
Objective Methods of Evaluating

Colour Image Segmentation

Hassan Almuhairi

A thesis submitted for the degree of Doctor of Philosophy

School of Computer Science and Electronic Engineering

University of Essex

Date of submission: July 2010

I would like to dedicate this thesis to my loving
wife and parents ...

Writers imagine that they cull stories from the

world. I’m beginning to believe that vanity makes

them think so. That it’s actually the other way around.

Stories cull writers from the world. Stories reveal

themselves to us. The public narrative, the private

narrative - they colonize us. They commission us. They

insist on being told. Fiction and nonfiction are only

different techniques of storytelling. For reasons I do not

fully understand, fiction dances out of me. Nonfiction is

wrenched out by the aching, broken world I wake up to

every morning.

Arundhati Roy

ii

Acknowledgements

This thesis is part of many years of research that has been per-

formed since I came to University of Essex. By this time, I had

the pleasure of knowing and working with a great number of people

who contributed in many ways to the nice time I spent there and

helped me with my research. And although it’s hard to mention them

all here, I know they feel my appreciation to them all and I would like

to convey my humble gratitude: Thank you.

Several people have played a decisive role in helping me persevering

through my PhD studies and not quit. None had done more than my

wife, who was so supportive and understanding through out the pro-

cess. My loving parents and family back home through their regular

calls and comforting words. Also I don’t forget my friends here in

Colchester and in the university, without their laughs and and nice

times I would not have been able to get through this time.

I am deeply indebted to my supervisors, Adrian Clark and Martin

Fluery for their thoughtful guidance. This was not an easy journey

for me and they were helpful and understanding all the way through

it. They were my coaches and collaborators. I could not have wished

for better supervisors. Your contributions, detailed comments and

insight have been of great value to me.

I also would like to thank Khalifa University (previously known as Eti-

salat College of Engineering) for their belief in me and their support

all the time.

It’s amazing how

a friend I have not yet met

can brighten my day

A Thank You Haiku by Unknown

Abstract

Image segmentation constitutes an important step in automatic

object recognition. However, there is still no agreement on a

mathematical model that can represent the segmentation process. As

a result, a large variety of segmentation algorithms have been intro-

duced into the image processing literature.

The lack of a single standard segmentation solution has led to further

research that provides different evaluation models, frameworks and a

small variety of image data-sets for testing purposes. A researcher

again faces a dilemma of choice: it is hard to decide on a standard

evaluation solution to choose an appropriate algorithm. If the goal

is to extensively test and evaluate the segmentation algorithms, the

task reported in this thesis, then there are: 1) many segmentation

algorithms; 2) variety of input images; 3) different input parameters;

and 4) diverse evaluation methods. Consequently, this evaluation task

can prove to be computationally highly demanding and it may prove

hard to approach an optimal solution.

To help research in this field, the author has firstly investigated the

current range of segmentation algorithms, with the aim of composing a

‘navigation map’ of the available algorithms and evaluation methods.

The thesis also proposes an evaluation methodology.

The research specifically involved using and customising a scripted

evaluation framework that performed real-time colour image segmen-

tation and as a result provided an objective assessment of the best-

quality image segmentation algorithm for a given application. To

enhance the computational performance of the framework: firstly, a

cluster computer was used to enhance throughput; and secondly, a

genetic algorithm module was added to the evaluation process to im-

prove the evaluation’s search efficiency. Furthermore, the introduction

of a time-factor into the genetic algorithm proved to be beneficial in

a variety of ways explored in the thesis.

Contents

1 Introduction 2

1.1 Image Segmentation . 2

1.2 Motivation of the Research . 5

1.3 Contribution of the Thesis . 7

1.4 Outline of the Thesis . 8

2 A Review of Research on Image Segmentation and its Evaluation 11

2.1 Introduction . 11

2.2 Taxonomy of Image segmentation methods 13

2.2.1 Boundary Demarcation Segmentation 18

2.2.1.1 Thresholding Segmentation 18

2.2.1.2 Edge Detection Segmentation 22

2.2.2 Contouring Techniques . 25

2.2.2.1 Region-growing Segmentation 25

2.2.2.2 Level-Set Segmentation 25

2.2.2.3 Watershed Segmentation 28

2.2.2.4 Rain-falling Watershed approach 28

2.2.3 Learning-Based Techniques 29

2.2.3.1 Clustering-Based Segmentation 29

2.2.3.2 Artificial Neural Network based Segmentation . . 32

2.2.4 Physics Based Techniques 34

2.3 Improving segmentation computational performance with paral-

lelisation . 35

vii

CONTENTS

2.4 Segmentation Evaluation . 37

2.4.1 Segmentation evaluation categorisation according to the

use of a priori information 38

2.4.1.1 Unsupervised Segmentation Evaluation 38

2.4.1.2 Supervised Segmentation Evaluation 39

2.4.1.3 Commentary . 39

2.4.2 Zhang Segmentation Evaluation Categorisation 41

2.4.2.1 Analytical Methods 42

2.4.2.2 Empirical Goodness Methods 42

2.4.2.3 Empirical Discrepancy Methods 43

2.5 Summary . 43

3 Analytical evaluation of image segmentation algorithms 47

3.1 Image Segmentation Algorithms: analysis 47

3.2 Profiling using Valgrind’s Tool Suite 49

3.3 Analytical evaluation of thresholding algorithms 50

3.4 Analytical evaluation of edge-detection algorithms 53

3.5 Analytical evaluation of region-growing segmentation algorithm . 58

3.6 Analytical evaluation of watershed-based algorithms 60

3.7 Analytical evaluation of clustering-based image segmentation al-

gorithms . 66

3.8 Analytical evaluation of graph-based image segmentation algorithms 71

3.9 Analytical evaluation of physics-based image segmentation algo-

rithms . 73

3.10 Commentary . 74

viii

CONTENTS

4 Parameters’ significance on the segmentation algorithms’ perfor-

mance 75

4.1 Overview . 75

4.2 The choice of the algorithms and related parameters 77

4.3 Thresholding algorithms’ parameters 78

4.4 Edge detection algorithms parameters 80

4.5 Region growing segmentation parameters 85

4.6 Watershed segmentation parameters 87

4.7 Rain-falling segmentation parameters 90

4.8 Colour Watershed segmentation parameters 94

4.9 K-means segmentation parameters 98

4.10 Mean-shift segmentation parameters 101

4.11 Graph-based segmentation parameters 104

4.12 Anisotropic-based segmentation parameters 107

4.13 Concluding Remarks . 111

5 Evaluation framework for automatic generation of tests 116

5.1 Introduction . 116

5.2 Evaluation Environment . 118

5.3 Using and extending FATE . 119

5.3.1 Operating modes . 120

5.3.1.1 Running tests . 122

5.3.1.2 Evaluating segmentation algorithms 122

5.3.2 Working with the harness 123

5.3.2.1 Interfacing to the algorithm under test 123

ix

CONTENTS

5.3.2.2 Specifying the tests. 124

5.4 Reducing evaluation time . 125

5.4.1 Using a cluster computer 125

5.5 Evaluation methods . 126

5.6 The Berkeley segmentation dataset and benchmark 127

5.6.1 Berkeley group’s segment and segmentation definitions . . 128

5.7 Testing the human hand-segmentation precision 130

5.8 Concluding Remarks . 140

6 Genetic algorithm optimisation for the evaluation framework 142

6.1 Using genetic algorithms . 142

6.2 Segmentation Error Measure . 146

6.2.1 Error Measure Definitions and Equations 146

6.3 Exhaustive parameter search testing 148

6.4 Using a genetic algorithm . 150

6.4.1 Genetic Algorithms: Basics 150

6.4.2 The GA implementation details 152

6.5 GA optimisation results . 153

6.5.1 Example of GA improvement over exhaustive search 153

6.6 Adding time as a factor . 164

6.6.1 The different models of adding the time factor 167

6.6.2 The timing experiments image data-set and GA parameters 169

6.6.3 Application of the time-weighted parameter search experi-

ment . 175

6.6.3.1 Colour edge detection evaluation 176

x

CONTENTS

6.6.3.2 Watershed segmentation evaluation 178

6.6.3.3 Colour Watershed segmentation evaluation 182

6.6.3.4 K-means segmentation evaluation 185

6.6.3.5 Mean-shift segmentation evaluation 189

6.6.3.6 Graph-based segmentation evaluation 193

6.6.4 Applying time-weighted parameter search on objective seg-

mentation evaluation . 195

6.6.4.1 Objective evaluation metrics definitions and equa-

tions . 196

6.6.4.2 Results of the F measure evaluation 199

6.7 Concluding Remarks . 202

6.7.1 Summary . 202

6.7.2 Discussion . 204

7 Conclusion 209

7.1 Findings . 210

7.2 Reflections . 212

7.3 Improvements and Further work suggestions 214

A Publications 216

B Appendix B 218

B.1 Thresholding evaluation . 218

B.2 Edge Detection evaluation . 221

B.2.1 Canny Edge Detection evaluation 223

B.3 Rain-falling Watershed segmentation evaluation 224

xi

CONTENTS

B.4 Anisotropic-based segmentation evaluation 224

C Appendix C 228

References 258

xii

List of Figures

1.1 Image understanding system flow chart 4

2.1 Taxonomy of segmentation methods 15

2.2 Histogram thresholding example 19

2.3 Thresholding example . 21

2.4 Example of edges in a grey-scale image 23

2.5 Edge detection examples . 24

2.6 Region growing example . 26

2.7 Level-Set technique illustration 27

2.8 Watershed examples . 30

2.9 Clustering-based segmentation examples 33

2.10 Evaluation methods categorisation 40

3.1 Classic thresholding method flow chart 50

3.2 Profiling result of the classic thresholding method 51

3.3 Relative thresholding method flow chart 52

3.4 Profiling result of relative thresholding method 52

3.5 Optimal thresholding method flow chart 54

3.6 Profiling result of optimal thresholding method 54

3.7 Classic edge detector method flow chart 55

3.8 Profiling result of classic edge detector method 56

3.9 Canny edge detector method flow chart 56

3.10 Profiling result of Canny edge detector method 57

3.11 Colour edge detector method flow chart 58

xiii

LIST OF FIGURES

3.12 Profiling result of colour edge detector method 59

3.13 Region-growing segmentation flow chart 60

3.14 Profiling result of region-growing segmentation 60

3.15 Watershed segmentation flow chart 61

3.16 Profiling result of watershed segmentation 62

3.17 Rainfalling segmentation flow chart 63

3.18 Profiling result of rain-falling segmentation 64

3.19 Colour Watershed segmentation flow chart 65

3.20 Profiling result of colour watershed segmentation 65

3.21 K-means segmentation flow chart 66

3.22 Profiling result of K-means segmentation 67

3.23 Local K-means segmentation flow chart 68

3.24 Profiling result of local K-means segmentation 68

3.25 Meanshift segmentation flow chart 70

3.26 Profiling result of meanshift segmentation 70

3.27 Graph-based segmentation flow chart 71

3.28 Profiling result of graph-based segmentation 72

3.29 Anisotropic-based segmentation flow chart 73

4.1 Example image from Berkeley segmentation database 77

4.2 Classic thresholding algorithm parameters’ variations example. . . 79

4.3 Relative thresholding algorithm parameters’ variations example. . 81

4.4 Classic edge detection algorithm parameters’ variations example. . 83

4.5 Canny Edge Detection algorithm parameters’ variations example. 84

4.6 Region Growing algorithm parameters variations example. 86

xiv

LIST OF FIGURES

4.7 Watershed segmentation algorithm parameters variations example. 88

4.8 Processing time example for Watershed segmentation. 89

4.9 Watershed segmentation parameters variation with no filtering. . 91

4.10 Processing times for Watershed segmentation with no filtering . . 92

4.11 Rain-falling segmentation algorithm parameters variations example. 93

4.12 Processing time example for Rain-falling segmentation. 95

4.13 Rain-falling segmentation parameters variation with no filtering. . 96

4.14 Processing times for Rain-falling segmentation with no filtering . . 97

4.15 Colour Watershed segmentation parameters variations example. . 99

4.16 Processing time example for Colour Watershed segmentation. . . . 100

4.17 K-means segmentation parameters variations example. 102

4.18 Processing time example for K-means segmentation. 103

4.19 Mean-shift segmentation parameters varitions example. 105

4.20 Processing time example for Mean-shift segmentation. 106

4.21 Graph-based segmentation parameters variations example. 108

4.22 Processing time example for Graph-based segmentation. 109

4.23 Anisotropic-based segmentation parameters variations example. . 110

4.24 Processing time example for Anisotropic-based segmentation. . . . 111

5.1 An abstract diagram of the FATE evaluation framework 121

5.2 Toshiba M200 displaying image number 10 for hand segmentation 132

5.3 Test Images 1 to 12 used for hand-segmentation test 133

5.4 The mean differences calculated for each subject 135

5.5 The mean differences calculated for each image 137

6.1 Mean-shift segmentation extensive search of parameter space results149

xv

LIST OF FIGURES

6.2 Genetic algorithm operations representation 151

6.3 Mean-shift segmentation parameter convergence example. 160

6.4 Mean-shift segmentation linear trend of the cost function. 160

6.5 Watershed segmentation linear trend of the cost function. 161

6.6 Graph-based segmentation linear trend of the cost function. . . . 162

6.7 Application of Nelder-Mead polishing to GA optimisation. 165

6.8 The Mean-shift GA evaluation with 100 generation 172

6.9 The first 3 Generation of the Mean-shift GA evaluation 173

6.10 The first 20 Generation of the Mean-shift GA evaluation 174

6.11 Colour Edge Detection evaluation 20 images with and without time

factor parameters . 178

6.12 Colour Edge Detection evaluation 20 images with and without time

factor timing . 179

6.13 Watershed segmentation evaluation 20 images with and without

time factor parameters . 180

6.14 Watershed segmentation evaluation 20 images with and without

time factor timing . 182

6.15 Colour Watershed segmentation evaluation 20 images with and

without time factor parameters 184

6.16 Colour Watershed segmentation evaluation 20 images with and

without time factor parameters 185

6.17 Colour Watershed segmentation evaluation 20 images with and

without time factor timing . 186

6.18 K-means segmentation evaluation 20 images with and without time

factor parameters . 187

xvi

LIST OF FIGURES

6.19 K-means segmentation evaluation 20 images with and without time

factor parameters . 188

6.20 K-mean segmentation evaluation 20 images with and without time

factor timing . 189

6.21 Mean-shift segmentation evaluation 20 images with and without

time factor parameters . 190

6.22 Mean-shift segmentation evaluation 20 images with and without

time factor parameters . 191

6.23 Mean-shift segmentation evaluation 20 images with and without

time factor timing . 192

6.24 Graph-based segmentation evaluation 20 images with and without

time factor parameters . 194

6.25 Graph-based segmentation evaluation 20 images with and without

time factor parameters . 195

6.26 Graph-based segmentation evaluation 20 images with and without

time factor timing . 196

6.27 Objective evaluation of Mean-shift segmentation on 20 images with

and without time factor for radiusS and radiusR parameters . . . 199

6.28 The timing performance of the objective evaluation of Mean-shift

segmentation on 20 images with and without time factor 201

6.29 The three stage of the segmentation algorithm design with exam-

ples of the graph-based and the mean-shift segmentation algorithms205

7.1 An abstract graph of an improved and combined segmentation and

evaluation framework . 214

xvii

LIST OF FIGURES

B.1 Thresholding evaluation 20 images with and without time factor

parameters . 219

B.2 Thresholding evaluation 20 images with and without time factor

timing . 220

B.3 Edge Detection evaluation 20 images with and without time factor

parameters . 222

B.4 Edge Detection evaluation 20 images with and without time factor

timing . 223

B.5 Canny Edge Detection evaluation 20 images with and without time

factor parameters . 224

B.6 Canny Edge Detection evaluation 20 images with and without time

factor timing . 225

B.7 Rain-falling Watershed segmentation evaluation 20 images with

and without time factor parameters 225

B.8 Rain-falling Watershed segmentation evaluation 20 images with

and without time factor timing 226

B.9 Anisotropic-based segmentation evaluation 20 images with and

without time factor parameters 226

B.10 Anisotropic-based segmentation evaluation 20 images with and

without time factor timing . 227

C.1 Grey-scale version of Fig. 4.7 with parameter settings for Water-

shed segmentation . 229

C.2 Grey-scale version of Fig. 4.11 with parameter settings for Rain-

falling segmentation . 230

xviii

LIST OF FIGURES

C.3 Grey-scale version of Fig. 4.15 with parameter settings for Colour

Watershed segmentation . 231

C.4 Grey-scale version of Fig. 4.17 with parameter settings for K-mean

segmentation . 232

C.5 Grey-scale version of Fig. 4.19 with parameter settings for Mean-

shift segmentation . 233

xix

1
Introduction

All human knowledge begins with intuitions, thence passes

to concepts and ends with ideas.

Immanuel Kant, Critique of Pure Reason

1.1 Image Segmentation

Image segmentation is one of the key steps in image analysis for object recog-

nition and scene understanding (Lucchese & Mitra, 2001a). The major target

is to recognise homogeneous regions within a scene image as individual objects.

Typically, identifying and labelling objects is not performed during the image

segmentation phase; this can take place in a later stage. Computer vision and

image processing applications range from medical analysis (Pham et al., 2000;

Pun et al., 1994; Withey & Koles, 2007) to industrial quality control (Malamas

et al., 2003), remote geophysical exploration (Fan et al., 2009; Liu et al., 2009;

2

1.1 Image Segmentation

Rekik et al., 2007), robot navigation (DeSouza & Kak, 2002), and last but not

least military applications (Gonzalez & Woods, 2002). In all these areas, the

quality of the final result depends largely on the quality of the segmentation

(Paragios & Deriche, 1999).

To highlight the importance of the segmentation stage, see Figure 1.1 which

illustrates the processing stages that takes place in typical image understand-

ing/computer vision systems. Segmentation is the last stage before the system

processes the data to assign ‘meaning’ to the identified ‘objects’; as such, if the

segmentation results are not assigned correctly to the objects in the acquired

scene then the computer model of the scene will be totally wrong and any other

application that depends on this model (robot movement, mail sorting, medical

examination, etc.) will be based on a wrong premise.

The feature extraction stage can encompass a number of sub-processing stages

depending on the application and the input/output specification. The features

can include luminance or colour features, texture feature, or even motion features

for video inputs. The extraction process helps in classifying regions with similar

features and as a consequence identifying homogeneous segments in the input

image.

Its important to highlight here that the segmentation stage itself by defini-

tion does not assign any object meaning to the identified segments in the image,

and it does not include any pre-processing filtering or feature extraction oper-

ations. However, in practice image segmentation algorithms add some of these

operations, especially pre-processing filtering operations. For example, some seg-

mentation algorithms implementations add smoothing or noise reduction filters,

these filters can be classified as pre-processing stages and -in the whole image un-

3

1.1 Image Segmentation

S
e
g
m

e
n
ta

ti
o
n
 &

 O
b
je

c
t

D
e
te

c
ti
o
n

S
c
e
n
e

Im
a
g
e

A
c
q
u
is

it
io

n

S
p

a
ti
a

l
D

a
ta

(I
m

a
g

e
)

T
e

m
p

o
ra

l
D

a
ta

(V
id

e
o

)

P
re

-p
ro

c
e
s
s
in

g

N
o

is
e

 R
e

d
u

c
ti
o

n

S
m

o
o

th
in

g

B
lu

rr
in

g

E
n

h
a

n
c
e

m
e

n
t

F
ilt

e
ri
n

g

E
tc

..
.

F
e
a
tu

re
E

x
tr

a
c
ti
o
n

S
te

re
o

p
s
is

 F
e

a
tu

re

M
o

ti
o

n
 F

e
a

tu
re

O
ri
e

n
ta

ti
o

n
 F

e
a

tu
re

T
e

x
tu

re
 F

e
a

tu
re

C
o

lo
u

r
F

e
a

tu
re

E
tc

..
.

3
D

 D
e

p
th

C

o
m

p
u

ta
ti
o

n

M
o
v
in

g
 O

b
je

c
t

T
ra

c
k
in

g

Im
a
g
e
 U

n
d
e
rs

ta
n
d
in

g

S
e

m
a

n
ti
c

D
e

s
c
ri
p

ti
o

n
S

e
m

a
n

ti
c

In
te

rp
re

ta
ti
o

n
S

y
m

b
o

lic

In
te

rp
re

ta
ti
o

n

E
tc

..
.

S
e

g
m

e
n

ta
ti
o

n

C
o
m

p
u
te

r
M

o
d
e
l

o
f
th

e
 I

n
p
u
t
S

c
e
n
e

O
th

e
r

D
a

ta
(I

R
,e

tc
.)

F
ig

u
re

1.
1:

Im
ag

e
u
n
d
er

st
an

d
in

g
sy

st
em

fl
ow

ch
ar

t

4

1.2 Motivation of the Research

derstanding framework- can even come before the feature extraction stage. This

is one particular point that will be explored.

To understand the constraints and conditions that are associated with image

segmentation techniques available today, several issues must be examined. One

of the common problems is choosing a suitable approach for isolating different

objects from the background. A simple example is when greyscale image seg-

mentation techniques do not achieve good results if different objects in the image

possess similar grey levels. In practice, researchers employ image enhancement

techniques to highlight relevant features of the original image and, hence, simplify

the image segmentation process.

1.2 Motivation of the Research

This research started with the initial aim of improving the current performance

of the image segmentation algorithms available in the literature. Watershed seg-

mentation was taken as a first representative algorithm and some initial work

was carried to test the performance, looking at parallelising the algorithm and

also profiling the algorithm itself. It was concluded that there is a constraining

factor and a bottleneck point in the message-passing characteristic of the seg-

mentation algorithm. The segmentation algorithm can always be divided into

different elements. However, the fundamental aspect of the algorithm is that it’s

a global process that will need to look at the image as whole at the end of the

processing. Therefore, those distributed/parallelised elements, for the sake of the

performance, will need to communicate in the end and overall any advantage

found from the parallelisation process is lost.

5

1.2 Motivation of the Research

This initial outcome directed the study towards exploring the segmentation

field as a whole and to also look for a standardised way of evaluating the seg-

mentation results. Both of these fields have received in depth research in the

last three decades at least (Fu & Mui, 1981; Haralick & Shapiro, 1985; Lucchese

& Mitra, 2001a; Sahoo et al., 1988; Weszka, 1978; Zhang et al., 2008; Zhang,

1996). However, one of the main points encountered in the initial watershed pro-

filing was exposing the processing stages that are part of the whole algorithm.

The other was how the input parameters are actually related to those process-

ing stages. Both of those points: the processing stages (e.g., pre-processing and

post-processing enhancement filters in addition to the core segmenting stage) and

the parameters significant was not covered by sufficient research in the author’s

opinion.

In the literature, it is clear that the enhancement technique used has a direct

impact on the quality of the resulting segmented image. In practice, the best

enhancement techniques are those that make the segmentation process easier by

augmenting the object’s edges and the image background. Other matters related

to image segmentation comprise selecting the right segmentation algorithms for

the task at hand, evaluating execution time and the quality of the result and

identifying their impact on the computer vision and image analysis systems.

This research aims to provide a framework to evaluate the segmentation algo-

rithms against each other using appropriate scientific and empirical methods, and

to develop a framework for a real-time image segmentation processing for com-

puter vision and image-analysis systems. Furthermore, the focus was to highlight

the importance of the processing stages in the different segmentation algorithms

and their related parameters, and also how they affect the final segmentation

6

1.3 Contribution of the Thesis

result. This hopefully will lead us to have an alternative formulation of the seg-

mentation problem emphasised by consideration of the processing stages.

1.3 Contribution of the Thesis

The thesis makes the following contributions:

• Profiling of image segmentation algorithms from different categories accord-

ing to an image segmentation taxonomy (see Figure 2.1) and highlighting

any similarities in the processing stages used among all the algorithms under

study.

• Extensive image segmentation algorithm evaluation with different param-

eter settings, to determine the significance of the parameters on the final

results of the segmentation. Also explored is the use of a cluster computing

architecture to speed up the evaluation (Al-Muhairi et al., 2007a).

• Employing a genetic algorithm to improve the performance and speed up

the parameter evaluation of the image segmentation results; and also using

mathematical optimisation procedures to improve the performance further

(Al-Muhairi et al., 2007b).

• Illustrate the significance of the parameters on the segmentation perfor-

mance and quality and how they relate to the “building blocks” of the

segmentation algorithms of pre-processing and post-processing filters and

the main segmentation stages. Provide some advice on the stages that are

more significant for improvement of the overall segmentation performance

and quality across different image segmentation categories.

7

1.4 Outline of the Thesis

A list of published and submitted publications is included in Appendix A.

1.4 Outline of the Thesis

The reminder of this thesis is organised as follows:

Chapter 2 provides a literature review. The first section presents an overview

of relevant previous work in the area of image segmentation in the context

of a taxonomy of image segmentation algorithms. The image segmentation

evaluation research is also reviewed.

Chapter 3 describes the first step of our image segmentation evaluation. It

presents research in profiling image segmentation algorithms in different

categories of the image segmentation taxonomy presented. This highlights

the different stages involved in image segmentation algorithms and also

emphasises any similarities in the stages followed by all the algorithms,

even if they belong to different categories of the taxonomy tree.

Chapter 4 introduces the proposed testing framework, a modified Framework

for Algorithm Testing and Evaluation (FATE) testing harness (Courtney

et al., 1997). It also introduces the use of cluster computing to speed up

our work.

