0.014 0.014 0.103 0.022
23 0.014 0.014 0.103 0.022
24 0.013 0.013 0.101 0.021
25 0.013 0.013 0.101 0.021
26 0.012 0.012 0.098 0.021
27 0.012 0.012 0.098 0.021
28 0.011 0.011 0.095 0.020
29 0.011 0.011 0.095 0.020
30 0.011 0.011 0.095 0.020
31 0.010 0.010 0.095 0.020
32 0.010 0.010 0.095 0.020
33 0.010 0.010 0.095 0.020
34 0.009 0.009 0.095 0.020
35 0.009 0.009 0.095 0.020
36 0.009 0.009 0.095 0.020
37 0.009 0.009 0.095 0.020
38 0.008 0.008 0.095 0.020
39 0.008 0.008 0.095 0.020
40 0.008 0.008 0.095 0.020
41 0.008 0.008 0.095 0.020
42 0.008 0.008 0.095 0.020
43 0.007 0.007 0.095 0.020
44 0.007 0.007 0.095 0.020
45 0.007 0.007 0.095 0.020
46 0.007 0.007 0.095 0.020
47 0.007 0.007 0.095 0.020
48 0.007 0.007 0.095 0.020
49 0.006 0.006 0.095 0.020
50 0.006 0.006 0.095 0.020
51 0.006 0.006 0.095 0.020
52 0.006 0.006 0.095 0.020
53 0.006 0.006 0.095 0.020
54 0.006 0.006 0.095 0.020
55 0.006 0.006 0.095 0.020
56 0.006 0.006 0.095 0.020
57 0.006 0.006 0.095 0.020
58 0.005 0.005 0.095 0.020
59 0.005 0.005 0.095 0.020
60 0.005 0.005 0.095 0.020
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Table A.2: Z-values, corresponding P-values and suggested correction

Z-value | P values (two | Bonferroni Benjamini Benjamini
tailed test) correction &  Yekutieli | & Hochberg
correction correction
0 1.000 1 1.000 1.000
1 0.500 1 1.000 0.508
2 0.295 1 1.000 0.305
3 0.205 1 1.000 0.216
4 0.156 1 0.784 0.167
5 0.126 1 0.645 0.137
6 0.105 1 0.547 0.116
7 0.090 1 0.477 0.102
8 0.079 1 0.427 0.091
9 0.070 1 0.386 0.082
10 0.063 1 0.354 0.075
11 0.058 1 0.332 0.071
12 0.053 1 0.310 0.066
13 0.049 1 0.292 0.062
14 0.045 1 0.274 0.058
15 0.042 1 0.262 0.056
16 0.040 1 0.255 0.054
17 0.037 1 0.241 0.051
18 0.035 1 0.233 0.050
19 0.033 1 0.225 0.048
20 0.032 1 0.224 0.048
21 0.030 1 0.215 0.046
22 0.029 1 0.213 0.045
23 0.028 1 0.211 0.045
24 0.027 1 0.209 0.045
25 0.025 1 0.199 0.042
26 0.024 1 0.196 0.042
27 0.024 1 0.196 0.042
28 0.023 1 0.196 0.042
29 0.022 1 0.196 0.042
30 0.021 1 0.194 0.041
31 0.021 1 0.194 0.041
32 0.020 1 0.194 0.041
33 0.019 1 0.194 0.041
34 0.019 1 0.194 0.041
35 0.018 1 0.194 0.041
36 0.018 1 0.194 0.041
37 0.017 1 0.194 0.041
38 0.017 1 0.194 0.041
39 0.016 0.976 0.194 0.041
40 0.016 0.976 0.194 0.041
41 0.016 0.976 0.194 0.041
42 0.015 0.915 0.194 0.041
43 0.015 0.915 0.194 0.041
44 0.014 0.854 0.194 0.041
45 0.014 0.854 0.194 0.041
46 0.014 0.854 0.194 0.041
47 0.014 0.854 0.194 0.041
48 0.013 0.793 0.194 0.041
49 0.013 0.793 0.194 0.041
50 0.013 0.793 0.194 0.041
51 0.012 0.732 0.194 0.041
52 0.012 0.732 0.194 0.041
53 0.012 0.732 0.194 0.041
54 0.012 0.732 0.194 0.041
55 0.012 0.732 0.194 0.041
56 0.011 0.671 0.194 0.041
57 0.011 0.671 0.194 0.041
58 0.011 0.671 0.194 0.041
59 0.011 0.671 0.194 0.041
60 0.011 0.671 0.194 0.041
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