Chapter 5 extends the work by adding a Genetic Algorithm (GA) stage to the

evaluation framework to optimise the performance.

Chapter 6 illustrates further the effect of the parameters on the final segmen-

tation results with different segmentation algorithms.

8

1.4 Outline of the Thesis

Chapter 7 concludes this thesis by presenting a summary of the work. It also

points to directions for future research.

9

. .

If a man is offered a fact which goes against his instincts,

he will scrutinize it closely, and unless the evidence is

overwhelming, he will refuse to believe it. If, on the other

hand, he is offered something which affords a reason for

acting in accordance to his instincts, he will accept it even

on the slightest evidence. The origin of myths is explained

in this way.

Bertrand Russell (1872 - 1970) — British author,

mathematician, & philosopher

10

2
A Review of Research on Image

Segmentation and its Evaluation

2.1 Introduction

Image segmentation is the process of partitioning an image into homogeneous

sections with regard to particular characteristics that hopefully relate to real

objects in the actual scene (Gonzalez & Woods, 2002). The image segmenta-

tion process performance directly influences the performance of the later steps

in image-analysis processing, and hence arguably is the most important step in

image analysis. Please refer to Figure 1.1 back on page 4 for an illustration. In

spite of its significance, segmentation still remains an unsolved problem in the

general sense, as it lacks a general mathematical theory (Kurgöllüs & Sankur,

1999). There is almost certainly no one correct segmentation solution accept-

able under all psychophysical conditions and to every image condition (Wang

11

2.1 Introduction

& Suter, 2003). Difficulties in segmentation relate to two main characteristics:

its under-constrained nature (LaValle & Hutchinson, 1995); and the deficiency

in providing the correct definition of image segmentation (Kurgöllüs & Sankur,

1999). The problem is under-constrained because any segmentation algorithm

constraints should be both general enough to satisfy a diversity of problem types,

and limited enough to constrain the problem. As such, any general solution for

segmentation will tend to be under-constrained to satisfy all application classes.

Furthermore, the disconnect between practical segmentation research and the-

oretical research that provides mathematical model of segmentation on idealised

images lead to the deficiency of a general theory of image segmentation. Actually,

as Ciesielski & Udupa (2007) put it:

In fact, there is even no evidence of the use of any definition for-

mally connecting idealized images (infinite objects) with their digital

representations (which are finite).

Both of these characteristics relate to the lack of a complete mathematical

model to represent image segmentation for general use (although constrained

models for specific applications are arguably feasible). Hence, determining the

correctness and consistency of the segmentation result of a given scene becomes

feasible only for specific tasks.

Perhaps as a result of these deficiencies, many image segmentation meth-

ods can be found the image segmentation literature. Typically, these methods

are categorised into (Cheng et al., 2001; Wang & Suter, 2003; Yang & Kang,

2009): region growing (Cramariuc et al., 1997; Ouyang et al., 2009; Rehrmann

& Priese, 1998); edge-based (Ma & Manjunath, 1997; Rotem et al., 2007; Saber

12

2.2 Taxonomy of Image segmentation methods

et al., 1996); clustering (Chen et al., 2008; Comaniciu & Meer, 1997; Zhang &

Wang, 2000); histogram thresholding (Kurugollu et al., 2001); Deformable Mod-

els approaches (Singh et al., 1998; Xu et al., 2000) (including the Parametric

Active Contours usually referred to as Snakes (Kass et al., 1988), and Geometric

Active Contours like Level-Set methods (Caselles et al., 1997; Sethian, 1999));

physical model-based (Borràs & Lladós, 2009; Klinker et al., 1990); fuzzy-based

approaches (Chamorro-Mart́ınez et al., 2003; Maeda et al., 2007); and neural net-

work methods (Campbell et al., 1996; Kurokawa et al., 2009). These algorithms

range from complex methods that use vision models for objects and images to

simple and heuristic methods that are application-specific.

2.2 Taxonomy of Image segmentation methods

To illustrate the different segmentation categories and their classification and re-

lationships, a taxonomy of image-segmentation methods is shown in Figure 2.1.

This figure categorises the different algorithms based on their design and the ra-

tionale used to segment the images into regions, such as using the image intensity

to find object borders and which concepts are used to search for the segments

(like region-growing initial seeded pixels). The taxonomy helps us to choose some

representative algorithms from each category for evaluation experiments. Not all

of the categories have well-defined characteristics or are popular and widely used

(which results from many reasons, such as the author’s reputation and the ease of

implementation compared to other algorithms). As will be described later, even

among different categories, algorithms share some “building blocks” in some of

their processing stages. Below the reader will find descriptions and discussions of

13

2.2 Taxonomy of Image segmentation methods

each category in the taxonomy tree.

The taxonomy has five main categories: cutting techniques, contouring tech-

niques, learning techniques, physics-based techniques, and hybrid techniques.

This taxonomy’s categories were adapted from segmentation methods surveys

in the literature (Cheng et al., 2001; Wang & Suter, 2003; Yang & Kang, 2009)

and combined to cover as much as possible of the algorithms in the literature.

Cutting techniques combine the segmentation methods that are considered

elemental and unsophisticated by their design. The methods basically depend on

a ’discontinuity’ to define the boundaries of the segmentation regions detected.

The definition of the discontinuity depends on the design method and imple-

mentation. Two of the techniques that are considered cutting techniques in the

proposed taxonomy are: thresholding techniques and the edge detection tech-

niques. It’s worthy of mention that those techniques are usually used as a basis

for other techniques or as one of their processing stages to get the final segmen-

tation result. So for example edge detection and region growing techniques are

closely related in their design. However, the approach used is different and as a

result the final segmentation results are different.

The main difference is the use of an analogy of growing/evolving seeds to

define regions in the image and this is the definition that combines the techniques

under the contouring techniques category. This category combines region growing

techniques (Köthe, 1995) and level-set techniques (Sethian, 1999).

The most basic implementation of the region-growing techniques start with a

pre-set number of seeds with their location in the input image as an input. The

seeds are ’grown’ on the image space by looking on the neighbouring pixels and

deciding to add them to the seed region or not according to a selection criteria

14

2.2 Taxonomy of Image segmentation methods

F
ig

u
re

2.
1:

T
ax

on
om

y
of

se
gm

en
ta

ti
on

m
et

h
od

s

15

2.2 Taxonomy of Image segmentation methods

different in each implementation. Watershed segmentation techniques (Vincent

& Soille, 1991) can be considered as region-growing techniques with a different

analogy used to define the regions and the boundaries of the segmented regions,

as will be described in more detail later.

Another techniques under this category is the level-set technique (Sethian,

1999; Tsai & Osher, 2003) which use an analogy of an evolving curve models

that are grown according to a force function. A force function is computed from

the underlying image data. The aim is to make the model to grow towards

the object boundaries in the image to produce the final segmentation. Other

related techniques are active contours methods usually referred to as snakes (Kass

et al., 1988) and Geodesic active contours (Caselles et al., 1997) which aims at

connecting level-set and snakes techniques.

Learning techniques combine techniques that use some of the underlying al-

gorithms, that are usually employed in machine-learning and data mining fields,

and apply them to the image segmentation problem. The examples in the the

taxonomy are: clustering-based techniques and techniques based on algorithms

from the Artificial Intelligence (AI) field.

The clustering-based techniques are the most dominant and widely used from

the two categories and from observation provide very good segmentation results

for the defined segmentation application it’s designed to solve. Clustering basi-

cally means grouping similar data points into different clusters or groups. And

this analogy is used on the image data when each pixel is considered as a data

points and the aim is to produce clustered segmented regions, according to a cer-

tain similarity measure that corresponds to the objects in the image. Two widely

popular implementations are the k-means implementation and the mean-shift

16

2.2 Taxonomy of Image segmentation methods

implementation.

AI-based techniques apply algorithms such as artificial neural networks (ANNs)

(Goldman et al., 2002) and fuzzy-based algorithms (Ito et al., 1995; Lim & Lee,

1990; Maeda et al., 2007) based on fuzzy-set theory. However, compared to the

other categories this is a less developed field. Although the main techniques are

based on AI algorithms the underlying processing stages are still based on basic

segmentation techniques like thresholding and region growing. Another method

that can also be mentioned here is self-organising map (SOM) methods (Huang

et al., 2002; Yeo et al., 2005) although they are even less popular in this field.

Physics-based techniques (Maxwell & Shafer, 1997) are established on using

the physical characteristics of the objects as they are captured into images, and

as such tries to exploit these characteristics to help it define the region boundaries

of the segmented objects in the image.

The hybrid method group is composed of segmentation techniques that com-

bine one or more of the techniques mentioned above to achieve better segmenta-

tion results. There are many techniques that can be classified under this category

(and even some of the methods that are mentioned above can be considered hy-

brid in some of their implementations). This category was added as a completion

to the proposed taxonomy and will not be discussed in detail as most of the other

categories give enough techniques representation to cover this category.

Furthermore, the boundaries between the categories in this taxonomy are not

hard boundaries and as mentioned above there are shared characteristics between

the techniques that are classified under different categories, as all of them try to

exploit the same image characteristics to get to the ultimate result of defining

the region’s boundary for the objects in the image. However, the taxonomy gives

17

2.2 Taxonomy of Image segmentation methods

a good representation and classification for the image segmentation field overall,

and for the purpose of this thesis gives a good basis for further experimentation

that will be applied later. Additional detailed description for each category is

provided below.

2.2.1 Boundary Demarcation Segmentation

2.2.1.1 Thresholding Segmentation

From all the segmentation techniques, thresholding is most likely to be the sim-

plest. Nonetheless, for particular applications it could be the most effective and

efficient segmentation technique. In this approach, structures in the image (e.g.

objects) are segmented by comparing their intensity value to one or more inten-

sity thresholds. An image can be segmented into two regions by using only one

threshold value; but it’s common to segment an image into multiple regions using

multiple thresholds (Sahoo et al., 1988). Furthermore, thresholds can either be

global (constant throughout the image) or local, when different thresholds are

chosen based on local characteristics of different areas in the image occur (Sahoo

et al., 1988; Weszka, 1978). Figure 2.2 on page 19 illustrates how a threshold is

typically determined from the histogram shape of an image. Image histograms

represent the colour-pixel distribution for the image; this histogram example rep-

resent a grey-scale image where the horizontal axis represent a grey-scale levels (0

for black, 255 for white), while the vertical axis represents the number of pixels

that have the given intensity level. The idea is to find a significant discontinuity

to take as a threshold; in this example the object has brighter values while the

background is dark. In real images, some of the objects can have boundaries’ lev-

18

2.2 Taxonomy of Image segmentation methods

els beyond the used threshold value, but in practice these objects’ boundaries are

not considered significant enough for the application at hand, and are sacrificed

for practicality and performance of the algorithm.

����������	

��������������������

�	�
��
���

������
��

�
��� ���

�
�

�
��
�
��
�
��
�
�	

Figure 2.2: Histogram thresholding example

Sezgin and Sanker surveyed 40 different thresholding techniques for image seg-

mentation in their paper (Sezgin & Sankur, 2004). They categorised thresholding

techniques according to the image attributes used to apply the segmentation pro-

cess, such as colour space clustering, histogram shape, object attributes, and

spatial correlation among other classification attributes. Although they focus on

techniques for grey-scale images in their survey, they conclude that their results

could be similar for colour images and recommend further studies in this direc-

tion using the same performance measures they suggested. One way to apply

thresholding to colour images is to split the colour space (RGB, HSV or HSL

(Gonzalez & Woods, 2002)) into components, apply thresholding to each sepa-

19

2.2 Taxonomy of Image segmentation methods

rately and then combine them again. One such example is suggested by Yang &

Tsai (1996). In their paper, thresholding is applied to each colour plane of the

pre-partitioned input colour image using non-overlapping blocks of the image.

The thresholding process produces two representative RGB colour vectors for

each block. For each block, the single-spectral results are obtained by computing

the difference between these two vectors. Yang & Tsai found this method can be

faster than other methods such as the Karhunen-Loéve expansion or vector me-

dian approaches which are also applicable. HSV and HSL have some advantage

over RGB as they represent perceptual colour relationships more accurately and,

as such, are closer to how humans perceive colours (Busin et al., 2008).

In another recent example, Pham et al. (2007) used the CMYK colour space

thresholding technique in a medical application and achieved higher performance.

The benefit of CMYK in this specific application, immunohistochemistry (IHC),

stems from using a Yellow channel image analysis method based on a CMYK

colour model that improved sensitivity for IHC evaluation compared to other

colour models. This use of different colour model to enhance the segmentation re-

sults is an improvement suggested in many other segmentation algorithms. Some

have an advantage for specific applications, such as the example of using CMYK

for IHC, or are suggested for use for general applications, such as the mean-shift

algorithm using the LUV colour space that will be described in greater detail

later.

Sezgin & Sankur (2004) reached a similar conclusion to most other papers in

this research field: even in a single application domain, there is no single algo-

rithm that is successful for all image types. Figure 2.3 provides a few examples

of thresholding techniques to illustrate that thresholding can provide some good

20

2.2 Taxonomy of Image segmentation methods

results in some cases. The relative thresholding illustrated in the Figure differ in

the fact that the threshold values are used as percentages rather than absolute

values to represent the pixel values like standard thresholding, which is also illus-

trated. Optimal thresholding aims to find a statistically optimal threshold value

based on the image “structure”. The optimal thresholding represent the image

histogram into an approximation of two or more normal distributions (where dis-

tributions represent object(s) or background) and iteratively calculate an optimal

threshold value corresponding to the minimum probability between the maxima

of the defined distributions (Ridler & Calvard, 1978; Sonka et al., 1993).

(a) The original input image (b) Output from standard thresholding
method

(c) Output of relative thresholding method (d) Output of optimal thresholding method

Figure 2.3: Thresholding example

21

2.2 Taxonomy of Image segmentation methods

However, it is important to note that thresholding (compared with the other

segmentation techniques that will be discussed below) is often too simplistic in

that an object does not necessarily exhibit contrast relative to its surroundings.

One possible improvement, introduced in the literature, is to use multiple thresh-

olds (Reddi et al., 1984; Sahoo et al., 1988). Also thresholding produces very

basic segmentation results, typically a “binary” segmentation: segmented object

region, and background region, where as this can be sufficient in certain ap-

plications, most of the applications will need higher discriminating segmentation

results (as will be provided by examples below in other segmentation algorithms).

2.2.1.2 Edge Detection Segmentation

Edge-based segmentation is one of the earliest image segmentation techniques

(Roberts, 1963) and still has significance. Edges are interpreted as discontinu-

ities and as objects’ outer boundaries in the image segmentation process. A

variety of edge detecting algorithms such as gradient or the Canny edge detector

(Canny, 1986; Koschan, 1995). However, it’s important to note here that the

resultant images cannot be used directly as a segmentation: additional process-

ing stages are needed to join edges into edge chains, as edge chains are a better

representation of the objects’ boundaries in the image. The goal is to reach the

best possible object segmentation, grouping local edges to reach a resultant im-

age, where all the edges correspond correctly to existing object boundaries in the

image. Figure 2.4 illustrates an example of edges in grey-scale images; the same

idea applies to colour images. However, colour features found in colour images

can provide additional information compared to grey-scale images. Colour edges

can be defined by two techniques: (1) computing the edges of each of the colour

22

2.2 Taxonomy of Image segmentation methods

spaces separately and then combining them according to a pre-defined criteria, or

(2) compute the edges in the vector space where colour information of the image

is defined as colour vectors. Many criteria and definitions for each technique were

introduced in the literature (Koschan & Abidi, 2005; Lucchese & Mitra, 2001a).

Figure 2.4: Example of edges in a grey-scale image: (a) Example of an ideal edge
(b) Example of a ramp edge (adapted from Gonzalez & Woods (2002))

Classic Edge detection methods usually process the input image to create a

gradient magnitude, then use this in an maxima search stage to find edges in

the gradient. This can be either a thresholding method (similar to what was

discussed above) or a non-maxima suppression stage, which was introduced by

Canny (1986), to suppress all values along the line of the gradient that are not

peak values.

An example output from a standard edge detection using Sobel operator to

compute the gradient is illustrated in Figure 2.5. The Figure also illustrates other

edge detection techniques, such as Canny edge detection and also a colour edge

23

2.2 Taxonomy of Image segmentation methods

detector suggested by Gevers & Stokman (2003a).

(a) The original input image (b) Output from edge detection method using
Sobel operator

(c) Output of Canny edge detection method (d) Output of colour edge detection method

Figure 2.5: Edge detection examples

Classic edge detection usually employes a gradient function that uses Sobel

kernel (other operators include Roberts, Prewitt operators to find the image

gradient (Koschan, 1995)). Canny edge detection, unlike classical edge detec-

tion techniques, apply an additional pre-processing noise reduction filter (e.g.

smoothing filter) based on a Gaussian function then applies four gradient func-

tions: vertical, horizontal, and two diagonal edges. And Also the algorithm uses

a non-maxima suppression stage to find the edges. In other words, this stage

tries to find local maxima to define the edges and suppress the other parts of the

24

2.2 Taxonomy of Image segmentation methods

image gradient.

2.2.2 Contouring Techniques

2.2.2.1 Region-growing Segmentation

Region-growing techniques are widely established as an efficient approach for

image segmentation (Köthe, 1995). The basic approach is to start from a region

seed (typically one or more pixels) that is deemed to be inside the object to be

segmented. Then the algorithm starts evaluating neighbouring pixels to resolve,

according to certain criteria (like pixel intensity, colour, texture, etc.), if they

should also be considered part of the object. Consequently, if pixels are found

to meet these criteria, they are added to the region and the process continues as

long as new pixels are added to the region.

In addition to different criteria used to decide whether a the pixel is included

in a region, region-growing algorithms also vary depending on the traversing

strategies for neighbouring pixels and the connectivity type used to determine

neighbours. An example output from region-growing segmentation is illustrated

in Figure 2.6. In this example, the seeding points are grown to the adjacent

pixels according to a colour homogeneity criteria and a threshold value, and the

technique uses 4-connected neighbourhoods to grow the seeding points.

2.2.2.2 Level-Set Segmentation

Level-set methods, as proposed by Sethian (1999), are founded on the idea of

transferring a dynamic problem into a higher dimension and consequently dealing

with it as a static problem. This new dimension represents the process dynamics

25

2.2 Taxonomy of Image segmentation methods

(a) The original input image

(b) The output of region growing segmentation
method

(c) The segments overlayed on the original im-
age to illustrate the final result

Figure 2.6: Region growing example

for the problem at hand.

Theoretically, level-set methods employ a curve in (x, y)-coordinates, repre-

senting an expanding contour that defines an object in the segmented image (see

Figure 2.7 (a)). This curve is built into the (x, y)-plane of a cone-shaped surface

in a three-dimensional coordinate system (see Figure 2.7 (b)). Now this surface is

defined in the algorithm to cut the (x, y)-plane exactly where the curve is located.

This cone-shape represents the level-set function that by its definition accepts any

point in the plane and return its height as an output. The original curve is called

the Zero-Level-Set and is found by cutting the surface at the (x, y)-plane (repre-

26

2.2 Taxonomy of Image segmentation methods

(a) (b)

Figure 2.7: Level-Set technique illustration Sethian (1999)

sented in Figure 2.7 (b)) (Sethian, 1999). In simple terms, the algorithm defines

an artificial closed contour that can expand or contract over time, within the input

image, to conform to a pre-defined criteria (i.e. image features). Active contours

and surfaces, energy-Minimisation models, and front-propagation methods based

on level-sets are also related to this category (McInerney & Terzopoulos, 1996;

Xu et al., 2000).

The dynamic curve described in the Level-Set function can be moved and

deformed freely to fit the objects to be segmented in the input image. A function

is used to regulate the speed and the deformation degree at any point of the

curve. Typically, features of the curve determine the speed function (e.g. the

curvature or gradient). By using these features, level sets are applied to image

segmentation. Tsai & Osher (2003) gives a wider overview of the use of the level-

set technique in the image-processing field in general and for image segmentation

in particular.

27

2.2 Taxonomy of Image segmentation methods

2.2.2.3 Watershed Segmentation

The Watershed transformation is popular in the fields of image processing and

morphology (Vincent & Soille, 1991). Although this technique has similarities to

region-growing image segmentation, it has a different analogy to region growing

that makes it reside in a class by itself.

In their seminal paper, Vincent & Soille (1991) were one of the first to propose

using a watershed as a mathematical morphology tool to produce a fast and

flexible algorithm that segments greyscale images. The concept of watershed for

contour detection was originally introduced by Beucher & Lantuejoul (1979) but

was widely popularised by Vincent & Soille (1991) with their new implementation.

The algorithm is based on an immersion process analogy which views the pixels

in the input image as an elevation terrain, yielding ’mountains’ and ’valleys’.

In practice, the algorithm is divided into a flooding phase and a sorting phase.

Segmentation involves symbolic water pouring (unlike the rain-falling approach,

which will be discussed below) over the elevation terrain to form catchment basins.

Next the watershed process classifies areas with similar basin levels as being in

the same segmentation region.

Meijster & Roerdink (1995) suggested an alternative algorithm which consists

of 3 stages: (1) Transforming the image into a labelled graph; (2) Flooding

(computing the watershed); (3) Transforming the graph back into an image.

2.2.2.4 Rain-falling Watershed approach

This approach is basically a watershed algorithm based on a rain-falling analogy

rather than the immersion analogy mentioned earlier. The rule of assigning labels

28

2.2 Taxonomy of Image segmentation methods

to watershed regions is derived from physics: a raindrop falling on a surface will,

due to gravity, move downward to the nearest neighbouring location. In (Moga

& Gabbouj, 1997) and (Moga et al., 1995) the segmentation takes place in two

stages: (1) labelling plateaux of minima; (2) from each pixel a raindrop slides on

the steepest slope towards the nearest labelled minimum.

Over-segmentation, a familiar phenomenon in watershed segmentation, occurs

because every local minimum, even if tiny and insignificant, forms its own minima.

The De Semet et al. rain-falling implementation (De Smet & Pires, 2000) tries

to avoid this problem by introducing a simple pre-processing procedure in which

the image is modified to remove minima that are too shallow.

De Smet & Pires (2000) illustrate clearly that their implementation is an

excellent candidate for use in practical applications where rapid performance

and/or efficient memory usage is needed.

Figure 2.8 gives a good idea of what to expect from the watershed algorithm.

The colour watershed used here is based on Alvarado’s work (Alvarado, 2004),

which employs an adjacency graph to merge similar colour regions. It is adapted

from a region merging algorithm (Haris et al., 1998) but modified for colour

images, where the merging is performed according to a vector that represents an

RGB pixel.

2.2.3 Learning-Based Techniques

2.2.3.1 Clustering-Based Segmentation

Clustering is a process of substituting sets of data by representative clusters, each

cluster representing a related collection of data points. Hence, image segmenta-

29

2.2 Taxonomy of Image segmentation methods

(a) the original input image

(b) Watershed Segmentation
Output

(c) Watershed regions (each
in different colour)

(d) Watershed regions over-
layed over the original image

(e) Rain-falling Segmenta-
tion Output

(f) Rain-falling regions (each
in different colour)

(g) Rain-falling regions over-
layed over the original image

(h) Color watershed Segmen-
tation Output

(i) Color watershed regions
(each in different colour)

(j) Color watershed regions
overlayed over the original im-
age

Figure 2.8: Watershed examples

30

2.2 Taxonomy of Image segmentation methods

tion, by classifying pixels that possess similar texture and/or colour, can naturally

implement clustering. Therefore, if each object in an image has a homogeneous

and constant colour property and the pixels of the image are mapped using a

certain colour space, then it’s expected that clusters of homogenous colours will

represent the objects in the image. This makes clustering-based segmentation

using the feature-space, the colour-space in this case, more than the spatial-space

of the image (Lucchese & Mitra, 1999). One of the requirement for clustering-

based segmentation is to define the number of the clusters to be computed. This

is usually left to the user as an input parameter, and as such provides a dilemma

of choice for the user: to decide what the best value will be depending on the

application at hand and the type of the input image. Further discussion will be

provided later on the topic of the input parameters.

Clustering techniques are typically classified into two categories: hierarchy-

based and partition-based clustering (Jain et al., 1999); under each category we

can find a vast number of sub-categories that contains different clustering al-

gorithms. Hierarchical clustering classifies the clusters themselves into groups,

either by merging or splitting clusters, repeating the process at different levels to

achieve finally a tree of clusters classified according to their relation to each other.

Partition-based techniques form clusters by optimising a clustering criterion, de-

rived from a representation function that expresses the best clustering result of

the dataset. The K-means algorithm is the most commonly used partition-based

clustering method (Marroquin & Girosi, 1993a), in which the representation func-

tion is the squared distance of the dataset point from its nearest cluster centre.

The K-means algorithm finds clusters by iteratively computing a mean intensity

for each class and then classifying each pixel in the input image to the class with

31

2.2 Taxonomy of Image segmentation methods

the closest mean until all pixels are classified. See Figure 2.9 for some clustering-

based segmentation examples.

Clustering-based techniques are considered ideal for applications where each

object to be segmented in the input image has a relatively distinct homogenous

colour for its surface and close objects are colour distinct from each other, as they

can be easily extended to handle the complexity of the colour-space of the images.

However, for other cases where the spatial information needs to be considered in

addition to the feature space, adaptive clustering-based segmentation techniques

were proposed in the literature with varying degree of success, although this also

results in relatively longer execution times (Chen et al., 1998; Pappas, 1992).

2.2.3.2 Artificial Neural Network based Segmentation

Artificial Neural Networks (ANNs) are a type of Artificial Intelligence (AI) algo-

rithm (Luger, 2004; Russell & Norvig, 2002) that is commonly used in the pattern

recognition research field (Ripley & Hjort, 1995). Moreover, ANNs are inherently

non-linear in nature. Thus, in principle ANNs can model general and complex

functions. However, ANNs also usually require a long time to train, which would

lower the execution performance if the training was carried out online. The ANNs

can only be used to segment images of the same type it was trained on. Addi-

tionally, it is not possible to extract the complex function it models. Therefore,

this type of solution for image segmentation can become too application-centric

and not applicable for general use.

32

2.2 Taxonomy of Image segmentation methods

(a) Local K-mean segmentation regions
(each in different colour)

(b) Local K-mean segmentation regions
overlayed over the original image

(c) K-mean segmentation regions (each
in different colour)

(d) K-mean segmentation regions over-
layed over the original image

(e) Classic Mean-shift segmentation re-
gions (each in different colour)

(f) Classic Mean-shift segmentation re-
gions overlayed over the original image

(g) Mean-shift segmentation regions
(each in different colour)

(h) Mean-shift segmentation regions
overlayed over the original image

Figure 2.9: Clustering-based segmentation examples

33

2.2 Taxonomy of Image segmentation methods

2.2.4 Physics Based Techniques

Natural lighting of objects in the world, such as highlights, shadowing, reflections

and others, greatly affect the results of image segmentation algorithms. The rea-

son is that consistently coloured objects in the world affected by these phenomena

result in apparent changes in their coloured surfaces; hence those algorithms are

expected to return over-segmented results.

One way proposed to prevent this negative aspect (Shafer, 1985; Shen et al.,

2008) is to apply physical models of how light interacts with objects. The un-

derlying algorithms to find the segments do not radically differ from those of the

techniques previously discussed; the main distinction is taking into consideration

a physical model of the light properties affecting coloured objects.

Coloured objects may be divided into three main categories: optically homo-

geneous dielectrics (such as crystal and glass), optically inhomogeneous dielectrics

(such as textile and paper), and metal. Klinker et al. (1987, 1988, 1990) use this

categorisation to develop an algorithm (with either split-and-merge or region-

growing as an underlying algorithm). Klinker’s segmentation algorithm makes

some optical assumptions relating to an object’s colours, shading, and highlights

and tries to justify them as the segments’ shapes.

Other researchers also proposed other approaches to employ lighting and

colour properties to achieve better image segmentation results (Gevers, 2002;

Gevers & Stokman, 2003b; Kravtchenko & Little, 1999; Lucchese & Mitra, 1999,

2001b; Wesolkowski et al., 2000).

34

2.3 Improving segmentation computational performance with parallelisation

2.3 Improving segmentation computational perfor-

mance with parallelisation

In trying to improve the computational performance and improve the processing

time, some image segmentation research employs parallel processing to handle

the immense computation load (Bader et al., 1996). Such speed-ups from paral-

lelisation are mainly attractive for real-time segmentation needs, such as in video

coding or in industrial inspection.

Meijster & Roerdink (1995) in their approach divides the segmentation into

three stages: 1) transform the image into a directed valued graph, then 2) com-

pute the watershed of the directed graph, and finally 3) transform the labeled

graph back into a labeled segmented image. This make it possible to parallelise

all of the stages, though they prove that in practice it is worthwhile to parallelise

only the second stage. This is because the local nature of the second stage that

makes it possible to perform it in parallel, in contrast to the original algorithm.

This property, as we will see in the other techniques mentioned in this thesis, is

always true for this stage of the process, even though each technique tackles the

problem by forming different solutions.

In the parallel implementation of Nicolescu et al. (1999) the whole image is

distributed to all the processors. The rationale here is that if only regions of the

images are distributed to each processor, then some of the processors will need

some data that are stored on another processor and consequently could generate

high inter-communication between the processors. Each node will compute the

watershed only for the region of the image assigned to it, and then the result

35

2.3 Improving segmentation computational performance with parallelisation

is sent back to a “manager” processor which combines the result. Additionally,

this approach proves that, to compute the watershed correctly, the assigned sub-

images should have overlapping sections that cover all the region-growing seeds

in the sub-images assigned to neighbour processors.

What is interesting in this research is that the implementation is performed

with two separate message-passing standards: PVM (Parallel Virtual Machine)

(Geist et al., 1994) and MPI (Message Passing Interface) (Snir et al., 1995).

PVM, developed at Oak Ridge National Lab, is a portable heterogeneous message-

passing system. It offer tools for process spawning, execution on multiple archi-

tectures, and inter-process communication. MPI has come into the mainstream

more recently than PVM, but it is a mature standard that has been available

for several years. Argonne National Lab developed this standard as a public

domain implementation and it is available for nearly all the major computing

architectures. Nicolescu et al. (1999) conclude in their research that the speed-

up is disappointing and below expectation for both implementations. The MPI

implementation had slightly better speed-up result than the PVM because it

was implemented on a network with higher bandwidth. They conclude that dis-

tributed memory systems may not be the best choice to implement the watershed

algorithm, and that the gathering of the sub-results has to be made more efficient.

For rain-falling segmentation approach, Moga & Gabbouj (1997) (and (Moga

et al., 1995)) confirmed the advantage of this approach in term of anticipated

efficiency. It is a local method because each raindrop follows its own way regard-

less of its neighbouring raindrops. This results in less message-passing between

the processors in a parallel implementation compared to the immersion-approach

which is highly global in nature. This was implemented with both PVM and

36

2.4 Segmentation Evaluation

MPI, but the two implementations were not compared with each other by the

authors. One of the reasons given is that the underlying computer hardware used

by each implementation was different. Even so, the results showed PVM to be

slightly faster than MPI for the same number of processing nodes. Having said

that, a more exhaustive evaluation needs to be carried out as the example given

was only on two images.

Inherently by their design, ANN-based segmentation processing is carried out

simultaneously on different computational elements. Hence, it is practical to

implement it on parallel or distributed systems, which could allow for faster ex-

ecution performance and constitute an appropriate solution for real-time appli-

cations. However, the disadvantage of message passing overheads can negate the

performance advantage of individual elements, which is the same disadvantage

that all the parallel/distributed segmentation implementations face. A funda-

mental aspect is that at least one part of the segmentation process is a global

process. This problem is not overcome completely by current research and further

research is still needed.

2.4 Segmentation Evaluation

The evaluation of image segmentation techniques is important in determining

which characteristics of which algorithms work well, and in what circumstances.

Although there is a fair amount of research activity that can be found in the litera-

ture, this field has not reached maturity, in the sense of reliability and consistency.

As such, there are a number of ways to categorise segmentation evaluation. One

way to do this is to categorise evaluation methods into supervised or unsupervised

37

2.4 Segmentation Evaluation

based on whether or not a priori information is available. Unsupervised methods

are defined as methods that don’t require a priori information (i.e. reference or

ground-truth image), whereas supervised methods require a reference image to

complete the evaluation.

2.4.1 Segmentation evaluation categorisation according to

the use of a priori information

2.4.1.1 Unsupervised Segmentation Evaluation

Haralick & Shapiro (1985) proposed some guidelines for qualitative evaluation

techniques. Several researchers in the field also developed quantitative evalua-

tion techniques: a ”Busyness measure“ was introduced by Weszka and Rosenfeld

(Weszka & Rosenfeld, 1978; Weszka, 1978), as well as classification error to eval-

uate the performance of segmentation algorithms. Sahoo et al. (1988) combined

a shape measure with a region uniformity measure.

Qualitative measures are applied by computing the feature differences be-

tween an image segmented by an algorithm and an ideally segmented (e.g. hand-

segmented) image. Zhang (1996, 1997) has extensively detailed this approach in

his research. This approach can use any object (e.g. shape) features, eccentricity

of the shapes in the image, the texture of the shapes, and so on.

Shape features (such as orientation, elongation, area, and circularity) of seg-

mented objects were used for comparison of segmentation algorithms by Yang

et al. (1995) using the accuracy of the object feature measurement from the

segmented image with respect to the reference image as a discrepancy measure,

termed Ultimate Measure of Accuracy (UMA) as a reference to the ultimate goal

38

2.4 Segmentation Evaluation

of the segmentation process.

2.4.1.2 Supervised Segmentation Evaluation

Supervised segmentation evaluation typically uses a reference (or a ”ground-

truth“ image) to measure the ”error“ in the segmentation results. Thus, the

segmentation algorithm performance is measured according to the detected dis-

similarities between the segmentation output and the ground-truth. Yang et al.

(1995) propose error probability as a straightforward measure for the quality of

supervised segmentation.

A specialised methodology was proposed by Hoover et al. (1994, 1996) to eval-

uate range-image segmentation methods. This methodology was implemented

into an evaluation framework to compare range-image segmentation techniques.

Input images were acquired with a laser range finder and a triangulation tech-

nique. First the user of the framework takes a specially developed tool to create

a reference image segmentation (ground-truth) by assigning three distinct labels

to the image regions: cross edge pixels, shadow pixels and noise pixels. Then

the output of the segmentation algorithm under evaluation is compared with the

ground truth and a region mapping is created according to the following criteria:

correct detection, under-segmentation and over-segmentation, noise and missed.

2.4.1.3 Commentary

Figure 2.10 illustrates a new way suggested by the author to represent the previous

evaluation methods categorisation as points in a space spanned by two axes, one

representing the relation between being (Quantitative - Qualitative) and the other

representing (Objective - Subjective). Subjective methods use a human evaluator

39

2.4 Segmentation Evaluation

to assess the segmentation results. The objective evaluation, on the other hand,

should not use any subjective opinion in the evaluation. Quantitative evaluation

research depends on defining a testing data-set for evaluation and a more general

evaluation measurement. As a consequence, the conclusion that arises should be

applicable to a wider set of other untested results. Qualitative evaluation, on the

other hand, is applied to a limited set of images and most likely is subjective in

nature. The scale itself is more representative than being a measurement for the

differences between the methods. So methods that lay in the same quarter of the

categorisations have the same definition like methods used by Yang et al. (1995)

being subjective and quantitative and so lying in the top left quarter of the chart.

So from this we can see that both the Yang et al. (1995) method and methods

used by Haralick & Shapiro (1985) are subjective methods on the scale. However

Yang et al. (1995) is more quantitative.

Figure 2.10: Evaluation methods categorisation using (Quantitative-Qualitative)-
(Subjective-Objective) axis

40

2.4 Segmentation Evaluation

On the other hand, methods surveyed by Weszka (1978), Sahoo et al. (1988),

and the Levine & Nazif (1985) approach are quantitative evaluation methods

that can also be defined as objective methods. Their location on the chart is just

how they are related to each other on the scale. This type of categorisation is

harder to apply to different methods as some methods can cross the categories.

A method that lies in one of the quadrants can be argued to have some char-

acteristics of methods that lie in another quadrant. It can also be noticed that

some parts of this chart are not possible to fill-in such as finding a method that

is both objective and qualitative. This section gives one example of segmenta-

tion evaluation categorisation. Evaluation method categories suggested by Zhang

(1996) are more recent compared to the categorisation defined above, which gives

a more streamlined and easier to define categories, as will be discussed in the

next Section.

2.4.2 Zhang Segmentation Evaluation Categorisation

Zhang’s methodology (Zhang, 1996) of categorising evaluation methods is not

that much different from the categorisation explained above; the difference is in

the way they are named and some slight adjustment in the categorisation process.

Zhang categorises evaluation methods into: analysis methods, empirical goodness

methods and empirical discrepancy methods. The analysis methods consider the

segmentation algorithm directly. The empirical goodness methods evaluate the

output segmented image to indirectly assess the segmentation algorithm perfor-

mance. On the other hand empirical discrepancy methods compare the output

segmented image to a reference image (ground-truth) and use discrepancies to

41

2.4 Segmentation Evaluation

assess the segmentation algorithm’s performance. The following subsections pro-

vide more information about each category.

2.4.2.1 Analytical Methods

Analytical evaluation methods investigate the segmentation algorithm by evalu-

ating their properties independently of the segmentation output of each algorithm

under consideration. The evaluation process can be divided into two categories:

1) Evaluating the algorithmic properties of the algorithms such as processing

strategies, processing complexity, and implementation details, and 2) Evaluat-

ing the algorithms use of resources, computational performance and processing

timing independent of any consideration to the segmentation quality. This type

of evaluation works with some specific models or attractive properties of the al-

gorithms. Additionally, this type of evaluation is represented by the type and

amount of a priori knowledge that has been incorporated into different segmen-

tation algorithms. No significant studies can be found in the literature that cover

this area for a wide number of algorithms, so Chapter 3 provides such a study

for a number of chosen segmentation algorithms from the thesis taxonomy.

2.4.2.2 Empirical Goodness Methods

This group of methods focuses on the quality of the resulting segmented images

to evaluate an algorithm’s performance. Most of the quality measures are es-

tablished according to what conditions define an ideal segmentation by human

perception (Huang & Dom, 1995; Zhang et al., 2003). Intra-region uniformity,

inter-region uniformity and region shape are examples of goodness me asures

(Zhang, 2001). These methods do not require any a priori information regarding

42

2.5 Summary

the correct segmentation reference to compute the measure and differentiate the

various segmentation algorithms. Hence, these type of methods can serve as an

online evaluation, as there is no need for a correctly segmented reference image.

These are also known as unsupervised methods described above, Zhang et al.

(2008) have done a very recent and rigorous survey in the area of unsupervised

image segmentation evaluation methods.

2.4.2.3 Empirical Discrepancy Methods

These methods utilise disparity between a segmented image and an ideal seg-

mented image (reference image) to assess the segmentation algorithm’s perfor-

mance. In other words, the methods measure the degree of similarity between

the segmented image and the corresponding ground-truth image. This can be

measured in a number of ways, like the number of mis-segmented pixels, or the

location of the mis-segmented pixels to give some examples. (Droogenbroeck &

Barnich, 2005; Kubassova et al., 2006; Martin et al., 2001; Polak et al., 2008).

The input image is used to obtain both the resultant segmented image and

the reference image. There are two cases for the test image: natural images and

synthetic images. For natural images, the reference images are manually created,

while the true segmentation can be automatically generated for synthetic images.

2.5 Summary

This chapter gave a review of the current colour segmentation algorithms in

the research field and related evaluation methods needed to benchmark these

algorithms. The important fact, that was mentioned in the introduction, and

43

2.5 Summary

needs to be repeated here is: there is still no universal and widely accepted

theory on colour image segmentation. As a consequence, image segmentation

evaluation is in the same state as existed before. Most algorithms in the field are

tailored for a particular application and assert certain hypotheses that are needed

for an algorithm to work optimally. The solution should be that a segmentation

method for general application should be available. However, there is still no one

clear answer. It still depends on a number of factors that need to be defined

before proceeding: the image type, the application and what type of output is

required.

An image segmentation problem is basically one of psychophysical perception

and it is essential to supplement mathematical solutions by a priori knowledge

about the image. On the other hand, most of the algorithms in the field extend

grey-scale image segmentation techniques, such as histogram thresholding, clus-

tering, graph-based, region-growing, edge detection, and fuzzy-based approaches

to colour image segmentation. Nevertheless, colour obviously will provide addi-

tional information compared to grey-scale images and as a consequence it can be

made to produce more reliable image segmentation results.

When segmentation methods with comparably reliable results are introduced

in the field, they are in all cases designed for a specific narrow application with

pre-defined knowledge about the image context to be segmented. The specific

solution usually has computationally efficient performance. On the other hand,

general-purpose segmentation algorithms will not be universally reliable and at

the same time can be less computationally efficient. This is most likely because

the segmentation is algorithmically more complex in its implementation. Un-

fortunately, in almost all cases, an efficient computational performance of the

44

2.5 Summary

newly-introduced segmentation algorithm will be the last thing to be considered

as a required feature. When the computational performance is considered, there

is usually less comparison with existing algorithms, both in algorithmic build and

computational efficiency. The novelty of the new implementation will always be

considered over other features of the algorithms, as research publication often

depends on novelty.

In addition to the efficient performance of the segmentation algorithm, in both

the quality of the output and computational processing, the performance of the

segmentation evaluation is as important. One method to improve the existing set

of evaluation methods mentioned above in this chapter is to use machine learning

techniques. This will improve the evaluation reliability by -for example- training

based on accepted segmentation results, most likely hand-segmented images by a

human evaluator. This will also improve the evaluation processs computational

performance efficiency by both lowering the time of the evaluation and focusing

on evaluating more efficient algorithms. This is one of the main focuses of this

thesis that will be explored in more detail in the coming chapters.

If this proves to be efficient enough then the hope is to direct future research

to implement these efficient segmentation evaluation methods in the image seg-

mentation process itself. In essence, all evaluation framework will need to perform

an image segmentation process to evaluate the final segmentation result and fi-

nally provide the quantitative evaluation score. Consequently, if the evaluation

process is efficient enough then we can have an embedded evaluation framework

in all segmentation methods, which can provide a continuous “feedback” to the

segmentation process to improve the final segmentation results for the next set

of input images. Further research will need to be done in this direction, and this

45

2.5 Summary

thesis will only be able to give some foundational results that can help in this

direction.

46

3
Analytical evaluation of image

segmentation algorithms

Don’t get involved in partial problems, but always take

flight to where there is a free view over the whole single

great problem, even if this view is still not a clear one.

Ludwig Wittgenstein (1889 - 1951)

3.1 Image Segmentation Algorithms: analysis

In general, any study of an algorithm will depend on a priori knowledge or what

is called analytical evaluation and a posteriori knowledge referring to information

gained by performing empirical evaluations. The empirical evaluation is consid-

ered a posteriori knowledge because the analysis depends on the results of the

segmentation algorithm unlike the analytical evaluation that only studies the pro-

47

3.1 Image Segmentation Algorithms: analysis

cess of the algorithm without considering the output. The empirical evaluation (a

posteriori knowledge methods) include both supervised methods that depends on

a priori information (ground truth images) and unsupervised methods that don’t

need any a priori information. This segmentation evaluation’s categorisation was

discussed in more detail and summarised in the previous chapter in Section 2.4.

In what now is considered the classical survey of image segmentation evalua-

tion methods by Zhang (1996) and even in the most recent survey in 2008 (Zhang

et al., 2008) this evaluation categorisation is still used, and where there are other

more detailed and highly refined classifications in the literature, this broader clas-

sification encompasses and covers the rest as discussed earlier. This chapter will

focus on the analytical evaluation of the algorithms and we will explore the other

evaluation categories in more detail in a later chapter.

In the literature there is still no consensus on a general image segmentation

theory and as such it is not possible to create a benchmark image segmentation

algorithm model that can be used to analyse the current segmentation algorithms

against. Analytical evaluation in general assesses an algorithm’s implementation

independently of its input “type” or output “quality”. It mainly analyses the

algorithmic properties such as the implementation model, processing complexity

and efficiency. Because There is no one algorithm model to refer to, and as

mentioned above there is no assessment criteria to benchmark the algorithm

design and implementation. As such this evaluation method is usually considered

less useful in the case of image segmentation Zhang (1996), and in most image

segmentation and evaluation studies, it is even mostly used as an afterthought

and in other cases it is actually not considered or used at all compared to other

evaluation methods. This is because almost all the studies aim at only improving

48

3.2 Profiling using Valgrind’s Tool Suite

the quality of the segmentation results quality without any consideration of how

this can impact on the computational performance of the segmentation process.

However, it is still useful to understand and analyse the algorithm design and

implementation. This can include, but is not limited to, processing strategy,

resource efficiency, and processing complexity. This can help at least to cate-

gorise the different segmentation algorithms available and also to consider their

processing performance and find ways to improve the segmentation quality and

computational performance, either directly (for example by modifying the algo-

rithm) or indirectly (by choosing the best algorithm for the application under

study or choosing the best parameters).

3.2 Profiling using Valgrind’s Tool Suite

The Valgrind toolsuite (Nethercote & Seward, 2007) was used to profile the seg-

mentation algorithms in the following sections. Simple algorithm analysis with-

out any profiling tool can provide some help in analytical evaluation, but it will

not provide any insight into the computational performance properties of the

algorithms. This is where profiling tools like Valgrind can be essential. Val-

grind consists of a number of tools that help in debugging and profiling programs

to trace memory leaks, detect threading problems, and many more operations.

Specifically it provides an easy tool to profile the algorithms and produce de-

tailed call-graphs of the operations performed within the programs. Valgrind has

an important advantage in being a dynamic binary instrumentation tool so it can

work with any program, and there is no need to recompile or re-link the programs

or have access to the source code.

49

3.3 Analytical evaluation of thresholding algorithms

Callgrind, the Valgrind profiling tool, was useful in providing information

on where the segmentation algorithm is spending its time, how much time is

spent on different processing stages, and how those stages are similar in different

segmentation algorithms from different categories in the taxonomy. In particular,

using similar pre-/post-processing stages in the algorithms design as detailed in

the following sections.

3.3 Analytical evaluation of thresholding algorithms

The algorithm design of thresholding techniques involves examining each pixel

against a threshold; see Figure 3.1 for the classic thresholding implementation.

Figure 3.2 illustrates the profiling result of the algorithm, and shows basically that

the thresholding operation is distributed between different iterator operations

that perform the search mentioned earlier. There is no bottleneck operation or

dominant operation that takes a significant part of the processing.

����������

	
����
��������������������

�����
����������
����������������������������
��

�������������������������������������
��

����
�

�

!�"��������
���

#��#�������

���#�������

#��#�������

Figure 3.1: Classic thresholding method flow chart

Relative thresholding basically is a slight modification on the standard thresh-

olding implementation, in which the input threshold parameter is interpreted as

50

3.3 Analytical evaluation of thresholding algorithms

���������	
���
�������������	
���
����

��������

������������
���������
����������������
���������
����

������������

������������
���������
�����������������
���������
�����

����������

������������
���������
����������������
���������
����

� �� �� �� �

������������
���������
���!!������������
���������
���!!

���"#����"#�

������������
���������
���$$������������
���������
���$$

���� ����� �

Figure 3.2: Profiling result of the classic thresholding method

a fractional rather than absolute value, as illustrated in Figure 3.3. As expected

the profiling result is not different from the classic implementation as illustrated

in Figure 3.4.

Optimal Thresholding (Otsu, 1979; Sonka et al., 1993) is an important modifi-

cation of the classic thresholding implementation. Optimal thresholding starts by

adaptively calculating a threshold value for each input image that is statistically

optimal, based on the contents of the image. Therefore, the algorithm defines two

classes for the image pixels (e.g. foreground and background) and then computes

the optimum threshold value that separates those two classes and minimises the

intra-class variance. The algorithm is illustrated in Figure 3.5. This threshold

value is then used in a standard thresholding implementation. About 63% of the

processing time is spent on the optimal threshold search and the other 37% on

51

3.3 Analytical evaluation of thresholding algorithms

����������

	
����
��������������������

�����
����������
����������������������������
��

�������������������������������������
��

����
�

� !�"��������
���

#��#�������

���#�������

#��#�������

�������������#���
����������
��������������������
���������
�������
����
��
#����������$�
�#���������
������
����������������
����

�

�������
����������
�������

��
#�����
�
����������
������

��������������
��

Figure 3.3: Relative thresholding method flow chart

���������	��
	����
�����������������	��
	����
��������

��������

��

������������

��

��� ���� �

��

������������

��������������������������!!��������������������������!!

"�� #�"�� #�

��������������������������$$��������������������������$$

� �#��� �#��

Figure 3.4: Profiling result of relative thresholding method

52

3.4 Analytical evaluation of edge-detection algorithms

the thresholding operation itself, see Figure 3.6. In general, more time is spent

computing the optimum threshold value than on the thresholding process itself.

Although this is a good enhancement to the thresholding technique as there

is no need for the user to arbitrarily determine the threshold values as input

parameters, the problem is still present where, due to ambiguous discontinuity

values in the image, the optimal threshold search may compute a false detection

(corresponding to a local optimal solution). In addition, the threshold value is

calculated as a global value on the image as whole and doesn’t consider local

variety in different parts of the input image.

Local adaptive thresholding was developed to solve this problem. This ap-

proach combines automatic threshold computation technique (like optimal thresh-

olding) while looking locally at each pixel and its neighbourhood of pixels. In

this approach, 50% of the processing time is spent on an optimal threshold search

and the other 50% on the thresholding operation itself. One example is to choose

the threshold level for the given window is to use the mean value of the pixels

in the window. However, while this will be effective and provides a significant

advantage in the segmentation quality for images with local variation properties

(like illumination variations), it will obviously have a higher computational cost

than optimal thresholding because of the extra processing stages. (Park et al.,

2005; Sezgin & Sankur, 2004).

3.4 Analytical evaluation of edge-detection algorithms

Edge detection algorithm design depends on a search for discontinuities in the

image and almost all of the edge detection implementations search for edges

53

3.4 Analytical evaluation of edge-detection algorithms

����������

	
����
��������������������

�����
����������
����������������������������
��

�������������������������������������
��

����
�

� !�"��������
���

#��#�������

���#�������

#��#�������

�������"������
��
���
��$
������%��
����������
���
&'�#��������������
���#����������&�
(��
#��������
����
#���������

��
#�����
�
����������
������

��������������
��

Figure 3.5: Optimal thresholding method flow chart

Optimal Thresholding:: Apply

100%

Thresholding:: Apply

37%

Optimal Thresholding::getThreshold

63%

Figure 3.6: Profiling result of optimal thresholding method

(discontinuities) in the gradient of the input image.

Figure 3.7 illustrates a standard implementation of an edge detection algo-

rithm. Basically it depends on two steps:

54

3.4 Analytical evaluation of edge-detection algorithms

Read Image

non-maxima suppression function
Save edges
output ImageInput Image

output Image

Gradient Calculation Function
Based on Sobel function a convolution operation is carried out

to produce the gradient of the input image

Image gradient

Figure 3.7: Classic edge detector method flow chart

1. Gradient Operation: this operation is basically a convolution function of the

input image with a gradient kernel, in this case the Sobel kernel. This step

takes approximately 90% of the whole edge detection operation processing

time and of that 70% is actually the convolution operation and the rest is

spent on data manipulation operations, as illustrated in Figure 3.8.

2. Non-maxima suppression (Nixon & Aguado, 2008): this operation basically

tries to find all the local maxima, and suppress the rest. So edge points are

detected where there is a local directional maximum in the calculated gra-

dient space. This filter takes no more than 10% of the whole edge detection

operation.

In general edge detection methods differ by using different algorithms to per-

form the two steps mentioned above. In addition, some of the algorithms add a

smoothing filter step before the gradient computation step.

The Canny edge detector (Basu, 2002; Canny, 1986) is one of the most well-

known and widely used edge detectors in the literature. The Canny edge detector

adds a Gaussian smoothing filter (which is basically a Gaussian convolution oper-

55

3.4 Analytical evaluation of edge-detection algorithms

�����������	
���

�������������	
���

��

��������

������
���
���	
���

��������
���
���	
���

��

������������

�	�
���������
��	�
���������
�

������������

	
������ �

�!�	
��	

	
������ �

�!�	
��	

��"����"��

	
������ �

�!�	
���

��
	
������ �

�!�	
���

��

������������

�	
#	����	
���

���	
#	����	
���

��

���$�����$��

	
������ �

�!�	
���%&
	
������ �

�!�	
���%&
��'����'��

Figure 3.8: Profiling result of classic edge detector method

ation). Then it completes the steps as described with the standard edge detection

method above, as illustrated in Figure 3.9.

Read Image

non-maxima suppression function
Save edges
output Image

Input Image

output Image

Contrast Gradient Function
a convolution operation is carried out

to produce the gradient of the input image

Image gradient

Image Smoother:
Noise reduction using

Gaussian Kernel-based convolution

Figure 3.9: Canny edge detector method flow chart

56

3.4 Analytical evaluation of edge-detection algorithms

In this case about 75% of the processing time is taken by the smoothing

filter, which is basically a convolution operation as illustrated in Figure 3.10. In

later chapters, the effect of the smoothing mask size, as adjusted using an input

parameter, on the computational performance will be studied in more detail. As

well as the effect on the segmentation quality. For colour images, as in this case,

our Canny edge implementation applies a colour contrast gradient as introduced

by Cumani (1991). Our research focusses on colour images, so it’s important to

add any processing stages that give us advantage in segmenting colour images.

���������	

��������������	

�����

���
���

�����������

����������������

�����

������������

������

��������

����������������

��������

����������

��� ���� �

���������	

�����!"#�����	���������	

�����!"#�����	

���$�����$��

�����"�����	�%�������

����������"�����	�%�������

�����

&�
��
&�
��

	�����'�����(%)	�����'�����(%)

����������

Figure 3.10: Profiling result of Canny edge detector method

Another edge detection method that provides an enhancement to process

colour images is the one suggested by Gevers & Stokman (2003b); see Figure

3.11. This detector is optimised for colour images. As a result most likely it will

not have any advantage on grey-scale images. Even if it have any advantage in

57

3.5 Analytical evaluation of region-growing segmentation algorithm

the segmentation quality, it will still be computationally expensive. Because it

operates on all three channels in all of its steps, it’s a relatively computationally

expensive operation. About 90% of the processing is taken by the gradient cal-

culation operation, which is basically a number of convolution operations. See

Figure 3.12.

Read Image

Classify the edges into
materials, highlight, shadow and no edges.

Save edges
output Image

Input Image

output Image

Gradient Function
a convolution operation is carried out to produce
the gradient for all the three colour components

and their standard deviations

Image gradient

Calculate the three colour components
and the standard deviations

Figure 3.11: Colour edge detector method flow chart

3.5 Analytical evaluation of region-growing segmen-

tation algorithm

The region-growing approach is based on the fact that neighbouring pixels have

similar intensity values. Therefore, according to a given number of seeds within

the image space (or starting by default in the image corners) the seeds are ex-

panded to regions (Gonzalez & Woods, 2002). A threshold acts to assess the

similarity between neighbouring pixels and if they are part of the seed’s regions

or not. In other words, each pixel value in the search window is compared with

58

3.5 Analytical evaluation of region-growing segmentation algorithm

���������	
	������������	
	���

�

��

�

���������	
	������	������	������������	
	������	������	���

������������

��

������������

������	�����	��������	�����	��

������������

��� ����������������� ��������������

!���"�!���"�

Figure 3.12: Profiling result of colour edge detector method

the average value in the seed position for the given search window. If the value

is lower than the threshold then that given pixel will be considered as part of

the growing region. See Figure 3.13 for an illustrative flow chart. Rejected pixels

form new regions until all pixels are labelled.

The image smoothing operation takes about 55% of the processing (which is

basically a Gaussian convolution), and about 5% for the starting edge detection

operation (to initialise some of the regions’ boundaries). The rest of the pro-

cessing is spent on the region-growing, which is basically iterating through data

structures. See Figure 3.14.

59

3.6 Analytical evaluation of watershed-based algorithms

Read Image

Region Growing:
Seed grows based on

average threshold parameter
Save output Image

Input Image

output Image

Split Image into three
R,G, and B colour space

and compute an intensity channel

Image Smoother:
Noise reduction using

Gaussian Kernel-based convolution
on each of the RGB channel

Edge Detection:
on the each of the three

intensity channels

Initialise Seed Points:
Random or

starting on corners

Smoothing filter:
Gaussian Kernel-based convolution

on the segmentation based on
 a smoothing threshold parameter

Figure 3.13: Region-growing segmentation flow chart

�������������		
���
�������������		
���

��������

�������
�������		
���
�������
�������		
���

����������

���
��������� �		
���
���
��������� �		
���

����������

 ��!�������		
���
 ��!�������		
���

""��"�""��"�

#���$�
�
$���� ����$����
���$����
�����

���
�	$%$&����

Figure 3.14: Profiling result of region-growing segmentation

3.6 Analytical evaluation of watershed-based algo-

rithms

The watershed algorithm approach, inspired by Mathematical Morphology (MM)

theory (Roerdink & Meijster, 2000), views the input image as a topographical
60

3.6 Analytical evaluation of watershed-based algorithms

map. This topographical map usually corresponds to a gradient map of the input

image. In other words, the image gradient magnitude defines the analogy of the

topographic surface. Pixels with the highest gradient magnitude values define the

watershed lines, or the region boundaries. Whereas, the pixels enclosed within

these boundaries define the water flowing down to the valleys with the lowest

gradient magnitude values. The standard implementation only considers the

intensity gradient maps (and as such colour information in coloured images is not

considered; all images are processed on grey-scale space). Figure 3.15 illustrates

the flow chart for a standard watershed implementation.

����������

	

���
��������������
�������
������������
�������������

�������

�
������
��
�
������

��

�
������

���
���������������������
����������� ��!�
�"����

���
���
�#�������
��

���
�$�#�����
%���
�����
���
�#���
���
�����
���
��
�����

�������
����
���������
��������

Figure 3.15: Watershed segmentation flow chart

From the Figure 3.16 you can see that about 80% of the processing is taken up

by what is called the “flooding” operation. This operation consists of a number of

loops that perform the segmentation operation on the image, the most important

loops being: the indexing loop, and extending the basins’ loop (which is growing

the regions in the image to get the segment), checking the neighbour regions loop,

and finding new minima loop among others.

The loop operation (usually implemented as a number of iterators with a

61

3.6 Analytical evaluation of watershed-based algorithms

���������	�
������
������������������	�
������
���������

��������

�����
���������������
����������

������������

���������
�
� ������������������
�
� ���������

�!�����!����

���

�" �������
������

�" �������
���

!#��$�!#��$�

%
��&'���&	�� �� ��&������
���%
��&'���&	�� �� ��&������
���

(����(����

��)��" �����%�*�����������)��" �����%�*���������

#��$$�#��$$�

�
��+����%�*����������
��+����%�*���������

,����,������

Figure 3.16: Profiling result of watershed segmentation

FIFO queue data structure) presents a potential for parallel processing. How-

ever, because there is a great deal of information passed between different parts

in this operation (the watershed works on the global-level of the image) to create

the region, the parallelisation advantage is overcome by the cost of high-message

passing requirements between different parts of the parallelised parts of the algo-

rithm.

The rain-falling watershed method makes a slight modification on the stan-

dard watershed method to make the whole process less affected by the over-

segmentation problem. While it’s true that, unlike the standard watershed im-

62

3.6 Analytical evaluation of watershed-based algorithms

plementation, the “region-growing” part of the method is less computationally

intensive, the whole process is still slowed by an initial step that tries to find

the lowest parts of the topographical map corresponding to the image, and this

search process is computationally highly intensive search (it depends on a number

of nested loops that search the image on the global level). While the following

steps can be optimised this initial step will always be a highly expensive opera-

tion, see Figure 3.17 for the rain-falling processing steps.

����������

�		
���
������
��������

����	�����������
	��������
������
�������������

��������	��������

��	��������

���	��������

������
��������
����
����
����������������	����
�

 �����
��
�!��������
����
�����������"
�#�������������
�����
���
�����
��	�����

�����
�����
���
�������������

���
��������������
���
�
���

Figure 3.17: Rainfalling segmentation flow chart

And as illustrated in Figure 3.18, the “raining” operation doesn’t take more

than 6% of the whole processing, while about 80% is done by the initial minima-

finding step mentioned above (analogous to the “flooding operation in the stan-

dard watershed).

One approach to using the colour information in coloured images is the ap-

proach mentioned in Section 2.2.2.4. This approach basically uses the colour

contrast gradient (similar to what is used by Gevers & Stokman (2003b) edge

detector in Section 3.4) as the topological map equivalent for the watershed pro-

cess. This approach suggests using a smoothing filter at the start to reduce

63

3.6 Analytical evaluation of watershed-based algorithms

��������	
����
��	���������������	
����
��	�������

������������

	���������	������������	���������	������������

����������

	�����������������������������	�����������������������������

��������

��
�� �����!���������
�� �����!�������

����"�����"�

Figure 3.18: Profiling result of rain-falling segmentation

over-segmentation with good results (Alvarado, 2004). Figure 3.19 illustrates the

steps taken in this approach.

The pre-processing of the image by using a smoothing filter (a median filter in

this case) and the watershed process (based on rain-falling in this case) both take

only about 15% of the processing each. The colour contrast gradient computation

takes about 26% of the processing, while the post-processing region-merging step

alone takes about 40% of the whole processing power. See Figure 3.20 for more

information.

64

3.6 Analytical evaluation of watershed-based algorithms

����������

������������	�
�
���	
������
��������
�������������

������	��	�������

���	�������

�	��	�������

���
��	��

�������
���������	������������������
�

��
��
���	
�
������
����������
��
���
���

���
	���������
���	
��
�������
��
���
��
������

������
������������
����
�����

Figure 3.19: Colour Watershed segmentation flow chart

���������	�
�	�

��������������	�
�	�

�����

��������

��������	�����
��������	�����

����������

��

�������

�����

� ��!�� ��!�

�	���"#���	�

������	���"#���	�

�����

������������

���	�
�	�$	�

��������	�
�	�$	�

�����

� ����� ����

��	����	

�"�

�������	����	

�"�

�����

�!�%!��!�%!�

�	��	���������	�	��	���������	

��� ���� �

������&�"���
������	"�

�����������&�"���
������	"�

�����

�'�(���'�(��

�	���"�����&�����

������	���"�����&�����

�����

�%�����%����

Figure 3.20: Profiling result of colour watershed segmentation

65

3.7 Analytical evaluation of clustering-based image segmentation

algorithms

3.7 Analytical evaluation of clustering-based image

segmentation algorithms

Clustering segmentation algorithms are based on partitioning an image into clus-

ters of pixels that minimise the variance between the pixels’ colour and the cluster

centre. In another sense, it can be considered as an image quantisation algorithm.

The k-means segmentation (Marroquin & Girosi, 1993b) uses the k-means

clustering method (MacQueen, 1967) to apply this image quantisation step. In

addition, it includes a smoothing filter to smooth edges and eliminate noise from

the final result. Figure 3.21 illustrate the k-means segmentation steps.

����������

	�
����
��
������
����
������ ��
��
������

��������	
	���
���������	��
�������
��������
��������������������

��
������
�������
���
����������
��������

�����������������������������

��������
���

��		��������
�����
����
��������������������
��������������

Figure 3.21: K-means segmentation flow chart

Although this segmentation includes few steps, the k-means quantisation is

a computationally intensive operation (80% of processing), especially the highly

iterative step that searches through the pixels to assign them to different clusters

and then re-compute the clusters’ centre and finally repeat the cluster labelling

for pixels until no pixel changes a cluster label. As such the k-means clustering

will be considered converged, see Figure 3.22.

Local k-means clustering (Verevka & Buchanan, 1995) is just a slight mod-

ification on the original k-means implementation that creates a Look-Up Table

66

3.7 Analytical evaluation of clustering-based image segmentation

algorithms

�����������	�	
�����

�������������	�	
�����

��

��������

�������	��
�������
�	����

���������	��
�������
�	����

��

������������

����������	
��������������	
������	 �
	
��!���		���	 �
	
��!���		�

"����"����

����������	
����
	���	�����������	
����
	���	�

#"�$%�#"�$%�

����������	
��	
�����

������������	
��	
�����

��

�#�"%��#�"%�

����������	
��������������	
����
�
	
��
��
�
	
��
��

���&%����&%�

Figure 3.22: Profiling result of K-means segmentation

(LUT). The table is used to look for candidate centres that are initialised at the

start. As a result, this process reduce the k-means convergence time. This im-

plementation doesn’t use a smoothing filter step as can be seen in Figure 3.23.

The profiling for local k-means segmentation can be see in Figure 3.24.

One important enhancement on the clustering segmentation algorithm is in-

troduced with the mean-shift segmentation. In addition to using a mean-shift

clustering step, this clustering step itself is nonparametric and as such does not

require prior knowledge of the number of clusters, and does not constrain the

shape of the clusters (Comaniciu & Meer, 2002).

67

3.7 Analytical evaluation of clustering-based image segmentation

algorithms

����������

	�
����
��
������

����
������ ��
��
������

��������	
�������
���
�����������

�������
��������
��������������������

��
������
�������
���
����������
��������

�����������������������������

��������
���

Figure 3.23: Local K-means segmentation flow chart

���������	
	���

�������������	
	���

����

��������

��������
�	���

�	��
	���������
�	���

�	��
	�

������������

���	�
�����
��		�

�������	�
�����
��		�

����

����������

�����������
�	��
	���

���������������
�	��
	���

����

� ����� ����

Figure 3.24: Profiling result of local K-means segmentation

Rather than beginning from initial seeding points, the mean shift algorithm

begins at each pixel in the input image and estimates the local density of similar

pixels (i.e., the density of nearby pixels with similar colour). In more detail,

68

3.7 Analytical evaluation of clustering-based image segmentation

algorithms

the algorithm estimates the local density gradient of similar pixels and finds the

peaks in the local density gradient. Finally, pixels are considered to be members

of the same segment if they are “closer” to the same peak in the local density

gradient (Wang et al., 2004).

The application of mean shift to an input image consists of two stages. The

first stage is to define a kernel for each pixel. This kernel defines a measure of

distance between pixels, where distance is defined by the spatial, as well as, the

colour distance. The second stage of the mean shift algorithm is the search stage

of the algorithm. First the stage initialises a mean shift point for each pixel.

Secondly, each mean shift point is iteratively moved upwards along the gradient

of the density function defined by the sum of all the kernels until they reach

a stationary point. The mean shift points associated with the same stationary

point are considered to be members of the same segment. As a consequence, the

pixels associated with this set of mean shift points defines the given segment.

For a more detailed mathematical definition and implementation details refer to

Comaniciu & Meer work (Comaniciu & Meer, 2002).

Neighbouring segments may then be combined in a post-processing stage.

The algorithm depends on a number of post-filtering steps to reduce the noise

and smooth the edges of the segments, and most importantly, a step to prune

regions by their size. This stage uses input parameters to join regions whose area

is: 1) less than the input threshold with its respective candidate region adjacent

to the region being pruned and 2) that is closest in colour cluster, see Figure 3.25.

It will be noted later the importance of those pre-/post-processing filter steps

in enhancing the quality of the segmentation results in all of the segmentation

implementations and how they can also reduce the complexity and computational

69

3.7 Analytical evaluation of clustering-based image segmentation

algorithms

����������

��������
	��
��
��	���

��������	����
�
��
�����	���

��������	�����	

�����
�����������
�
���������

�����������

�

��	���������	
��
�����
������
�
�	������

�	
����
������	��
�	���	����������
���	���������
�������������
���
�����
���������	��� �
�
 ���	�����	��

�	�����	�
!

����
����"
�	���#����
����������	���

�

������$������������	��
�
�	�

�������
%����	���

������������
��
����
�
�	��	�
��

�

��	��������"��&��	
��
�����
������
�
�	������

Figure 3.25: Meanshift segmentation flow chart

��������	��
�����
���������	��
�����
�

��������

��	��������
	�������
���	��������
	�������
�

������������

�������	����	� �
������	����!�������	����	� �
������	����!

"���"�"���"�

Figure 3.26: Profiling result of meanshift segmentation

power need of the core of the segmentation process itself.

70

3.8 Analytical evaluation of graph-based image segmentation algorithms

3.8 Analytical evaluation of graph-based image seg-

mentation algorithms

In general, graph-based segmentation algorithms utilise graph theory by creating

a weighted graph of the pixels, where each pixel corresponds to a node in the

graph, and weights on edges between the neighbouring pixels show the dissimi-

larity between these pixels. Then these nodes are merged into segments according

to an input threshold value parameter. Figure 3.27 gives an illustration.

����������

��������
	
��
��
����������������������

���
����������
��
������������
��
������������
����������������

�����
�����������

�����������

�����������

�	
���
	��������
�
��
��������������������
���������
�����������������

��������������
���
��������
��������������������
������������������ ����

��	�����������
���
�
����������������������������������

�������������
������
���������
��
������
����������������������������������

Figure 3.27: Graph-based segmentation flow chart

In other words, the algorithm defines the boundaries between regions by com-

paring two image properties: 1) Intensity differences across the boundary and 2)

Intensity difference between neighbouring pixels within each region. This makes

this method consider the intra-region properties in addition to the inter-region

properties. The intensity differences across the boundary are as important if they

are large enough relative to the intensity differences inside at least one of the re-

gions. However this implementation also uses a pre-processing step to smooth the

image with a Gaussian smoothing filter which take about 50% of the processing,

71

3.8 Analytical evaluation of graph-based image segmentation algorithms

and a post-processing step that prunes segments according to their size given by

an input parameter, see Figure 3.28. In both cases, the processing is dependent

on the input parameters’ values that correspond to these stages. Further exper-

imentation will be carried out in later chapters to determine their effect on the

segmentation quality and computational performance.

���������	
��������
���������	
��������

��������

�	�������
���	�������
��

������������

�������������
�������������

����������

������������������
������������������

������������

���
��������������
���
��������������

������������

Figure 3.28: Profiling result of graph-based segmentation

72

3.9 Analytical evaluation of physics-based image segmentation algorithms

3.9 Analytical evaluation of physics-based image seg-

mentation algorithms

Anisotropic diffusion-based segmentation (Sumengen & Manjunath, 2005) can be

considered a segmentation algorithm that depends on the physical representation

of the objects in the images and is a perceptually inclined image filtering pro-

cess. Anisotropic diffusion filtering has been used significantly for de-noising and

enhancement of images. It aims at preserving ’object’ boundaries in the image

by not only considering the normal colour gradient of the image but also possi-

ble texture information in the image. It achieves this by looking for the image

boundaries from different directions.

Anisotropic Diffusion filtering is applied a number of times based on an in-

put parameter. In general it is a computationally expensive process because of

its highly iterative nature but can be highly effective in providing high quality

segmentation results (Sapiro & Ringach, 1996), see Figure 3.29 for illustration of

the processing stages of this algorithm.

����������

	�
����
��
������

����
������

��
��
������

���������	
��
��
����
���
��
����������������

������������������

�����	�	����	������
����������
�����������

����
������������
�
����������
������
����������������
����������

���������	
��
��
����
���
��
������������
������
���������������������

����������� ���
���
��������
���
���
�
���

�
���
����������
��

Figure 3.29: Anisotropic-based segmentation flow chart

73

3.10 Commentary

3.10 Commentary

This chapter provided a concise overview of a variety of segmentation algorithms

implementations. This part of the study can be extended to provide additional

detailed profiling information under multiple circumstances. The possibilities are

nearly endless: parameter variations, different images, different implementation

optimisation and different colour space. However what we were interested in is

to illustrate in this chapter was the different stages that are part of the seg-

mentation algorithms, including pre-processing steps (like smoothing filters) and

post-processing steps (like region pruning operations).

In the coming chapters we will study if variation in the input parameters can

mainly affect those pre-/post-processing stages and can have an important effect

on producing a high quality image segmentation results. The variation can also

reduce the computational power needs of the segmentation as whole, either by

optimisation or removing less effective stages in the segmentation algorithm if

needed, and provide some recommendations on this front.

74

4
Parameters’ significance on the

segmentation algorithms’ performance

4.1 Overview

This Chapter provides a broad examination of the parameters’ significance, with

visual examples of the segmentation results using different parameters.Further

rigorous evaluation and testing will be provided in the later chapters of the thesis

to highlight how some parameters’ changes play an important role in the quality

of the final segmentation results and also affect significantly the performance of

the computation.

The aim is to find the connection –if possible– between these parameters if pos-

sible and the “building” components of the segmentation algorithms as discussed

and illustrated in Chapter 3. Not all the segmentation algorithms illustrated have

results of the same significance. In other words, some methods provide simple

75

4.1 Overview

segmentation of one foreground object and the background and other methods

produce very detailed multiple objects’ segmentation results. As discussed earlier

in Chapter 2, some of the algorithms only provide ‘simplistic’ final segmentation

results (e.g., thresholding segmentation only provides a ‘foreground’ and ‘back-

ground’). Others have only one significant parameter to vary (like the threshold

parameter). However, those algorithms can also be used as one stage in a more

sophisticated segmentation algorithm. This is similar to using a pre-processing

smoothing filter and a post-processing pruning filter in the graph-based algorithm

that have a modified thresholding technique as a core segmentation stage.

Figure 4.1 illustrates the input image that will be used in this chapter (on the

left side), and also shows an example of the hand-segmentation reference image

for the same input image that will be the basis of later evaluation tests as the

ground truth image.

This chapter studies the influence of these parameters. Hence, the choice

of input image is narrowed to one and visual representation is provided only as

an illustration of the segmentation results. The aim of this chapter is to provide

visual illustrations for the effect of parameter changes on the segmentation results.

However, these are not rigorous testing results and hence the later chapters will

provide further scientific testing on multiple images and evaluation results with

a wider range of parameters.

76

4.2 The choice of the algorithms and related parameters

a b

Figure 4.1: (a) Example image number 35070 from Berkeley segmentation
database (b) the database human hand-segmentation for the same image

4.2 The choice of the algorithms and related param-

eters

The tests in this chapter are carried out on one image shown in Figure 4.1. Fur-

thermore, the algorithms used here are used as a representative example of each

branch of the taxonomy discussed earlier in Chapter 2. Some of the algorithms

don’t work directly with colour images but convert them to greyscale space or

other colour spaces (such as the CIE Lab colour space). This requirement arises

from the design and implementation decisions of the original authors of each al-

gorithm. In this case, our research used the available implementation as long as

it would work with colour images, although not all methods will use the colour

information in the image to the same degree.

The parameters’ choices and ranges were determined either by the suggestions

and recommendations provided by the original authors’ implementations, or by

77

4.3 Thresholding algorithms’ parameters

the physical and scientific limits related to each parameter. For example, if the

input images’ colours were encoded into 256 values (between 0 and 256) then for

example threshold parameter will be defined by this range and any segmentation

algorithm will use this range to look for edges or segment boundaries.

4.3 Thresholding algorithms’ parameters

Thresholding algorithms are simple by design, and have only two significant pa-

rameters: the high threshold, and the low threshold. Thresholding in basic terms

aims at finding a discontinuity in the pixel values to detect the segments, so the

upper and lower threshold values serve to narrow the algorithm’s search within

the colour space. Normalised values can be between 0.0 and 1.0 (corresponding

to 0 to 255 in typical 8-bit grey-scale and 24-bit colour images). Of course, the

high threshold parameter must always be higher than or equal to the low thresh-

old parameter. In other words, the low and high thresholds are used in order

to define the pixel-values of the regions where the thresholding operation should

operate.

Figure 4.2 illustrates segmentation results from the classic thresholding al-

gorithm. It is clear from the set of the results that varying the low threshold

parameter makes for a bigger change in the number of segments detected, as well

as for clarity and significance. By increasing the low threshold, the thresholding

process is limited to higher pixel values (for grey-scale values from 0 to 255). As

such, it will have less of a ‘noise’ filtering effect on the segments of the image and

more segments will be included in the final segmentation result.

Relative thresholding also uses the same two parameters: the low and high

78

4.3 Thresholding algorithms’ parameters

�
��
�

�
�
��
�
�
	

�

�

� �

�

�

�

�

�

�

�

�
	
�

�
�
��
�
�
	

�

�

�

F
ig

u
re

4.
2:

V
ar

ia
ti

on
of

se
gm

en
ta

ti
on

re
su

lt
s

w
it

h
p
ar

am
et

er
se

tt
in

gs
fo

r
cl

as
si

c
th

re
sh

ol
d
in

g
al

go
ri

th
m

.

79

4.4 Edge detection algorithms parameters

thresholds. However, it employs an alternative way of determining the thresholds:

the parameters act as proportionate values. For example, a low threshold value

of 0.3 will be interpreted as 30% of the pixel-values for the processed image. In

other words, relative thresholding can be considered as a percentile thresholding.

So for a 0.3 low threshold the lower 30% of the pixels will be cut off. An example

is illustrated in Figure 4.3. The example image used shows very similar results

to the results obtained with the classic thresholding algorithm above.

Overall, we can point to two main features of the thresholding technique.

Firstly, it works only when the segments are clearly delineated by grey level.

Secondly, the thresholding segmentation outputs are simple when part of the

images are either part of the segments detected or they are part of the background

(and discarded). As such, this technique is useful for relatively very quick and

‘coarse’ segmentation results or in a more practical sense are is a useful building

block component as part of more ‘complex’ segmentation algorithms, like edge

detection-based algorithms that will be illustrated in the next section.

4.4 Edge detection algorithms parameters

Firstly we will look at experiments with the classic implementation of edge detec-

tion that uses a Sobel operator to compute the gradient for the image. Figure 4.4

illustrate variation of the maximal threshold parameter. The non-maxima sup-

pression stage uses this parameter with the maximum found in the input image to

calculate the real maximal threshold that will be used. This calculated maximal

threshold serves to find edges such that pixels higher than this threshold will be

considered as edges. The second ‘minimum threshold’ parameter is used after

80

4.4 Edge detection algorithms parameters

�
��
�

�
�
��
�
�
	

�

�

� �

�

�

�

�

�

�

�

�
	
�

�
�
��
�
�
	

�

�

�

F
ig

u
re

4.
3:

V
ar

ia
ti

on
of

se
gm

en
ta

ti
on

re
su

lt
s

w
it

h
p
ar

am
et

er
se

tt
in

gs
fo

r
re

la
ti

ve
th

re
sh

ol
d
in

g
al

go
ri

th
m

.

81

4.4 Edge detection algorithms parameters

finding the initial set of edges with the maximal threshold parameter, by looking

at neighbouring pixels to the ‘edge’-marked pixels and considering if they can be

part of the edges. The maximal threshold parameter can be considered similar

to the low threshold parameter in the thresholding techniques, and, likewise, the

‘minimum threshold’ parameter corresponds to the high threshold parameter in

the thresholding techniques. In summary, this method first finds all local maxima

in the image, and suppresses the rest. In the second stage, neighbouring pixels

of the detected maxima -in the first stage- can be added to the segments if their

value exceeds the lower threshold value.

Figure 4.5 illustrates the variation within another widely used edge detection

technique: the Canny Edge detection algorithm. Compared to the previous clas-

sic implementation, which only considers the grey-scale magnitude of the input

image, this Canny-edge implementation is enhanced to also compute the RBG

colour components with a colour contrast gradient function (see earlier discussion

in Chapter 3).

The same two parameters are used for the non-maxima suppression stage. It

is clear that the maximal threshold parameters (like the low threshold parameter)

have the greater effect on the final segmentation results, especially in reducing

the ‘noise’ from the segments found. However, edge detection techniques have

the very big disadvantage of actually being ‘edge detection’ techniques, rather

than full segmentation techniques, and as such the final results are more like

‘unclosed segments’ (corresponding to edges). When it’s possible to add a ‘gap

filling’ stage to produce a true segmented final result, that stage can prove to

be complex and less-efficient. Still, edge detection techniques are useful as fast

techniques for image feature detection. Additionally, further analysis of detected

82

4.4 Edge detection algorithms parameters

�
�
�
��
�
�

��
	

�
�
�
�

�
��

�
��

�
��
�

�
��
�

�
��

�
��
��
�
�
�

�
�
	

�
�
�
�

�
��

F
ig

u
re

4.
4:

V
ar

ia
ti

on
of

se
gm

en
ta

ti
on

re
su

lt
s

w
it

h
p
ar

am
et

er
se

tt
in

gs
fo

r
cl

as
si

c
ed

ge
d
et

ec
ti

on
al

go
ri
th

m
.

83

4.4 Edge detection algorithms parameters

�
�
�
��
�
�

��
	

�
�
�
�

�
��

�
��

�
��
�

�
��
�

�
��

�
��
��
�
�
�

�
�
	

�
�
�
�

�
��

F
ig

u
re

4.
5:

V
ar

ia
ti

on
of

se
gm

en
ta

ti
on

re
su

lt
s

w
it

h
p
ar

am
et

er
se

tt
in

gs
fo

r
ca

n
ny

E
d
ge

D
et

ec
ti

on
al

go
ri

th
m

.

84

4.5 Region growing segmentation parameters

edges can help in detecting ‘corners’ which enhances feature detection. They are

still widely used for embedded systems (because of their suitability for real-time

implementation).

4.5 Region growing segmentation parameters

As an example of region-growing-based techniques, a basic algorithm that uses a

Gaussian kernel of size 5x5 will be illustrated, focusing on separating an object

from its background. The two significant parameters for this algorithm are the

average threshold and the edge threshold. For the effect of the parameters see

Figure 4.6. The average threshold is used to grow the region while searching and

comparing unlabelled pixels with the seed position. If the difference of values

between the parameters is lower than the threshold then it is considered as part

of the growing region. The edge threshold parameter is part of the edge detection

stage (see Section 3.5) which produces the initial regions that will be grown.

It is clear that the significant parameter here is the growing threshold, which

defines how much of the image will be considered part of the detected object. The

edge detection is still important to define the starting edges for growing regions for

the final results. There is also a smoothing stage used in this algorithm. However,

this stage does not affect the final results as much it does in other algorithms.

What is important to notice here is the use of basic image-processing filters

(like smoothing filters) and basic image segmentation techniques to construct

more ‘advanced’ segmentation techniques. How the parameters affect the final

segmentation results actually relates to those components.

85

4.5 Region growing segmentation parameters

�
�
�
�
�

�
�
��
�
�
	

�

�
��

�
��

�
��
�

�
��
�

�
��

�
�
�
�

�
�
��
�
�
	

�

�
��
�

F
ig

u
re

4.
6:

V
ar

ia
ti

on
of

se
gm

en
ta

ti
on

re
su

lt
s

w
it

h
p
ar

am
et

er
se

tt
in

gs
fo

r
cl

as
si

c
R

eg
io

n
G

ro
w

in
g

al
go

ri
th

m
.

86

4.6 Watershed segmentation parameters

4.6 Watershed segmentation parameters

Watershed algorithms use a similar concept to the the region-growing techniques

but are considered in a category by their own. Experiments with the classic

Watershed algorithm (Vincent & Soille, 1991) also gave rise to a variety of results,

depending on the choice of parameters. A colour quantisation or smoothing stage

was added as a pre-processing step before application of the Watershed, which is

usually not part for the implementation. However, it’s introduced here to see how

it affects the final segmentation results and it is compared with other algorithms

that use a smoothing filter as a pre-processing stage. In Figure 4.7: TR is the

threshold; D is the δ (delta) threshold; I is the number of iterations; and C is the

number of colours after colour quantisation.

The threshold parameter here has a significant effect on the final segmentation

result. However, colour quantisation as a pre-processing stage (which can be

basically considered as a smoothing filter) also has a significant effect on the final

result, a result that was also clear in the previous chapter.

Figure 4.8 shows the number of detected segments and the processing time

for the same parameters varied in Figure 4.7. It’s clear how the pre-processing

stage produces a lower number of regions and reduces the processing time sig-

nificantly. When a lower number of segments are found in the end, this doesn’t

necessarily correspond to a ‘better’ segmentation overall. It’s important to notice

that some decision needs to be taken for some situations to balance between the

final segmentation quality and the computation performance needed to complete

the segmentation process. The aim is to achieve the best segmentation quality

possible while still achieving this in a computationally efficient way. It’s impor-

87

4.6 Watershed segmentation parameters

���

���

���	

��
�

��

�� ��

 ��

�

��

Figure 4.7: Variation of segmentations with parameter settings for Watershed
segmentation (Vincent & Soille, 1991).

88

4.6 Watershed segmentation parameters

���

���

���	

��
�

��

�� ��

 ��

�

��

��������	�
����

���

����������������
�����
�����

��������	�
����
�
�

����������������
���
�������

��������	�
����

��

����������������
�����������

��������	�
����
���

����������������
�����������

��������	�
����

���

����������������
������
����

��������	�
����
�
�

����������������
�
���
�
���

��������	�
����

���

����������������
������������

��������	�
����
�
�

����������������
�����������

Figure 4.8: Variation of segmentations for the same parameter’s settings used in
Fig. 4.7 with parameter settings for Watershed segmentation showing the number
of segments found and the processing time.

89

4.7 Rain-falling segmentation parameters

tant to note that the lower number of segments found is also used as a factor in

some of the objective evaluation techniques.

Figure 4.9 illustrates the results again when no smoothing filtering is used at

all in pre-processing and the results with filtering with different threshold values.

And Figure 4.10 illustrates the number of segments found and the processing time

for the same results. Overall while the pre-processing stage has a significant effect

on the result (especially computation performance wise), it’s not the only factor

in producing ‘better’ segmentation results in all situations. ‘Better’ here means

a better segmentation quality according to the evaluation criteria used: either

subjective or objective, supervised or unsupervised. However, other processing

stages can be added (like post-processing stages) to improve the quality of the

final segmentation results and also can improve the performance, depending on

the segmentation requirement for the application.

4.7 Rain-falling segmentation parameters

Rain-falling is another type of implementation for the watershed segmentation

technique. In Figure 4.11, the same set of parameters used with the Watershed

algorithm are also used here with the rain-falling technique.

Similar to what was done with the Watershed technique, a smoothing filter

stage was added as a pre-processing step before applying the segmentation, which

is usually not part of the implementation. Again, the colour quantisation stage

has a significant effect on the final result, especially in respect to performance.

However, the threshold parameter plays a more significant effect on the quality

of the final segmentation result. Figure 4.12 shows the number of detected seg-

90

4.7 Rain-falling segmentation parameters

���������

	�

���
 �� ��������

���������

��

���

�

������
���������

��

Figure 4.9: Variation of segmentation results similar to Fig. 4.7 with parameter
settings for Watershed segmentation that show the difference between the results
with and without a pre-processing stage.

91

4.7 Rain-falling segmentation parameters

���������

	�

���
 �� ��������

���������

��

���

�

��������	�
����

��

����������������
��
��������

��������	�
����
����

����������������
�����������

��������	�
����
���

����������������
�����������

��������	�
����
����

����������������
��
��������

��������	�
����
���

����������������
�����������

��������	�
����
���

����������������
�����������

������
���������

��

��������	�
����
���

����������������
�����������

��������	�
����
����

����������������
�����������

Figure 4.10: Variation of segmentations for the same parameter’s settings used
in Fig. 4.9 with parameter settings for Watershed segmentation and show the
number of segments found and the processing time.

92

4.7 Rain-falling segmentation parameters

���

���

���	

��
�

��

�� ��

 ��

�

��

Figure 4.11: Variation of segmentations with parameter settings for Rain-falling
segmentation

93

4.8 Colour Watershed segmentation parameters

ments and the processing time for the same parameters variation in Figure 4.11.

Similar to the Watershed results the quantisation stage produces a lower number

of regions and reduces the processing time significantly.

Figure 4.13 illustrates the results again when no filtering is used at all in

pre-processing and the results with filtering with different threshold values. And

Figure 4.14 illustrate the number of segments found and the processing time for

the same results as in Figure 4.13. Overall, while the pre-processing stage has

a significant effect on the result, it’s not the only factor in producing ‘better’

segmentation results in all situations. However other processing stages can be

added (like post-processing stages) to improve the quality of the final segmenta-

tion results and also the performance depends on the segmentation requirement

for the application used.

4.8 Colour Watershed segmentation parameters

The colour watershed segmentation implementation used here (Alvarado, 2004)

extends classical watershed segmentation. It uses three main stages: a pre-

processing median filtering stage to smooth and reduce the noise in the colour

channels, process the results with a Watershed segmentation stage to produce a

segmentation result (over-segmented preferably), and then uses a post-processing

region merging stage. Over-segmentation is preferred by the algorithm as the

merging stage in almost all cases produces a significantly better quality final

segmentation result.

The three significant parameters relate directly to the three processing stages:

firstly, the Kernel size of the median filtering stage (Ks), secondly, the threshold

94

4.8 Colour Watershed segmentation parameters

���

���

���	

��
�

��

�� ��

 ��

�

��

��������	�
����

��

����������������
�����������

��������	�
����
�

����������������
���
�������

��������	�
����

���

����������������
�����������

��������	�
����
���

����������������
������
����

��������	�
����

��

����������������
���
�������

��������	�
����
�

����������������
�������
���

��������	�
����

���

����������������
������������

��������	�
����
�
�

����������������
�����������

Figure 4.12: Variation of segmentations for the same results in Fig. 4.11 with pa-
rameter settings for Rain-falling segmentation and show the number of segments
found and the processing time.

95

4.8 Colour Watershed segmentation parameters

���������

	�

���
 �� ��������

���������

��

���

�

������
���������

��

Figure 4.13: Variation of segmentations of the same results in Fig. 4.11 with
parameter settings for Rain-falling segmentation that show the difference between
the results with pre-processing stage and no filtering.

96

4.8 Colour Watershed segmentation parameters

���������

	�

���
 �� ��������

���������

��

���

�

��������	�
����

��

����������������
�������
���

��������	�
����
����

����������������
�������
���

��������	�
����
���

����������������
��
��������

��������	�
����
����

����������������
���
�������

��������	�
����
��

����������������
�����������

��������	�
����
���

����������������
���
�������

������
���������

��

��������	�
����
���

����������������
�������
���

��������	�
����
���

����������������
�����������

Figure 4.14: Variation of segmentations of the same results in Fig. 4.13 with
parameter settings for rain-falling segmentation and showing the number of seg-
ments found and the processing time.

97

4.9 K-means segmentation parameters

parameter for the watershed segmentation stage (Th), and thirdly the merge

threshold parameter used in the merging stage. Figure 4.15 illustrates the effect

of varying the different parameters on the final segmentation results.

A kernel size value of 1 means that no filtering was done, and it’s clear that

the median filtering has some effect on the final results to lower the noise and

the number of detected segments. The Watershed segmentation threshold has

a more significant effect on defining the segments as the objects in the input

image. Overall the merging stage produces the most significant effect on the final

segmentation results, taking into consideration the performance improvement and

the quality of the final segmentation. See Figure 4.16 for an illustration of the

processing time for each case in Figure 4.15.

4.9 K-means segmentation parameters

K-means segmentation is a clustering segmentation technique. It employs a k-

mean clustering algorithm for colour quantisation that utilises the pixels’ RGB

colour values to measure the weighted distance measure and create an optimised

colour palette (colour clusters) for the input image as a first step. Then the im-

plementation processes the quantised result into a second stage image smoothing

filter.

The implementation has four parameters related to the processing stages: first

the number of colours for the quantised image result (No. of C), the threshold

delta (D) and the maximum number of iteration (I) parameter, which is used by

the k-means colour quantisation stage, and the kernel size parameter (K) for the

smoothing filter stage. Figure 4.17 illustrates the effect of varying the different

98

4.9 K-means segmentation parameters

��

�����
�������

	�	 	�

�

	�

��

	��

�

�	

�		�

	��

Figure 4.15: Variation of segmentations with parameter settings for Colour Wa-
tershed segmentation

99

4.9 K-means segmentation parameters

��

�����
�������

	�	 	�

�

	�

��

	��

�

�	

�		�

	��

��������	�
����

���

����������������
���
�������

��������	�
����
��

����������������
�����������

��������	�
����
����

����������������

����������

��������	�
����
��

����������������
�����������

��������	�
����
����

����������������

����������

��������	�
����

�

����������������
���
�������

��������	�
����

��

����������������

�
����
���

��������	�
����
��

����������������
�
�
�������

Figure 4.16: Variation of segmentations for the same results in Fig. 4.15 with
parameter settings for Colour Watershed segmentation and show the number of
segments found and the processing time.

100

4.10 Mean-shift segmentation parameters

parameters on the final segmentation results.

Overall, the number of colour parameters is the most significant parameter in

respect to the final segmentation result. While the implementation uses the pixels’

RGB values to produce the clusters other image features can be used too (like the

image texture for example). The only other significant parameter is the kernel

size which is used by the smoothing filter and as a result lowers significantly all

the ‘noise’ segments found. It’s clear that although the number of regions being

found is lower (reduced from 2615 regions to 401 regions) this didn’t affect the

large segments corresponding to the objects in the image originally found by the

quantisation stage (recall that a kernel size of value 1 effectively means that no

filtering was performed). See Figure 4.18 for an illustration of the regions found

values for each case in Figure 4.17.

4.10 Mean-shift segmentation parameters

Mean-shift is another clustering-based segmentation technique. The technique

also uses a similar concept of starting with a colour quantisation stage, and then

has a region fusing stage to smooth the segmentation result. Finally, there is a

pruning stage that prunes segmentes of a given size.

Fig. 4.19 shows the results of varying the mean-shift parameters. Parameters

radiusS and radiusR relate to the mean-shift search sphere used in the first

filtering stage. radiusS is the sphere range radius in the image grid space, while

radiusR is the range radius in the image colour space. Higher values of radiusR

result in less regions, while higher values of radiusS effectively results in more

computation but smoother region boundaries. The colour distance parameter is

101

4.10 Mean-shift segmentation parameters

��

���

����
	
� �

��

 ��

 ��

�

�

Figure 4.17: Variation of the segmentation results with parameter settings for
K-means segmentation

102

4.10 Mean-shift segmentation parameters

��

���

����
	
� �

��

 ��

 ��

�

�

��������	�
����

����

����������������
�
����������

��������	�
����

���

����������������

����
�����

��������	�
����
����

����������������
������
����

��������	�
����
���

����������������

���������

��������	�
����

����

����������������
��
���������

��������	�
����

���

����������������

������
���

��������	�
����

����

����������������

�
���
�����

��������	�
����

���

����������������
�����������

Figure 4.18: Variation of segmentations for the same results in Fig. 4.17 with
parameter settings for K-means segmentation and show the number of segments
found and the processing time.

103

4.11 Graph-based segmentation parameters

used by the fusing stage. In the fusing stage, segments with a colour difference

less than this parameter are combined. Segmented regions with colour difference

less than this parameter are fused together. There is one more parameter that

relates to the pruning stage for the minimum region size that in practice doesn’t

make a big change to the final result compared to the parameters above. However,

it will become clear that pruning as a post-processing stage can be very effective

in other algorithms.

Overall, the significant parameter here is the colour distance parameter, which

not only ‘smoothes’ the resultant segmentation significantly but also reduces the

computation time. See Figure 4.20 for an illustration of the regions found values

for each case in Figure 4.19.

4.11 Graph-based segmentation parameters

A graph-based segmentation implementation (Felzenszwalb & Huttenlocher, 2004)

also displayed a similar dependence on choice of parameters. This implementation

has three main stages: firstly a smoothing filter stage, secondly a graph-building

and segmenting stage based on the dissimilarity between the RGB pixel values,

and finally a pruning stage according to a given minimum segmented regions’

sizes. There are three input parameters that relate to the different processing

stages in the algorithm: 1) σ (sigma), the variance of a Gaussian smoothing fil-

ter prior to segmentation; 2) k, which sets the scale of the components found

through a graph-based thresholding function; and 3) Min, which is the minimum

component size enforced by the post-processing pruning stage.

Figure 4.21 shows the result of varying the different parameters. The most

104

4.11 Graph-based segmentation parameters

���

������

�	
��
��

� ��

�

��

�

�

��

����

�

���

Figure 4.19: Variation of segmentations results with parameter settings for Mean-
shift segmentation

105

4.11 Graph-based segmentation parameters

���

������

�	
��
��

� ��

�

��

�

�

��

����

�

���

��������	�
����

����

����������������
������������

��������	�
����
���

����������������
������
����

��������	�
����

����

����������������
������������

��������	�
����
���

����������������
�
��
�������

��������	�
����

����

����������������
������������

��������	�
����
���

����������������
�����������

��������	�
����
����

����������������
�������
����

��������	�
����
���

����������������
������������

Figure 4.20: Variation of segmentations for the same results in Fig. 4.19 with
parameter settings for Mean-shift segmentation and show the number of segments
found and the processing time.

106

4.12 Anisotropic-based segmentation parameters

significant outcome to notice here is that the pruning stage variation alone con-

trolled by the Min parameter, significantly reduces the over-segmentation even

with low smoothing and thresholding values. Whereas it’s not a complete solu-

tion on its own, depending on the final segmentation requirement of the computer

vision application, the pruning stage can provide a useful and easy control point

for the final segmentation quality, even with a fast segmentation algorithm that

can produce over-segmented results. Additionally, a longer iteration within the

core of the segmentation algorithm itself will most likely be less effective, while

increasing the computation time compared to adding a post-processing stage (like

the pruning stage), provided that it’s integrated effectively.

See Figure 4.22 for an illustration of the regions found values for each case in

Figure 4.21.

4.12 Anisotropic-based segmentation parameters

The anisotropic diffusion-based segmentation implementation used herein has a

limited number of exposed parameters that can be varied by the user: 1) K,

is used as the threshold for the anisotropic diffusion process that produces an

image gradient result; and 2) I, which is the number of iterations to repeat the

anisotropic diffusion process stage on the image. The algorithm actually has one

necessary step after the diffusion that finds and labels the segments’ edges using

the diffused image result from the first stage (in the process using a modified

non-maxima suppression algorithm and edge labelling stage). However, both of

these stages are significantly dependent on the result of the input they receive

from the diffusion stage and are computationally cheap compared to the diffusion

107

4.12 Anisotropic-based segmentation parameters

�

���

�� ���

��

��	

	

��

���

�����	

	

���

����

Figure 4.21: Variation of segmentations’ results with parameter settings for
Graph-based segmentation

108

4.12 Anisotropic-based segmentation parameters

�

���

�� ���

��

��	

	

��

���

�����	

	

���

����

��������	�
����

��

����������������
��
��������

��������	�
����
���

����������������
�����������

��������	�
����
��

����������������
�����������

��������	�
����
��

����������������
�������
���

��������	�
����
���

����������������
�����������

��������	�
����

�

����������������
�����������

��������	�
����
��

����������������
�����������

��������	�
����
��

����������������
�������
���

��������	�
����
��

����������������
�����������

��������	�
����
��

����������������
������
����

��������	�
����
��

����������������
�����������

��������	�
����
�

����������������
�����������

Figure 4.22: Variation of segmentations for the same results in Fig. 4.21 with pa-
rameter settings for Graph-based segmentation showing the number of segments
found and the processing time.

109

4.12 Anisotropic-based segmentation parameters

stage.

Figure 4.23 shows the results of varying the two parameters. Both of the pa-

rameters shows an effective influence on the final segmentation results. However,

as expected, a higher value of the iteration parameter generally results in a higher

processing time to complete the segmentation. See Figure 4.24 for an illustration

of the regions found values for each case in Figure 4.23.

�

��������	

�

�

��

��

Figure 4.23: Variation of segmentations’ results with parameter settings for
Anisotropic-based segmentation

110

4.13 Concluding Remarks

�

��������	

�

�

��

��

��������	�
����

�

����������������
����
�������

��������	�
����

��

����������������
������������

��������	�
����

��

����������������
������
�
���

��������	�
����
���

����������������
��������
���

��������	�
����
���

����������������

����������

��������	�
����
��

����������������
������
�
���

��������	�
����

��

����������������
�����������

��������	�
����
��

����������������

��
��������

��������	�
����

���

����������������

�
����������

��������	�
����
��

����������������

�

���������

��������	�
����
�

����������������

�
����������

��������	�
����
�

����������������

��������
���

Figure 4.24: Variation of segmentations for the same results in Fig. 4.23 with
parameter settings for Anisotropic-based segmentation and show the number of
segments found and the processing time.

4.13 Concluding Remarks

Several researchers have highlighted the use of parameters to find better quality

segmentation results in the last 10 years: Everingham et al. in (Everingham et al.,

111

4.13 Concluding Remarks

2002a,b), Chabrier et al. in (Chabrier et al., 2005a,b, 2008), and the Zhang et al.

group (Zhang et al., 2005, 2006). This will be explored in more detail in Section

6.1.

All of these researchers touched on using segmentation evaluation with the

help of machine-learning/artificial intelligence techniques (with a focus on ge-

netic algorithms). The focus in their work was on improving the evaluation

performance overall, which we also highlighted in our work. In some of the work,

tests were carried out on parameters (Chabrier et al., 2005a; Everingham et al.,

2002a) to achieve the best parameters relating to the best segmentation results.

However, in all of the research the importance of linking the parameters to

what they relate to the inner working of the segmentation algorithms, and what

they affect in the results of the segmentation results is not discussed. Moreover,

how the parameters actually relate to the basic pre/post-processing image filtering

components that makes the typical segmentation results is not highlighted. The

author has endeavoured to highlight these processing stages and how they are

related to the input parameters.

The research carried out uncovered two distinctive set of parameters that

affect the segmentation algorithm output quality and computation performance:

a) pre-processing stage(s) parameters and b) post-processing stage(s) parameters.

Although almost all the algorithms researched in this work had not more than

one stage at each stage there is nothing that prevents the design from adding

multiple number of stages before or after the core processing stage.

The act of adding pre/post-processing stages is by itself a step into improving

the quality/time performance of the segmentation algorithm even with parameter-

less processing stages. In addition to being an improvement, the stages with pa-

112

4.13 Concluding Remarks

rameters can help to act as a controlling stage for the quality of the segmentation

results, so for example a segment-pruning stage after any segmentation algorithm

can provide a useful stage to control the over-segmentation for example. So the

core processing stage that defines the segments’ boundaries need only to provide

a very fast and coarse segmentation results that are highly over-segmented and

the pruning-stage can be used to determine how much segments are in the final

result according to the input parameters. In this case there is no need to spend

a high computation time on the core processing stage and the pruning stage is

relatively cheap computationally. The pruning stage itself can be as simple as an

algorithm that rejects certain segments according to their size to a more complex

algorithm that creates a representative tree of the segments and order/combines

them according to their features similarity (colour, texture, or others) (Salembier

& Garrido, 2000).

Even with a complex tree-based pruning stage, its easier to computationally

optimise these stages using methods like parallel/distributed solutions either with

cluster computers or on recent advanced multi-core processors-based computers,

whereas there is always a bottle-neck with the core boundary-defining stage of

the typical segmentation algorithm even if the image parts are distributed to

different processing nodes (one to each cluster computer or processor core), the

bottle-neck will always partially be in the message-passing. Message-passing in

the boundary-defining stage will always be present because in the instance that

the image is divided into parts for processing then there will be a stage where

the nodes processing these parts will need to communicate to at least define the

boundaries at the edges of the image parts. Despite the recent and continuous

development and improvement in the computers hardware buses (on the computer

113

4.13 Concluding Remarks

motherboards and between the processors cores) and connections (between the

different hardware parts and over the networks), there is always a need to process

even higher numbers of images (or video frames) in higher quality and as such

this message-passing bottle-neck will always be a disadvantage.

If what is needed is some suggestion of the parameter values for segmenta-

tion, then there is no definite answer that works for all applications, as might

be anticipated. However, as this research used extensively the hand-segmented

images as ground truths, then some suggestions can be provided for applications

with similar features. If the application uses natural images as input and need to

decrease the over-segmentation in the output as much as possible then smoothing

filters at the pre-processing stages and pruning as an example of post-processing

stages will provide a good measure to achieve the required results.

This research focused on colour-based segmentation algorithms and in this

case most of the smoothing stages depend on the colour of the input results, that

reduces the noise in the image while preserving the boundaries of the objects. This

can enhance the image structure at different scales before finding the segments’

boundaries. So a good value for the smoothing filter was always lower than

25 colours for colour-rich images, and even lower from 16 to 8 for images with

a limited palette. Similarly, the pruning stage needs to lower the number of

stages in the end so typically the parameter values need to emphasise the goal

of decreasing the over-segmentation depending on the type of the pruning stage

used. For example, if the pruning stage eliminates the segments according to their

size, then the parameter should reflect that segments with low sizes should be

eliminated. The results in this chapter were only illustrative and further empirical

evaluation on larger image datasets and parameters range will be provided in the

114

4.13 Concluding Remarks

coming chapters.

Nevertheless, the results don’t justify choosing a single or a range of param-

eters’ values that work in all the cases. In conclusion, the author thinks that

a segmentation framework that continuously evaluates the segmentation results

and adjusts the segmentation results using a machine-learning techniques is a

best solution as discussed earlier. This can be achieved by combining supervised

and unsupervised segmentation evaluation methods in the evaluation framework.

The evaluation should not only cover the parameters but also can include the

processing stages used, including adjusting the number and type of these stages

as needed. Further discussion on this will be done in the concluding chapter.

115

5
Evaluation framework for automatic

generation of tests

The sciences do not try to explain, they hardly even try to

interpret, they mainly make models.

Johann Von Neumann

5.1 Introduction

The image-processing and computer vision communities have developed both de

jure (e.g. , IPI-PIKS (Pratt, 2001)) and de facto (e.g. , IUE, Target Jr, VXL1,

RAVL, Tina, ITK2 (Ibanez et al., 2005), and the Intel OpenCV Library3) facil-

ities, containing collections of algorithms. In particular, ITK hosts the code for

1VXL (the Vision-something-Libraries): http://vxl.sourceforge.net
2The Insight Segmentation and Registration Toolkit: http://www.itk.org
3OpenCV Open Source Computer Vision Library: http://opencvlibrary.sourceforge.net/

116

5.1 Introduction

numerous image segmentation algorithms intended for medical applications.

The value of these would be enhanced if there existed a direct route to selecting

one or more algorithms for a particular application, as it is difficult to assess

the suitability of a segmentation algorithm without detailed comparison through

testing. Contrasting image segmentation to recognition tasks such as the use

of handwriting, and face databases, the authors of (Martin et al., 2001) remark

“Typically [in segmentation] researchers will show their results on a few images

and point out why the results ‘look good’ ”. Part of the problem is the difficulty of

establishing metrics, whether pixel-based figures of merit (Yasnoff et al., 1977) or

rankings against a set of criteria (Everingham et al., 2001) or through precision-

recall curves (Martin et al., 2004). However, part of the problem may also be

the logistics of performing a large number of tests. Additionally, a user needs

guidance in the form of structure, to navigate an evaluation framework.

There has been an emphasis in the past on algorithmic novelty, whereas in-

creasingly the importance of systematic validation on sufficient datasets is now

stressed. For a given input, the corresponding correct output is also known, ei-

ther because the input is simulated or by virtue of either expert opinion or the

presence of a ground truth such as hand segmented images. The developer aspires

to make the algorithm agree with the correct output for every corresponding in-

put. Implicit in this procedure is that the finite set of test data is representative

of variation in the real world and that the number of samples is large enough

(Guyon et al., 1998).

117

5.2 Evaluation Environment

5.2 Evaluation Environment

To provide the systematic validation mentioned in the introduction, the empir-

ical evaluations need three foundational bases to be accepted by the research

community, and subsequently required by all future research in the field to act

as a reference point. The three bases are: 1) standard databases 2) evaluation

protocols 3) scoring methods. At the moment there are many examples for each

of these points in the computer vision research. In the case of image segmenta-

tion, which is the focus of this research, there are not many examples but good

progress has already occurred that can be used to build on further research.

For example, the Berkeley group image segmentation dataset (BSDS) (Mar-

tin et al., 2001) is a good example of a standard database that can be used for

evaluation, other publicly available dataset examples include MSRC and PAS-

CAL 2008. The MSRC dataset (Shotton et al., 2006) is designed as an object

recognition database but can also be used for image segmentation evaluation.

MSRC is composed of 591 natural images with objects belonging to 21 classes.

PASCAL 2008 (Everingham et al., 2008) is another well-known object recogni-

tion database used in the PASCAL yearly competition. Part of this database

has image datasets for segmentation evaluation which are composed of 1023 im-

ages. This can be considered one of the most difficult and varied datasets for

recognition. However, the BSDS remains the most complete dataset available for

our purposes. It has been used in several publications, and has the advantage of

providing several human-labeled segmentations per image. Further details of the

Berkeley dataset will be given later in the chapter.

The two other bases: the evaluation protocols and the scoring methods define

118

5.3 Using and extending FATE

the evaluation framework and the related evaluation methods respectively. The

evaluation methods were explored in more detail in section 2.4. This section will

focus on the evaluation protocol or as could be better be defined as an evaluation

framework. There have been many research endeavours that advanced the area

of comparative evaluation of algorithms. Bowyer & Phillips in the introduction

to their book (Bowyer & Phillips, 1998a) argue that the benefits of such approach

would include: 1) providing a solid scientific and experimental basis for computer

vision research, (2) help researchers to develop engineering solutions to practical

problems, (3) obtaining an accurate assessment of the state-of-the art research,

and (4) give enough convincing evidence to the potential users to help them

distinguish a practical solution to their problems from the evaluated computer

vision research.

In our case, and in light of the benefits that can be gained as stated above,

the evaluation framework that will be explored in the following sections will try

to advance the research in the colour image segmentation field. The aim is to

explore further both the segmentation quality performance and the computational

performance of the representative algorithms under the evaluation. Moreover, the

aim is to explore the evaluation from a parameter-oriented viewpoint.

5.3 Using and extending FATE

The first component of the evaluation environment is a scripting language harness

or structure for running tests called FATE (Framework for Algorithm Testing and

Evaluation). FATE is an newer version of HATE: Harness for Algorithm Testing

and Evaluation developed and enhanced by the original developers Courtney et al.

119

5.3 Using and extending FATE

(1997). Figure 5.1 illustrates the evaluation framework in a very abstract way.

All the framework needs as an input is the standard image dataset to test, the

segmentation algorithm, the evaluation method and the the parameter range to

test. Our work extended the original FATE framework by adding the needed

parameter searching module, the GA search optimisation module, applying it to

a cluster throughput engine, and adding an additional polishing stage to improve

the processing performance of the evaluation. All of these extensions will be

explored in more detail in the following sections of this chapter.

The harness is written entirely in Tcl, a high-level scripting language (Ouster-

hout, 1998)(Welch & Hobbs, 2003), which means it runs essentially unchanged

on all flavours of Unix (including Linux and MacOS X) and on Windows oper-

ating systems. This section outlines how the harness is typically used, and then

explains how the program works. The harness has the potential for entirely decen-

tralised testing: tests and datasets are downloaded over the Internet as required

and executed locally and securely.

5.3.1 Operating modes

There are two major ‘modes’ of operation, the first of which runs the tests against

the program under test while the second analyses the results. This separation is

deliberate as it allows different analyses to be performed without necessitating

time-consuming re-execution of the tests; and comparison is greatly facilitated,

as there is a test-by-test record of the results.

120

5.3 Using and extending FATE

�����
���	

�
	�
�������

��	������

�
	�
��
�
���	

��

����
����
��
������
�
��

���
��

���

�
��
��
�
�
�
��

���	
�
�������������

����������
��	������

��

����
����
����
����
����

��

�����
�
�
�������������
���

�
��
��
�
��
�����
�
��
���	

���
��
�
����

��

����
����
����
����
�������������

���
��

�����	��
�

���������
��	������

��

���������
�
�����

��

�
	�
������������������
��	�������

���
�

����	
�
��
�

�
�

���
��

����
����
����
�

���

��

���
����

����
��
�

Figure 5.1: An abstract diagram of the FATE evaluation framework

121

5.3 Using and extending FATE

5.3.1.1 Running tests

In ‘run mode,’ one invokes the harness by specifying a test script on the command

line, capturing its output into a file, as in:

fate -run hdig.harn >hdig.out

This may be a local file or the URL of a remote test script (only HTTP is

supported). If the test script is not specified precisely, the harness will try to

find it in a series of pre-defined locations; this includes a directory on the local

machine and the script repository on the harness web-site. Files downloaded over

the network are cached locally; by default, scripts are retained for a week and

data files for a year.

The harness outputs a “transcript” which concisely summarises each test and

the output of the program under test. The transcript also includes the name and

version of the test script, the cost function (discussed below), and the elapsed

time for performing the tests; the latter is not used by the harness but is often

of interest to algorithm developers. The subsequent analysis stage works solely

with transcript files.

5.3.1.2 Evaluating segmentation algorithms

Given a transcript file, one assesses performance simply by running the harness

in its default ‘evaluate’ mode:

fate hdig.out

When used this way, the harness reports evaluation statistics, which are depen-

dent on the cost function.

122

5.3 Using and extending FATE

An alternative is to invoke the harness with more than one transcript:

fate hdig.out otheralg.out http://loc/hdig.best

In this case, the harness compares each algorithm with each other and reports

the probability that the algorithms achieve statistically significant differing per-

formances. The receiver operating characteristic (ROC) compare True Positive

and False Positive counts (Cohen, 1995) (Precision-Recall curves (Martin et al.,

2004) are a ROC variant.) As ROC curves give no assessment as to the statistical

significance of any reported differences, another method such as McNemar’s test,

which is a modified χ2 test, may be preferred. Again there is a logistical impli-

cation, as typically more than thirty tests are needed before the results approach

a normal distribution. In other words, in the case of evaluating image segmen-

tation, if the aim is to evaluate different parameter sets then the test will need

to be applied with the same segmentation algorithm and the same image with

thirty different parameter sets for example.

5.3.2 Working with the harness

5.3.2.1 Interfacing to the algorithm under test

The algorithm developer writes a short piece of Tcl code, called the interface

script, which interfaces the segmentation algorithm under test to the harness.

Generally speaking, this code will invoke an external program that implements the

algorithm with specific input files and/or parameters and perform any ‘massaging’

of the program’s outputs to get them into the required form. The interface script

is loaded by the harness when it is executed, and it is invoked once for each test

performed.

123

5.3 Using and extending FATE

5.3.2.2 Specifying the tests.

The test script is also written in Tcl as it may be desirable to perform computation

in generating either the actual tests or in specifying the locations of any data files

it may use. Downloading and executing code is, of course, a dangerous thing to

do with the current Internet, so the test script is not executed by the harness

itself but rather passed to a slave Tcl interpreter in which all operations that

might affect the local system have been removed; this is similar to the ‘sandbox’

environment used by Java interpreters in web browsers. The code executing in

the slave interpreter is able to perform tests by a callback to a single routine in

the main interpreter.

The test script should define two Tcl procedures, named as follows:

fate TestInfo: This is invoked with one of a set of keywords and is expected

to return the corresponding value. The harness uses this to obtain ancillary

information about the tests, such as the number of tests and the cost function to

be used.

fate RunTests: This performs the actual tests and should invoke the procedure

fate_Test for each test.

The user must also specify a cost function (or equivalently evaluation method)

that forms the basis of the comparison. Though some cost functions are built in,

there is also a mechanism for providing alternative cost functions.

124

5.4 Reducing evaluation time

5.4 Reducing evaluation time

5.4.1 Using a cluster computer

A cluster computer, the second component of the evaluation environment repre-

sents an accessible resource upon which algorithmic testing takes place in batch

mode. Testing is a laborious operation if only a desktop computer is available.

A distributed version of the harness is able to reduce the turnaround time when

testing an algorithm. The distributed version runs on a cluster, using static load-

balancing and process spawning through the rsh utility. The harness acts as

a ‘throughput engine’ delivering jobs on demand, on a per job basis. A job is

defined as a set of one or more tests or applications of an algorithm to one image.

The cluster computer employed by us consists of thirty-seven processing nodes

connected with two Ethernet switches. Each node is a small form factor Shuttle

box (Model XPC SN41G2) with an AMD Athlon XP 2800+ Barton core (CPU

frequency 2.1 GHz), with 512 KB level 2 cache and dual channel 1 GB DDR333

RAM. The nodes are connected via two 24 port unmanaged Gigabit (Gb) Ether-

net switches manufactured by D-Link (model DGS-1024T). Each switch is non-

blocking and allows full-duplex Gb bandwidth between any pair of ports simul-

taneously.

The cluster computer software environment is as important as the physical

hardware. To make maintenance and cluster-wide propagation of configuration

changes easier, at boot time all nodes transfer their root file system from a file

server to the local disk, while other file systems are accessed via the Network Fil-

ing System. The development branch of Debian sid (unstable but more current) is

125

5.5 Evaluation methods

used to manage upgrades to the Linux operating system. To (re)build nodes tftp

and udpcast (both Linux utilities) are employed in a manner akin to a simplified

SystemImager (software that automates Linux installs, software distribution, and

production deployment). A customized script is available to synchronize packages

and configuration with the cluster’s master template whenever it is inconvenient

to reboot and rebuild. This operation is simply accomplished through an Ad-

vanced Packaging Tool cache that is shared between nodes and a shared debconf

db (a configuration database), and runs in parallel across the cluster by means of

dsh (an implementation of a wrapper for executing multiple remote shells, such

as the rsh or remsh or ssh commands).

Nodes rarely need to be added or removed, though there is a script to do

that too. The cluster is monitored with the scalable, distributed system Ganglia

(refer to http://ganglia.info).

5.5 Evaluation methods

Evaluation methods for segmentation can be divided into those that are inde-

pendent of ground truth and those that are not. An early survey of independent

segmentation evaluation methods was completed by Zhang (1996). Apart from

a categorisation into five types of evaluation, Zhang (1996) also investigated the

evaluation methods were compared by testing them on image segmentation re-

sults using threshold values. An interesting feature of this comparison was that,

while no reference was made to ground truth, the methods did agree on which of

the alternative segmentations was preferable. An entropy-based method (Zhang

et al., 2003) was introduced after Zhang’s survey; its authors advocate its use in

126

5.6 The Berkeley segmentation dataset and benchmark

preference to the other methods from the quantitative school, because the latter

tend to be based on ad-hoc empirical evaluations with no theoretical basis.

The global and local consistency measures introduced in (Martin et al., 2001)

produce high scores for segmentations by humans and, hence, will rate a computer-

generated segmentation highly if it corresponds to a human segmentation. Be-

cause these measures are tolerant to refinements, over and under segmentation

is tolerated in the sense that the measures do not vary greatly in judging these,

if the same algorithm has been used with the different parameters. Over seg-

mentations may not be a problem if subsequent processing is able to aggregate

regions but if segmentation is regarded as the end product it is an issue. Another

measure based on Hamming distance (Huang & Dom, 1995) may be used as a

corrective.

Both (Martin et al., 2001) and (Huang & Dom, 1995) are intended for the

quantitative approach considered in this chapter. However, the main purpose

herein is not to compare evaluations, though in the next Section the evaluation

methods appear as cost functions which are inserted into an evaluation harness.

5.6 The Berkeley segmentation dataset and bench-

mark

The Berkeley dataset (Martin et al., 2001) is a scientific effort to bring together 30

human subjects to segment a set of 1,000 natural images which formed 12,000 seg-

mentations. Greyscale images were used to obtain half of the segmentations; the

other half were obtained from presenting the subjects with colour images. This

approach was followed to provide ‘ground truth’ for learning what is involved in

127

5.6 The Berkeley segmentation dataset and benchmark

the segmentation activity and for benchmarking segmentation algorithms. The

Berkeley group aim to use the data collected to exploit the “relative” perfection

the human visual system has reached in segmenting objects. The human visual

system, they theorise, is so good at segmenting because it uses “natural statis-

tics” to its advantage. Additionally, the research group think that computational

segmentation algorithms should be evaluated quantitatively. Thus, their experi-

ment will be able to scientifically evaluate image segmentation for both cases: a)

the human visual system, and b) the computer vision.

To achieve this goal the Berkeley research group developed segmentation com-

parison measures that are used to validate the consistency of the human subjects’

data and to provide approaches for evaluating segmentation algorithms. The ul-

timate aim is to use these performance measures to systematically improve seg-

mentation algorithms by considering the human ground truth as the “ground

truth”.

5.6.1 Berkeley group’s segment and segmentation defini-

tions

The Berkeley group uses a “high-level” definition of segmentation rather than the

“low-level” definition which is widely used in the computer vision literature.

The research group aimed from the start to achieve segmentation algorithms

that will decompose images in a manner as similar to human beings as possible,

and thus they aimed to study how human beings decompose images they receive

using their visual systems. So the question that needs to be answered is: What

does it mean to “decompose” an image from the human perspective.

128

5.6 The Berkeley segmentation dataset and benchmark

The term segmentation is mostly used in computer vision literature to refer

to a low-level process of creating a group of pixels from pixels that are spatially

coherent. Pixels are a good representation for computational processing but are

arguably an inconvenient representation for visual coherence and understanding

of the natural objects in the images.

Natural world images are in general made up of physically disjoint objects

whose concurrence in a scene leads to an image consisting of spatially coherent

groups of pixels. So pixel groups are segments, and the process of dividing an

image into segments is segmentation. However, the low-level definition of segmen-

tation is imprecise because it depends on the current state-of-the-art in defining

uniformity and coherence. Pixel coherence based on photometric features is lim-

ited and subjective.

The Berkeley group’s stable definition of segmentation is also the statement

of the ultimate goal: finding regions of semantic coherence. In other words,

the regions are related to objects as defined by the human logical reasoning, for

example, lion or a tree rather than regions that only have spatial similarity. To

ensure the general applicability of a segmentation dataset, the group therefore

used the high-level definition of segmentation based on objects as seen by generic

humans rather than on features as seen by vision scientists.

This high-level definition also helped define their segmentation representation

as a region-based representation rather than a boundary-based representation.

A region-based representation is concerned with representing objects in the seg-

mented image as closed boundaries. Whereas a boundary-based representation

doesn’t require closed boundaries to represent objects. Objects that are not

closed may arise from two sources: individual objects that have a folded topol-

129

5.7 Testing the human hand-segmentation precision

ogy, and objects blended into each other because of shading. Neither situation

is relevant to the Berkeley group’s standard as they are concerned with low-level

representations from the Berkeley group’s definitions perspective.

With their hand-segmented dataset, the Berkeley group aims for a “gold-

standard” image segmentation that contains high-level information from a human

visual system. Ultimately, the aim is to incorporate this high-level information

into the computer vision algorithms. To use their own words, the Berkeley group

defines their region-based representation as follows: “segmentation is a partition

of the pixels of an image into disjoint sets. The sets need not be contiguous in

the image plane.”

5.7 Testing the human hand-segmentation precision

The Berkeley data-set’s group, after considering different options, used a custom

segmentation tool that allows the user to highlight the segments by dividing the

image pixels. The images are shown on the computer monitor for the user and the

basic skill of using the computer mouse is expected. Some additional instructions

are given to help them operate the custom application and choose the segments

correctly. Now the Berkeley group, at the time they did their research, identified

Wacom LCD tablet as the ideal for the task of hand segmentation. More basic

options like simple pen and paper, Adobe Photoshop (or similar) application, and

also a non-LCD pen and tablet connected a computer all have their shortcomings.

Using a pen to trace segments on semi-transparent to transparent paper overlaid

over the image, and then scan the segments digitally would have added additional

steps where errors could be introduced in each step. Adobe Photoshop provides

130

5.7 Testing the human hand-segmentation precision

some tools to help in this task. However, it does not provide everything because

the input will still need to be taken by an external device: a mouse and keyboard,

non-LCD tablet, and LCD tablet, all have their shortcomings. However, the LCD

tablet is the least susceptible to the hand-eye co-ordination problem and the best

solution is to provide a familiar user interface for the human performing hand-

segmentation and at the same time allow direct digital input.

The group provided a good description of the custom segmentation tool. How-

ever, the tool is not available for download (like the data-set) and the description

does not answer all the questions. For example, they indicate that there is no dif-

ference in principle between using a mouse for segmentation and a non-LCD tablet

from the test they carried out. However, they then mention that a pen-tablet

seems more natural and user-intuitive for the task. They mention hand-tremors

as a disadvantage for the pen-tablet solution. However, this can be also taken

as a similar disadvantage for the mouse use. The mouse user might have addi-

tional hand-eye co-ordination errors compared to the pen-tablet solution unless

the software tool actually provides some ‘help’ or error-correction. Where they

clearly state that no additional algorithmic aid was provided by the tool beyond

the user input, we were not able to test this as the software tool was not available.

We were fortunate in having an LCD-tablet solution in the form of a Toshiba

M200 Tablet PC notebook, as this notebook had a built in Wacom tablet. It was

not considered practical or scientifically useful to redo the whole process of hand-

segmentation that was carried by the Berkeley group again just for the case of

using an LCD-tablet as an input solution. Our aim was to illustrate that even with

the most ideal solution for acquiring hand-segmentation, there is a possibility for

errors to be introduced in the hand-segmentation for many reasons, and as such

131

5.7 Testing the human hand-segmentation precision

it’s not useful to expect the algorithms’ segmentation to provide 100% identical

segmentation to the hand-segmentation. Figure 5.2 illustrate the M200 notebook

displaying an image of a hand-segmentation example in full screen.

Figure 5.2: Toshiba M200 displaying image number 10 for hand segmentation

To achieve this we created a sample of 12 images that can be considered as

basic objects and features and one of the most basic requirement was that each

image can act as its ground truth for segmentation. In other words, each image is

actually its own segmentation result. All the images are black and white images

with 1024 by 768 pixel resolution. The Notebook was configured to the same

resolution and the images were shown in full screen mode for each test to have

the native resolution displayed for the user. The images with their numbers are

shown in Figure 5.3.

The numbers will be used later to illustrate the different results acquired for

each image. We aimed at providing different basic features in the images and

132

5.7 Testing the human hand-segmentation precision

Image No. 1 Image No. 2 Image No. 3 Image No. 4

Image No. 7Image No. 5 Image No. 6 Image No. 8

Image No. 9 Image No. 10 Image No. 11 Image No. 12

Figure 5.3: Test Images 1 to 12 used for hand-segmentation test

to give different segmentation ‘difficulties’ in different images to test the tracing

ability of the human hand segmentation as much as possible. However, it’s good

to point out here that natural colour images, like the one provided by the Coral

database and used by the Berkeley group, will most likely have more ‘difficult’

features to trace than those provided here. Where there is only one option to

trace in our sample images, the natural images will provide multiple options to

trace segment lines depending on each human perception of what constitutes a

segment.

So the hand-segmentation results are usually susceptible to two types of errors:

errors from the human perception of the segments, which actually differ from a

human to human, and errors in acquiring the hand-segmentation in digital format

for use as a ground truth for algorithm segmentation results. We aimed with our

133

5.7 Testing the human hand-segmentation precision

sample to minimise the effect of both on our hand-segmentation test to minimise

their errors.

For our test we used Inkscape1 software as the capturing tool as we didn’t find

a reason to create our own customised software. Inkscape, or any image editing

software that provides layers for editing would have done the same job. Inkscape

is an open-source and free software to download, and provides the facility to

display the image under editing in full-screen without any other interface of the

software displayed (refer back to Figure 5.2 which shows an illustration of the

program ready to be used for tracing). The user segmentation is saved in a

different layer than the image to be segmented and because each user is required

to segment each image five times (to average any errors) and each trial can be

saved easily in a separate layer and exported at a later stage for evaluation.

For the testing we had 15 subjects, each segmented the sample of 12 images

five times. After that the segmentation results are evaluated with the original

image to find the mean difference between the segmentation and the original

image. Figure 5.4 show the highest and lowest mean differences recorded for each

subject.

From the figure it’s clear that there was no perfect segmentation from any sub-

ject. And although the minimum differences recorded are low for some segmen-

tation results, it’s still significant enough to record a difference in the evaluation

process.

These errors can be identified as the tremors mentioned above or even as the

whole digitising process of the pen-tablet solution. The important point here is

we can’t expect the hand-segmentation to give us an exact segmentation results

1Inkscape (open-source vector graphics editor): http://www.inkscape.org/

134

5.7 Testing the human hand-segmentation precision

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0

1

2

3

4

5

6

7

8

Subject No.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0

1

2

3

4

5

6

7

8

Lowest Mean
Difference

Highest Mean
Difference

Figure 5.4: The highest and the lowest mean differences calculated for each sub-
ject

135

5.7 Testing the human hand-segmentation precision

even with the best results and set-up available.

The highest mean differences recorded are different from one subject to an-

other and those high errors corresponds to test images that have ‘difficult’ features

to trace. Some subjects perform better with these images than other subjects.

In general, there is no significant difference between the subjects. They be-

come comfortable with using the segmentation solution after few trials. However,

some of them are more proficient or keen to spend as much time as necessary to

complete the whole process.

Although great care was taken to instruct the subjects to be careful with their

segmentation and they were not given any time limits to complete the task, some

subjects became irritated and tried to complete the whole set as fast as they

could, which could affect the quality of their segmentation. However, overall

the results show no difference between the subjects results, especially with the

combination of the five trials results which helps in minimising any errors.

We are not aware if the Berkeley segmentation subjects were given a number

of trials to complete or get used to the system. However, they state that 1-2 hours

was given to each subject to get used to their customised segmentation tool or

were taken by each subject to complete the task.

Looking at the results arranged by each image, however, gives us a better

understanding on how the image decomposition and the skill to identify and

trace the segments in the image can introduce errors into the segmentation. The

highest and lowest mean difference recorded for each image is illustrated in Figure

5.5.

It’s clear here that the errors increase as we get to image six, which has

overlapping objects in the image to segment. The highest errors are acquired with

136

5.7 Testing the human hand-segmentation precision

1 2 3 4 5 6 7 8 9 10 11 12

0

1

2

3

4

5

6

7

8

Lowest Mean
Difference

Highest Mean
Difference

Image No.

Figure 5.5: The highest and the lowest mean differences calculated for each image

image 8 which has many overlapping objects with adjacent boundaries. However,

the overlapping segments and adjacent boundaries are not the only features in the

images that can increase the errors. Segment boundaries with hard and irregular

corners can also be affected by the high errors in hand-segmentation. This is to be

expected, as those boundaries are harder to trace and errors will be compounded

from both the tremor errors and the pen-tablet digitisation process.

All of these mentioned features: overlapping segments, adjacent segment

boundaries, hard segment corners, and irregular shape boundaries, are typical

traits of objects in natural colour images like the ones in the Coral image database.

So it is clear that the hand-segmentations obtained are affected by the errors as-

sociated with this method. It’s important to point out here that the images in

the test performed here are ‘easy’ to segment compared to the difficulty faced by

137

5.7 Testing the human hand-segmentation precision

hand segmenting natural colour images. The difficulty can be two-fold: firstly

while identifying the objects and the related segments to each object , and sec-

ondly tracing those segments. And such errors added to the hand-segmentation

are certainly higher than what was found in our results.

It’s also worth mentioning here that although the Berkeley segmentation

dataset had employed 30 subjects for the hand-segmentation task, not all the

subjects have segmented all the segments under the dataset. Specifically one

subject completed only one segmentation and another completed segmentations

for only two images. And 10 subjects of the 30 completed segmentations on about

10% or less of the whole image set (104 of the 1020 images).

Only two subjects completed the whole set. See Table 5.2 for the details.

By definition the Berkeley group, for some reason, made the restriction that

each image is not segmented more than 6 times. So looking through the images

available from the downloaded dataset, on average images are segmented by 5 or

6 subjects.

In spite of this, the Berkeley group segmentation dataset is a groundbreaking

effort that unfortunately was not used as much or built upon by other image

segmentation research as the authors would like it to be. If an effort like this can

be adopted and standardised as the testing dataset of choice then a good measure

for image segmentation improvement can be defined over time.

For our work the Berkeley dataset is the only one that provided a significantly

large dataset, easily accessible and with a good variety of colour images for testing.

138

5.7 Testing the human hand-segmentation precision

Subject No. ID Images segmented

1 1131 1

2 1125 2

3 1111 13

4 1118 14

5 1110 46

6 1128 50

7 1104 54

8 1102 82

9 1106 84

10 1129 104

11 1126 166

12 1117 207

13 1127 248

14 1122 249

15 1119 290

16 1113 308

17 1114 313

18 1112 344

19 1116 358

20 1132 381

21 1121 432

22 1103 509

23 1130 678

24 1124 771

25 1107 920

26 1115 953

27 1105 978

28 1108 1000

29 1109 1020

30 1123 1020

Totals 11595

Table 5.2: Table of Berkeley dataset Human subjects showing all the subjects
their IDs and number of images segmented by each subject.

139

5.8 Concluding Remarks

5.8 Concluding Remarks

This chapter sets the stage for the coming chapter by introducing the evalua-

tion framework that will be used in the coming chapter to test the segmentation

results. This will occur after introducing the research field of the available pro-

gramming libraries and explaining the need for an evaluation framework for the

computer vision in general and the image segmentation in particular.

Firstly the research aims to cover three basic points needed by any empirical

evaluation: 1) a standard database, 2) an evaluation protocol, and 3) scoring

methods. The options chosen are detailed and specifically the evaluation protocol

is given which depends on the FATE evaluation framework.

The aim is to achieve the benefits of providing a solid scientific and experimen-

tal basis for image segmentation to help researchers develop engineering solutions

to practical problems. Furthermore, this will help to obtain an accurate assess-

ment of the state-of-the-art research, and a convincing evidence for the potential

users to help them distinguish a practical solution to their problems from the

evaluated image segmentation research.

After exploring the operating details of the evaluation framework, Section 5.7

extended the tests performed on the Berkeley dataset by testing if there is any

advantages to the hand segmentation performed on an LCD tablet. The Berkeley

database testing procedure didnt have access to a LCD tablet to complete the

hand-segmentation. However the authors of the test argued that the LCD tablet

can be considered the best method to obtaining the human hand-segmentation

images, and this author thinks that this still has not changed at the present time.

The outcome shows that even with the LCD tablet errors can be introduced

140

5.8 Concluding Remarks

during the hand-segmentation process, and it can be arguably higher with the

method used in the Berkeley dataset. However, the Berkeley dataset remains

as a very useful standard dataset for the segmentation evaluation. The author

only points out that, while using the Berkeley dataset, the aim should not be

only to fit the segmentation methods results to the specific hand-segmentation

results perfectly, but to use it as an evaluation benchmark taken as a whole

set. Furthermore, other objective evaluation methods can be used as additional

benchmark that do not need any reference image to complete the evaluation. This

will be explored in more detail in the coming chapter.

141

6
Genetic algorithm optimisation for the

evaluation framework

The whole is equal to the sum of its parts.

Euclid in The Element: Book II

The whole is greater than the sum of its parts.

Max Wertheimer in Gestalt theory

6.1 Using genetic algorithms

Segmentation algorithms, as mentioned in the previous chapters, are actually

made of a series of sub-processing stages that require different sets of parameters.

Segmentation algorithms’ designers either don’t expose the underlying processing

components, or expose some of the parameters for the processing stages while

suggesting “default” parameters values that, in their opinion, should provide

142

6.1 Using genetic algorithms

the best results in the images under test compared to other algorithms’ designs.

As such, the common practice was that parameters will be adjusted by hand

to arrive at the best combination for the application under study according to

the pre-defined ground truth. This practice is neither effective nor efficient, and

mostly close to impossible to achieve.

It is important to note that the literature in this field is filled with new

segmentation algorithms that introduce different approaches and try to fulfil

different needs, as was summarised in Chapter 2. However, testing the qual-

ity/performance effectiveness of a suggested implementation is often only per-

formed on a few images (Everingham et al., 2001). Although as suggested by

Everingham et al. in (Everingham et al., 2002a,b), looking at the parameters is

an important point in segmentation evaluation, suggested focusing on the parame-

ters while evaluating the segmentation algorithms. However, they do not discuss

how those parameters affect the final segmentation results and what each pa-

rameter corresponds to in the processing stages in the segmentation algorithms.

Looking at this will provide us with the important stages that affect the final

segmentation quality and overall performance and we can already see that most

of the segmentation algorithms explored in the previous chapters used similar

processing stages, even across different categories of the classification taxonomy

introduced in Chapter 3.

Parameters have been identified by the author as an effective factor in deter-

mining the final segmentation output and have been used in two ways. The first

way is automated segmentation algorithms that will automatically determine the

parameters settings “on-line” while processing inputs (which was suggested early

in segmentation research by Bhanu et al. (1989) and continues to be introduced

143

6.1 Using genetic algorithms

and used in recent years (Chabrier et al., 2008; Melkemi et al., 2006; Pignalberi

et al., 2003) in different types of segmentation applications). For example Pig-

nalberi et al. used a genetic algorithm in the segmentation of range images. The

other approach uses evaluation methods that test “off-line” a set of images for a

certain application against different parameters settings to determine the optimal

parameter set for the application under study. Both approaches use some type

of machine learning technique to accomplish this task (Chabrier et al., 2005b;

Zhang et al., 2005, 2006) and are also similar to the Everingham et al. approach

mentioned earlier (Everingham et al., 2001, 2002a,b).

GAs (and other machine learning techniques) have been used extensively in

computer vision and image processing (Chojnacki et al., 2004; Hall, 2006; Olague,

2007) in general and in particular image segmentation (Chabrier et al., 2005a).

The distinction between machine learning and GA is not always large. However,

the author’s research takes into consideration that machine learning can mostly

be considered as an optimisation problem (Burjorjee, 2007). Bennett & Parrado-

Hernández (2006) remarks:

“Optimization lies at the heart of machine learning. Most machine

learning problems reduce to optimization problems.”

Additionally, there have been many studies on formulating image segmenta-

tion as an optimisation problem (S. Levachkine, 2000; Schoenemann & Cremers,

2007a,b). Intuitively, the case of the parameter-fitting for image segmentation

also lends itself inherently to being an optimisation problem. GAs by definition

are designed to achieve good results in these type of problems that have wide

solution spaces.

144

6.1 Using genetic algorithms

All of the research work in parameter fitting in segmentation mentioned above

only tries to improve the parameters without trying to understand what each pa-

rameter corresponds to, and usually the parameters under test are not mentioned;

in general the research introduces a suggested evaluation framework that is able

to evaluate parameters. However the parameters are not identified and no further

parameter significance or parameter-specific test performance is discussed. Fur-

thermore, usually few tests are carried on few chosen segmentation algorithms.

The author’s approach in segmentation evaluation also uses a GA to optimise the

parameter-fitting solutions as an alternative to performing exhaustive searches

on all combination of the parameters. The aim is to optimise significantly the

computation speed and achieve better performance results (Al-Muhairi et al.,

2007a,b). However, unlike other research which uses parameters, we try to reveal

the significance of the parameters under test and link them to the underlying

sub-processing stages in the complete segmentation process.

This chapter will show the improvement gained by using GA in optimising

the performance and in reaching a final solution. It will introduce the concepts

used to improve and speed up the segmentation evaluation process. This will be

achieved by firstly using a GA module to reduce the search time significantly,

then introducing a polishing stage to improve the GA results and reducing the

number of generations needed to reach the GA optimal solution. Furthermore,

the work introduces the concept of time factor and using a time-weighted cost

function for the GA to optimise the segmentation results on the basis of time in

addition to the segmentation quality.

145

6.2 Segmentation Error Measure

6.2 Segmentation Error Measure

A segmentation error/difference measure is needed for the purpose of evaluat-

ing image segmentation against a reference image (i.e. unsupervised evaluation).

Although the reference images can be subjective, such as the hand-segmented

images from the Berkeley Segmentation Dataset that we aim to use, the segmen-

tation error measure allows the evaluation itself to be completed in an objective

manner. The problem in calculating the difference between two different seg-

mentation is that there is no one definitive segmentation solution. Furthermore,

a problem arises in finding a way to penalise the small differences between the

different segmentation results.

Moreover, the error measure needs to be independent of the segments’ bound-

ary pixelisations as much as possible, resilient to any noise along those boundaries,

and deal with segmentation results with different number of regions. All of the

former points are expected occurrences that can be found while experimenting

with different segmentation algorithms or with different parameter sets with the

same algorithm. The Berkeley group suggested a measure that we think suffi-

ciently satisfies the points mentioned earlier as was demonstrated in Martin et al.

(2001). The measure will be defined below.

6.2.1 Error Measure Definitions and Equations

The image in digital form is a set of pixels. Hence, a segmentation can be defined

as grouping the pixels into a set of regions. Let S be a segmentation result

for a single image. The error measure takes two distinct segmentation results:

S1 and S2 for the same image as input and outputs a real value output in the

146

6.2 Segmentation Error Measure

range of [0..1] where value zero means that there is no difference between the two

segmentation results; in other words, they are identical.

For each pixel pi, the error measure can be defined as follow:

E(S1, S2, pi) =
|R(S1, pi) \ R(S2, pi)|

|R(S1, pi)|
✞✝ ☎✆6.1

where R(Sj, pi) is the region in segmentation j that contains pixel pi, \ de-

notes the set difference, and |x| denotes the cardinality of x. This error measure

defines the difference in one direction. E(S1, S2, pi) is equal to zero (i.e. the two

segmentation are identical) if all the pixels in S1 are also in S2 but not vice versa.

So it has to be computed twice to achieve the complete error measure. This can

only be achieved for the whole image by using two additional measures. Let n be

the number of pixels in the image:

GCE(S1, S2) =
1

n
min

�
�

i

E(S1, S2, pi),
�

i

E(S2, S1, pi)

� ✞✝ ☎✆6.2

LCE(S1, S2) =
1

n

�

i

min (E(S1, S2, pi), E(S2, S1, pi))
✞✝ ☎✆6.3

The Global Consistency Error (GCE) is formulated to take any local changes

in the same direction. On the other hand, the Local Consistency Error (LCE)

allows for changes occurring in segmentation results at different locations. In

other words, GCE is a tougher measure than LCE. Martin et al. illustrates that

147

6.3 Exhaustive parameter search testing

when two distinct human hand-segmentations for the same image are compared,

both the GCE and the LCE measures produce a very low value; on the other hand,

when two random human hand-segmentations for different images are compared,

both the GCE and the LCE measures as expected to produce a very high value.

Furthermore, the measures are created not to evaluate extreme examples, where

for example the segmentation have one region that encompasses all the pixels in

the image or the other extreme where each pixel is a region by its own. In both

of these cases, the measure will not provide a correct validation. However, when

using it to validate image segmentation results of different algorithms against

the human hand-segmentation then it is suitable. In our research, the LCE

measure was used because it achieved a good error measure while still providing

an acceptable tolerance to differences.

6.3 Exhaustive parameter search testing

This section describes briefly some of the first results from the exhaustive search

segmentation evaluation that led this research to use the genetic algorithm to

enhance the performance of the evaluation and lower the time needed to find the

best parameter sets. The research started with running the evaluation with all

the parameter sets possible and then compared and analysed the final results to

find any relation that can link between any single parameter and the enhanced

quality of the final segmentation results.

During early exhaustive search testing by the author it was noticed that

clearly certain parameters affect the quality of the segmentation results. In-

teresting findings were found while testing was carried out on the segment sizes

148

6.3 Exhaustive parameter search testing

found by different combinations of parameters. For example for mean-shift seg-

mentation, Figure 6.1 shows the results of an exhaustive search across a set of

images from the Berkeley database to explore further the parameter space of the

mean-shift algorithm. The harness was configured to output segmented regions

according to their size in pixels. For fixed value of radiusS=1 and radiusR=1,

the colorDistance setting governs the size of segmented region. In this example,

the single parameter governs a wide variety of possible segmentations.













































































































































































































Figure 6.1: The results of an extensive search of parameter space for the mean-
shift algorithm grouped by segmented region size. The colorDistance parameter
is varied between 1 to 20 (in the circular direction), while radiusR and radiusS
are fixed with value 1. The spokes of the circle represent the frequency of regions
at a particular colorDistance parameter setting.

The results in the figure show that a certain range of parameters affect the

149

6.4 Using a genetic algorithm

number of objects in the segmentation results. So regions between 500 and 1000

pixel size reach the peak values when the colour distance parameter is between

5 and 10 in value. This is also true for an overlapping range of the parameter

value for regions sizes illustrated in the figure. The results here only gave an

early suggestion to the parameters significance and cant be taken in isolation.

As a consequence, further tests were carried out to find the parameter values

significance, as will be detailed in the coming sections.

6.4 Using a genetic algorithm

6.4.1 Genetic Algorithms: Basics

Genetic Algorithms (GAs) form an important area of evolutionary computation,

and have been applied to many problems in computer science and engineering

(Goldberg, 1989; Holland, 1975). Natural selection rules discovered by Darwin

are the basis for GAs; this basis is used to formulate for each problem a population

of individual solutions that are evolved to find the best solution.

In implementation, a binary digit string can be used to represent each indi-

vidual solution. This encoding includes all of the information needed to build

an actual solution to a problem. This is termed the ’genotype’ in GA terminol-

ogy (mirroring biological terminology). The genotype is then used to construct

an actual solution for a problem, known as the ’phenotype’. The genotype and

phenotype can be seen collectively as an individual. In natural selection biol-

ogy, DNA encodes the genotype, while the actual organism is the phenotype. Of

course, evolution simulation in the computer is abstracted and simplified. The

150

6.4 Using a genetic algorithm

0011010100

1010000110

1010101100

0110101000

1010000110

0011010100

1010000110

0110101000

���������	
�����	�

�

�

�

1010000100

0101000101

0000110011

0011010110

1010001100

0011110110

0010101000

0110000100

�������	� ��	��	��� ������	�

�������
�����

��������������	�

Figure 6.2: Genetic algorithm operations representation

genotypes used in GA are much smaller than those used in biological beings and,

as a result, the phenotype (the solutions) which they produce are likewise simpler.

In implementation, a genotype is made up of one or more strings of binary

digits (chromosomes) that encode the characteristic of the problem under study.

Figure 6.2 illustrates four genotypes (that are made up of one chromosome each)

and the different GA operations that are applied to them to produce a new

solution for the problem they define. Each genotype represents one possible

solution (although not necessarily an optimal one) for the problem under study.

This first population of solutions is usually generated through a random process.

Each genotype has fitness value that determines how close it is to the best so-

lution to the problem. One normally retains for ’breeding’ the genotypes with the

highest fitness value, and discards the genotypes with the lowest fitness; this is

termed ’selection’. The selected genotypes are combined to produce sibling geno-

types using a ’crossover’ operation which typically takes parts from two selected

parents to produce a new genotype.

151

6.4 Using a genetic algorithm

One more location on a chromosome can be changed at random to mimic

mutation, ensuring that the produced genotypes don’t fall into a local minimum.

After this the resultant genotypes are passed through the fitness function again

and the whole process is repeated until either the desired fitness value is attained

or the maximum number of iterations is reached. Further discussion of the use

of GA in image processing and specifically in image segmentation will be given

in Chapter 6.

6.4.2 The GA implementation details

A GA (Goldberg, 1989) search module was used in the evaluation environment

first and foremost to decrease the processing time for the search as a whole.

Furthermore, the GA is used as an additional module was used to optimise the

selection of parameters. As is well-known, a GA emulates to some extent the

supposed process of genetic evolutionary adaptation. For example, the GA algo-

rithm employed allows mutation of chromosomes that represent the parameters

as a mean of preventing them from becoming too close to each other and re-

maining in local minima. While in genetics a chromosome is a molecular package

containing genes, in a GA a chromosome becomes a vector containing a set of

variable elements.

The GA employed is a real-valued GA inspired by Polheim’s GEATbx, a GA

toolbox for Matlab (Polheim, 2005) (though the output may be integer-valued pa-

rameter settings). It employs extended intermediate recombination (Mühlenbein

& Schlierkamp-Voosen, 1993), wherein an offspring gene gO is conceived from its

152

6.5 GA optimisation results

two parent genes g1 and g2 by

gO = αg1 + (1− α)g2

✞✝ ☎✆6.4

where α is a scaling factor in the range [−d, 1+d]. Assuming that the N genes in

a chromosome form an N -dimensional hypercube then, when d = 0, gO lies along

the straight line between g1 and g2; if d > 0, extrapolation is permitted. In the

work in this Chapter, d = 0.

Given the range of parameter values, the starting point is to select random

values of each parameter. It is possible to select a stopping point by checking

when the difference in the cost or fitness function’s value between successive

generations passed below a threshold. However, because of the relatively lengthy

time taken to evaluate each application of a segmentation algorithm to an image,

stopping after a given number of generations is a practical alternative. The limit

on the number of generations was chosen after a number of tests were carried out

to determine the best value. The rate of convergence towards a global minimum

value of the cost function for the mean-shift algorithm in the tests in Section 6.5

was found to be determined by the size of the population at each generation.

However, the convergence over many generations was also examined.

6.5 GA optimisation results

6.5.1 Example of GA improvement over exhaustive search

The mean-shift algorithm (Comaniciu & Meer, 2002) makes a convenient example.

The example here will illustrate the improvement in the time needed to find the

153

6.5 GA optimisation results

optimal set of parameters for the best segmentation quality. The approximate

computational cost of an exhaustive search across parameter space for a single

image on a single cluster node is as follows. The processing time on a single cluster

node takes between a minimum of 907 ms (i.e. less than 1 s) and a maximum

of 26799 ms (about 27 s), depending on the parameters selected for a particular

image. The average time taken was 5937 ms. Assuming 6 s per test with each of

three parameters varied between 1 and 20, (i.e. 8000 tests), then a complete run

would take 13.3 hours. The parameter choice depended on the suggestion of the

mean-shift authors, and the parameter range was chosen to give an example of the

improvement in this case. However, in a later section in this chapter the range will

be defined taking the mean-shift authors’ suggestion (Comaniciu & Meer, 2002),

and the expected range of each parameter. Evaluation of each result, the cost

function after normalisation, consists of pixel-by-pixel comparison with a ground

truth image from the Berkeley database. However, this calculation took less than

1% of the processing time. The cluster computer, introduced in section 5.4.1, was

employed as a throughput engine, in the sense that no exploitation of internal

parallelism took place. In the unlikely event that all nodes were available and

disregarding input/output overhead the per image run time for a single image is

still 22 min.

For the same image, a run with a GA took 130635 ms, i.e. 2.2 min, which on

a cluster computer takes about 35 s. This is, of course a considerable reduction

on an exhaustive search.

Table 6.1 is an illustrative rather than representative run showing the generation-

by-generation best-fit selection of ‘chromosomes’. Three parameters formed the

chromosomes: radiusR (the range radius of the mean-shift sphere in colour

154

6.5 GA optimisation results

space), radiusS (the spatial radius in grid space), and colorDistance (defin-

ing the region merge threshold). There was a population of just five for each

generation, which explains why the cost function’s value does not reach a mini-

mal value (as shown next).

The population size in the GA is how many chromosomes are in a population

(in one generation). In the context of the GA’s parameter search this means that

population will contain five different parameter sets (i.e., chromosomes), each

set will contain three random values representing the mean shift segmentation’s

parameters defined above. A very high value for the population size will produce

too many chromosomes and as consequence will slow down the GA process. On

the other hand, a very low value will generate very few chromosomes and will

limit the GA process in finding a good solution.

The encoding of the problem (the parameter search, and the parameter set

values in the chromosomes in this case) influence the choice of the population size

(and other GA parameters), as the research shows. As a consequence there is a

limit that depends on the problem-encoding in which GA solving will be signifi-

cantly slower without improving the final solution search. This is an example, so

a population size of 5 is just for illustration. However, as will be described in the

coming sections, after extensive testing, a population size of 20 was found to be

an acceptable value that gives the GA enough random parameter sets to evolve a

solution from and combined with the choice of 100 generations and the other GA

parameters defined gives an acceptable compromise that arrives at an optimal

parameter set for the give problem in an efficient computation time. Further GA

evaluation improvements will be explored in more details later.

Two GA parameters, the recombination rate, i.e. α in the line recombination of

155

6.5 GA optimisation results

Section 6.4, and the mutation rate were set to 0.6 and 0.8 respectively . The latter

governs the ability to escape from a local minimum. As with such evolutionary

algorithms, it is not otherwise possible to directly govern their behaviour, which

is probably their principal disadvantage.

However, the reduction in time needed at reaching a selection adequately

compensates for that. For the image in this test, the average time for each call

to the segmentation algorithm was 6 s, with the maximum time at 21 s and the

minimum time at 0.9 s. The total time taken in running the calls was 298 s, while

the total time for all processing was 299 s, i.e. about 5 min.

A disadvantage of truncating the search after a fixed number of generations

is that there is no guarantee that the GA could be (say) performing hill climbing

to leave a suspected local minimum. In Table 6.1, the seventh generation value is

less than the eighth and, therefore, had the search been concluded at the eighth

unhelpful parameter values would be selected. A possible solution to this problem

is to allow the fittest individuals to ‘live’ for >1 generation; another is to include

a refinement or polishing stage in which the path taken by the GA over each

generation is inspected to more closely approach a global minimum. This issue

is returned to at the end of this Section in relation to graph-based segmentation.

Experimenting with the GA as in Table 6.2 with a population of ten genes

in each generation gives rise to some interesting observations. The first point to

notice is that the cost function’s value remains the same throughout the tests. The

rapid descent to a global minimum arises because a population of ten was taken

for each generation. As explained earlier, the higher value of the population size

will provide the GA a wider set of candidate solutions to test at each generation

and as a result it is expected that the GA will arrive at the optimal solution

156

6.5 GA optimisation results

Chromosomes
Gen. Cost radiusS radiusR colorDistance
1 18.63 3 8 16
2 14.17 3 14 16
3 15.27 3 16 14
4 14.61 1 16 17
5 16.74 11 4 17
6 13.76 11 18 19
7 11.87 3 17 19
8 14.26 12 17 19
9 11.19 2 15 19

Table 6.1: Example output of the evaluation of mean-shift parameters with the
GA module.

faster, although the processing of each generation will take longer.

The other important point is that although radiusR and radiusS do not

converge to produce an optimal set of parameters, colorDistance is never lower

than 11. The author found that these two points are always true for the mean-shift

algorithm over a range of different images, and although the lowest score reached

will be different for each image, it can be concluded that radiusR and radiusS

do not make a significant difference to the result as long as the colorDistance

parameter is larger than 8.

The more common alternative to truncating the search after a fixed number

of generations with a large initial population is to complete the search after a

convergence criterion has been met. How the search is conducted is a pragmatic

decision, as in essence a GA is simply a more disciplined way than random probing

to explore a large problem space. To examine the behaviour over successive

generations a very low population of just two members was deliberately chosen

to give slow convergence.

The recombination rate was set to 0.6 and the mutation rate was set to 0.2

157

6.5 GA optimisation results

Chromosomes
Gen. Cost radiusS radiusR colorDistance
1 4.71 2 5 16
2 4.71 2 16 11
3 4.71 2 16 11
4 4.71 2 4 17
5 4.71 2 2 17
6 4.71 16 2 19
7 4.71 2 10 16
8 4.71 2 18 15
9 4.71 2 16 12
10 4.71 2 17 12
11 4.71 2 10 19
12 4.71 2 10 19
13 4.71 2 10 17
14 4.71 2 15 15
15 4.71 3 11 16
16 4.71 3 18 19
18 4.71 4 15 19
19 4.71 8 2 19
20 4.71 1 3 19

Table 6.2: Trial output of the evaluation of mean-shift parameters with the GA
module.

158

6.5 GA optimisation results

for the mean-shift segmentation parameters. A best-fit linear regression line is

found by a standard numerical method, without any claims for goodness-of-fit.

See Fig. 6.3 for an illustration of the convergence.

The line shows that the cost function values have a slight negative trend

showing continuous improvement, though with significant divergence and even

lower values of the cost function at around 40 generations. In the unlikely event

that a population of just two was used then linear convergence to the evident

minimum at around 40 generations would be slow. However, the minimum in

this example is not suitable, because of the low number of the population in each

generation which dont give the GA enough choice in each generation to evolve an

optimal solution (even with a relatively higher number of generations). Therefore,

its important to increase the number of generations as will be done in the coming

sections. The aim, as stated earlier, is to strike a balance between the number

of populations and generations while providing the GA with a good search space

and allowing it to reach a solution in an acceptable time.

In Fig. 6.4, the values of the contributory parameters are superimposed. The

values of the cost function are connected by a moving average of length three.

In broad terms, the behaviour of the values chosen by the GA for the other

parameter is oscillatory, displaying what approaches a systematic sampling of

parameter space.

Figure 6.5 illustrates similar results for testing the watershed algorithm, when

it’s apparent that even before 40 iterations, the GA makes substantial progress

in finding a a good minimum for the cost function, i.e. the match to the ground

truth image. However, thereafter there are oscillations in the value. Though

there is a negative going trend to the results, the value after 100 generations is

159

6.5 GA optimisation results

      



































Figure 6.3: Mean-shift parameter convergence with linear trend for 100 genera-
tions of the cost function value.

      



















   



Figure 6.4: Mean-shift parameter convergence with linear trend of the cost func-
tion value, including the behaviour of contributory parameters.

160

6.5 GA optimisation results

not the minimum. Note here that there are many reasons why the cost function

will not reach a zero value that are not related to the GA search directly. For

example, the segmentation algorithm evaluated may not be the best choice for

this test. However, the most important reason is that it is not expected that

the segmentation algorithm will find the exact segmentation results as defined

by the human hand-segmentation. Not only that as the segmentation algorithm

can define segments that are not found by the human hand-segmenters. Even if

the segments found by the human and the algorithms are exactly the same, the

errors in obtaining the hand-segmentations as described earlier in Section 5.7 will

provide enough differences to prevent the GA from achieving a zero cost function,

even after 100 generations.

      




































Figure 6.5: Watershed segmentation parameter convergence with linear trend of
the cost function value.

Similarly to Fig. 6.4 and with the same GA search parameters, Fig. 6.6 shows

161

6.5 GA optimisation results

100 generations of a parameter search for the graph-based segmentation, again

plotting a moving average through the data points. The slight negative of the

linear trend is less apparent in this representation, as is the oscillatory nature of

the testing of individual parameters.

      



















   









Figure 6.6: Graph-based segmentation parameter convergence with linear trend
of the cost function value,including the behaviour of contributory parameters.
(Note the logarithmic vertical axis.)

As mentioned earlier, it is possible to refine the output of the GA by appli-

cation of a non-GA polishing algorithm to what is a non-constrained, non-linear

optimisation problem. Newtonian methods are unsuitable if the cost function to

be optimised is non-differentiable. Therefore, this work used the Nelder-Mead

direct search, “simplex method” (Nelder & Mead, 1965).

The goal of the Nelder-Mead approach is to solve the following unconstrained

optimisation problem:

162

6.5 GA optimisation results

min f(x)
✞✝ ☎✆6.5

where x ∈ Rn, n is the number of optimisation parameters and f is the

objective function where f : Rn → R. This algorithm is based on the iterative

update of a simplex S made of n+1 points where S = {vi}i=1,n+1. Each point in

the simplex is called a vertex and is associated with a function value fi = f(vi)

for i = 1, n + 1. The vertices are sorted by increasing the function values so that

the best vertex has index 1 and the worst vertex has index n + 1:

f1 ≤ f2 ≤ . . . ≤ fn ≤ fn+1.
✞✝ ☎✆6.6

The v1 vertex (respectively the vn+1 vertex) is called the best vertex (re-

spectively worst), because it is associated with the lowest (respectively highest)

function value. The centroid of the simplex x(j) is the centre of the vertices

where the vertex xj has been excluded. This centroid is:

x(j) =
1

n

�

i=1,n+1,i�=j

vi.
✞✝ ☎✆6.7

The algorithm makes use of one coefficient ρ > 0, called the reflection factor.

The standard value of this coefficient is ρ = 1. The algorithm attempts to

replace some vertex vj by a new vertex x(ρ, j) on the line from the vertex vj to

the centroid x(j). The new vertex x(ρ, j) is defined by:

163

6.6 Adding time as a factor

x(ρ, j) = (1 + ρ)x(j)− ρvj.
✞✝ ☎✆6.8

The main advantage of using the Nelder-Mead extension is that it can dy-

namically update the solution shape for the simplex. Thus, it can provide a

reasonably fast convergence rate, especially when the cost function is made of a

sharp valley. In general, the user should not expect a high accuracy from the

algorithm. Nevertheless, in most cases, the Nelder-Mead algorithms provides a

substantial improvement to the solution.

In the implementation, the final values found by the GA and the cost function

form the input to the algorithm. The values form the vertices of the simplex and

at each iteration the worst one of these values is replaced. This is achieved by a

number of trial evaluations of the cost function at the vertex after the simplex

has been reflected, expanded or contracted. Fig. 6.7 shows how the Nelder-Mead

procedure will find a lower value than that given at the end of the GA iterations.

However, in this value the parameter settings found are no lower than those of

the minimum value found in the course of the GA iterations. Therefore, applying

the Nelder-Mead procedure should certainly improve upon the final GA result

but the effect is to deepen that result rather than find a global minimum within

parameter space, as described above.

6.6 Adding time as a factor

Additional improvement to the cost function was achieved by including the time

taken to complete the segmentation for each parameter set as a factor. The ra-

164

6.6 Adding time as a factor

       






























Figure 6.7: Application of Nelder-Mead polishing to GA optimisation applied
on Graph-base segmentation, showing the final GA derived value and the value
found after further iterations of the polishing algorithm.

tionale behind this inclusion is that the quality of the segmentation results is

not the only value one would like to improve but there is also a need to balance

this with the segmentation processing time performance. The ultimate aim is

to improve both the segmentation quality and the computational performance

of the segmentation process. Because even if a single segmentation execution

can be improved to achieve a near real-time performance, the aim is to take in

consideration that: firstly, the segmentation process is but a small part of the

whole image understanding/computer vision framework, and secondly, with a

multi-image database or multi-video feeds to process, the segmentation process

will be executed multiple times per second, and as such the computational per-

formance of the segmentation process plays a very pivotal role. And, as will be

illustrated in the examples of the experiments detailed below, this factor gives

some insight into the significance of some of the algorithms’ parameters not only

in respect to the processing time performance but also to the segmentation qual-

165

6.6 Adding time as a factor

ity as defined by the segmentation evaluation method used. For instance, when

experimenting without using the time factor the GA module will randomly vary

certain parameters that actually don’t affect the overall quality of the segmenta-

tion after optimising the significant parameters for the algorithm. However, this

parameter variation can have a great effect on the processing time performance.

So adding the time factor will still optimise the parameters to the same set as far

as the significant parameters are concerned as before, while leading to a better

performance, as will be illustrated in the results in the coming sections.

Also there is another advantage to the use of this time factor: It not only

optimises the parameters for the segmentation algorithm itself according to the

processing time performance, but also optimises the whole evaluation process,

because the GA module is inclined to choose parameters that are time efficient. As

a consequence the whole evaluation process take less processing time to complete.

The author is not aware of any extensive research on adding the processing

time performance of the segmentation as a cost function factor to improve the

segmentation algorithm parameters choice that balances between the segmen-

tation quality and the computational performance. The research reported in

Everingham et al. (Everingham et al., 2001, 2002b) is the only notable work that

discusses adding the segmentation processing time as an additional cost func-

tion for evaluation purposes. The authors of this prior work have emphasised

the importance of considering time as an factor for the expected trade-off found

for some algorithms between the segmentation accuracy and the processing time

required to obtain a segmentation. However, the authors fail to discuss in detail

what type of parameters were used and varied for each segmentation algorithms

in the research they undertook.

166

6.6 Adding time as a factor

6.6.1 The different models of adding the time factor

Adding processing time to the cost function can be taken using four different

models. The first three are by combining the time factor with a segmentation

quality evaluation factor: The first two are elementary arithmetic operations:

addition and multiplication. The third, is as an argument of an exponential

function. The fourth option is just to use the time factor alone. If the aim is

to add extra emphasis to the processing time over the segmentation accuracy,

then the timing as an input to an exponential function can be added to the

cost function. There is one more model that uses only processing time value as

the cost. However, this is not our aim here, as this is useful only if the timing

performance is the only factor optimised.

The original cost function could be evaluated in two different ways. Either this

can be using supervised methods which evaluate relative to a reference image. For

example by a pixel-wise assessment of segmentation accuracy compared to a hand-

segmented ground truth images with weighted penalties for mis-segmented pixels

according to their distance to the nearest correct segment’s pixel, as experimented

with previously.

Or an unsupervised evaluation method can be used. As an example of the

latter, something as simple as the number of regions found in the resultant seg-

mentation can form the basis of evaluation.

Supervised evaluation allows a direct comparison between a segmented image

and a reference image which can provide a finer resolution of the evaluation and

can be implemented to produce empirical results for multiple images. However,

generating a reference image is a difficult, time-consuming task, and for some

167

6.6 Adding time as a factor

applications can be hard or even impossible. Reference images can be either

obtained by human subjects which makes it subjective to a great degree or us-

ing computer-synthesised reference images. However, as Haralick argues (Haral-

ick, 2000; Zhang et al., 2008), the solutions obtained using computer-synthesised

reference images evaluation can hardly be generalised. Furthermore, for most

reference images, there is no guarantee that one generated reference image, ei-

ther human-segmented or computer-synthesised, is better than another. In other

words, reference images are essentially subjective. Thus, supervised evaluation

methods using these reference images are particularly subjective.

The unsupervised evaluation independence of the reference images makes it

possible to work with a wider choice of applications, conditions and a variety

of image types. It also make it distinctively useful as an automatic evaluation

method for real-time computer vision system with an online segmentation module.

Furthermore, it is suitable for evaluating segmentation images that are not known

before starting the segmentation process, that is to say, online real-time system.

This idea will be explored in more detail later.

Hence, unsupervised evaluation is an objective method compared to the su-

pervised methods. From this point on the author will use objective evaluation

methods to mean unsupervised methods and subjective evaluation methods to

identify the supervised methods.

Early experimental results with objective evaluation were illustrated in Sec-

tion 6.3. However, many other characteristics of the segmented images can form

the basis for objective unsupervised evaluation. The objective methods will be

explored in more detail in Section 6.6.4.

The processing time can be added as a cost function factor to both of these

168

6.6 Adding time as a factor

evaluation approaches. The arithmetic addition method is usually used when the

cost function factors are of similar types. This is not the case for the time factor

and the results of the subjective/objective evaluation. As such this method is

not suitable and our experiments with it gave no useful information in respect

to significance of processing times. That is almost all evaluation result values

are higher than the timing values and as a result the time factor values are

overshadowed by the evaluation results values in the cost function.

A more useful model is using multiplication. This provides a scaling trade-off

between the evaluation factor and the timing factor and as such provides a more

significant result and insight into the importance of processing timing. This can

be contrasted with using timing in an exponential function. In this case, the

optimisation process is forced to optimise heavily to find a solution with low

processing time values.

For experiments in this Chapter it was found that multiplication model pro-

vided the best trade-off between all the other methods and it will be used for the

rest of the results illustrated below.

6.6.2 The timing experiments image data-set and GA pa-

rameters

For the experimental results below a sample image set from the Berkeley Database

was used. For illustration purposes 20 images were chosen for the experiments.

These images were chosen to be representative of the whole dataset, while also

making sure they have the characteristics of natural images. For example, they

consist of multiple objects and not only have one object in the middle, which is a

169

6.6 Adding time as a factor

characteristic of some of the photographic images from the Corel dataset that the

Berkeley group used. However, the conclusions are applicable to other images, as

in all cases from the results below a general trends holds with no deviation.

GA parameters were adjusted for the following experiments. The original

parameters discussed above were modified, and unlike the low population values

that were used above for examination purposes, the population size was increased

to 20 and at first was limited to 100 generations. These values were closer to

make a better balance between providing a wide choice of solutions for the GA

to evolve in each generation and the efficiency of processing each generation as

fast as possible by the GA. Also this takes into consideration that creating 20

populations in each generation provides a good value for the limited number

of parameters that will be tested (between 3-6 parameters) as discussed earlier.

The recombination rate was fixed at 0.6 and the mutation rate at 0.2. The

recombination rate will control the crossover performed between the populations

at the end of each generation. If there is no crossover, an offspring is the exact

copy of parents. If there is a crossover, an offspring is made from parts of the

parents chromosome. If the recombination rate is 1.0 then all the offspring of the

next generation are made by recombining the parents of the preceding generation.

If it is zero then the whole coming generation is made from the exact copies of

solutions from the populations of the preceding generation (but this does not

mean that the new generation is the same). The aim is to make the solution to

have parts of the successful population from the old generation while providing

some randomness to improve the coming generations. The mutation rate controls

mutation in the solution of the population carried over to the next generations.

If the mutation rate is 1.0 then all the solution in the current population will

170

6.6 Adding time as a factor

be changed randomly, whereas when its 0.0 then there will be no mutation and

nothing changed. This mutation operation is performed after the recombination

operation is completed. The value of 0.6 for the recombination rate provides a

higher recombination rate to provide enough randomness for the GA to find new

more optimal solutions while building upon previous older successful solutions.

The mutation rate comparably was not very high at 0.2 but still useful to not

using mutation at all, as it helps the GA to not fall into a local minima solution,

while making sure that the whole GA solution is random and reaches a good

optimal and stable solution in an acceptable time. Overall, the GA module

does a good job at reaching an acceptably stable solution in much less than 100

generations with the higher population size. In other words, the GA minimises

the cost function as much as possible using the evaluation method provided and

the constraint of the given segmentation algorithms and the parameters’ ranges

given.

For consistency, mean-shift segmentation was used again. Figure 6.8 illus-

trates the results of varying the same three parameters used in Section 6.5.1 for

100 generations without the Nelder-Mead polishing stage (using image ID 101850

from the Berkeley data-set). (The Nelder-Mead polishing stage was explained in

more detail in Section 6.5.1.) The Figure illustrates the search performed by the

GA at each generation. The spikes in the trend lines represent the three pa-

rameters. However, there is clearly a stabilising trend after 20-30 generations. In

more detail, it can be noticed that parameter radiusS is stabilising at a value of 3,

parameter radiusR at a value of 2 and the ColourDistance parameter stabilising

is at a 10. While still noticing that the spikes in the trend lines are the result of

the GA testing other values to find a more optimal solution and then returning

171

6.6 Adding time as a factor

again to the most stable solution found earlier.

Figure 6.8: The Mean-shift GA evaluation with 100 generation, with three pa-
rameters radiusS, radiusD and the Colour Distance values used for parameters
space search

To have a better examination, Figure 6.9 provide a zoomed view of the first

three generation. Each generation consist of 21 data points on the axis: the first

20 points correspond to the first 20 values of the population and the final 21st

data point is the best result of those 20 values of the population results according

to the cost function and as chosen by the GA. This last result is used as an input

for the next generation in the GA computation process.

The spikes mentioned above in the distant view of the 100 generations are

clear here in the varying values of the parameters. This implies that the GA

searches for the best parameters according to the given cost function (in this

case golden-truth subjective evaluation multiplied by the time factor). It’s clear

that the GA didn’t reach a stable solution in the first generation even with a

172

6.6 Adding time as a factor

Figure 6.9: The first 3 generations of the Mean-shift GA evaluation each show-
ing 20 populations and the final 21st result is chosen as an input to the next
generation

population size of 20. However, it is also clear that in the second and the third

generations the parameters’ variation is less evident and a trend is observable.

For example, radiusS tends to stabilise on value two, while the radiusR parameter

by contrast stabilises at value 5.

This stable trend is clear in contrast with the rapid variation in the first

generation in all the parameters. Its important to note here that there is still

some possibility that this trend can change if a better parameters’ combination

is found in the coming generations.

Looking at a 20 generation version of the same Figure, as seen in Figure 6.10,

it be can see that radiusS was actually lowered to value 1 and radiusR’s stable

value increased to 8, while the ColourDistance parameter stabilised at a value of

10 in the last 10 generations of this Figure.

173

6.6 Adding time as a factor

Figure 6.10: The first 20 Generation of the Mean-shift GA evaluation each show-
ing 20 populations and the final 21st result is chosen as an input to the next
generation

Now compared to the 100 generations version the 20 generations have reached

a good combination of values for the parameters that minimise the cost function

as much as possible. After experimenting with different settings and adding the

polishing stage over the different segmentation algorithms, it was concluded that,

for the rest of the experiments, 20 generations is more than enough for the GA

to reach a stable solution and that actually after 30 generations without the

polishing stage that the trend doesn’t change at all.

So the combination of using a 20 generations’ setting, in addition to the

—computationally cheap— polishing stage provide a good trade-off of a compu-

tationally efficient evaluation, while still providing similar results to using 100

generations or more. Therefore, for the rest of the experiments and results shown

in the following Section, 20 generations and a polishing stage were used as the

174

6.6 Adding time as a factor

standard settings, in addition to setting the recombination rate at 0.6 and the

mutation rate at 0.2.

6.6.3 Application of the time-weighted parameter search

experiment

The following Sections will illustrate some of the results obtained using the time-

weighted parameter optimisation experiments and the improvement achieved in

both the time taken to complete the search test and the insight on the effect of

some parameters on the time taken to perform the segmentation process. The

results included below provide a representative example of other results obtained

in testing experiments with other algorithms and under different settings. Addi-

tional results are provided in Appendix B.

To illustrate the effect of adding the time factor, two type of figures will

be used for the experiment discussed below. The first showing the parameters’

results before and after adding the time factor, on the x-axis the image ID is

shown, while the y-axis represents the parameter values.

It’s important to note here that the parameters’ values have different meaning

for different parameters and as such they don’t have a relation across parameters

most of the time. However, what is important is not the cross relation between

parameters but the effect of adding the time factor on each parameter in isolation

before and after the time factor.

The second type of figure illustrates the timing taken to complete the pa-

rameter search for each algorithm with and without the time factor. This type

of figure illustrates any time-wise performance optimisation, which, as will be

175

6.6 Adding time as a factor

illustrated below, is a significant improvement.

These results are also provided across multiple images, and don’t illustrate the

parameter variation effect on individual image segmentation quality and timing

performance. This aspect will be explored in more detail in Chapter 4.

6.6.3.1 Colour edge detection evaluation

For colour images, edge detection can be applied by computing each colour chan-

nel separately to provide gradient results and then combine the results from

different channels to classify the edges for the output. The Gevers & Stokman

implementation used in this section defines three type of edges: material, high-

light and shadow edges (Gevers & Stokman, 2003a).

The material edges correspond to edges usually found by a thresholding/non-

maxima suppression technique, and the latter two edge types are additional edges

that are considered as ‘neighbour’ edges to the material edges. Therefore, the first

two parameters, the highlight edges’ threshold parameter and the shadow edges’

threshold parameter correspond to the computation of those two latter edges:

highlight edges and shadow edges.

The values define how much the edges will be highlighted in the final segmen-

tation output: higher values means higher highlight, while lower values means

less highlight. These two parameters are varied between 1 and 255.

The third parameter correspond to an uncertainty factor that is used to con-

sider if the gradient found in the pre-processing smoothing filter is an edge or

not. Higher value means more “uncertainty” will be applied and less chance that

a gradient will be considered as an edge. This parameter is varied between 1 and

5.

176

6.6 Adding time as a factor

The parameters’ values and ranges are used as suggested by the original al-

gorithms authors recommendations and the algorithmic limits of the parameters.

Therefore, for example, edge parameters can vary between 1 to 255 because the

input image is encoded using these values. Thus, edges will be within this range.

The parameters are used as input parameters to execute the segmentation algo-

rithm. Each parameter set’s choice computed by the GA is executed and then

the segmentation output is used with the evaluation method to calculate the cost

function, which finally the GA uses to evolve newer “fitter” solutions for the next

generations.

Figure 6.11 shows the optimal results (as defined by the GA) for the three pa-

rameters found by the evaluation framework with and without the timing factor.

On first observation, no clear trend can be distinguished. However, there are two

important outcomes that are explained below.

Firstly, even with certain relatively high values of highlight and shadow pa-

rameters, on the overall range (1-255) of search they are low values (not more

than 35) for certain images. This can be attributed to the composition of that

certain image that needs a specific parameter set.

The second outcome is related to the uncertainty factor parameter which, with

or without the timing factor, is always relatively stable between either high values

of 4 or 5, which means that the evaluation is trying to minimise finding neigh-

bourhood edges. There is less chance that a gradient will be labeled as a segment

edge, as detailed above. This can be explained because the ground truth images

that are used to calculate the cost function are done by humans. That is they

focused on the main object(s) in the input image and discard segments of small

details in the image. However these details are quite easy for the segmentation

177

6.6 Adding time as a factor

algorithms to pick up and identify as segments. This is a general trend that will

be repeated with all the other segmentation algorithms when hand-segmented

images are used as ground truth.

��
��
��

��
��
�

��
��
��

��
��
��

��
��
��

��
��
��

��
��
	�

�	
��
��

��
��
��

��
��
��

��
��
��

��
��
�

��
�

	

��
��
�

��
��
�

��
��
��

�	
��
��

�	
��
�

�
��

�
��
�

�

�

��

��

��

��

��

��

��
���
�����
����������������
������

���������
����������������
������

���������� ���������������������
������

��
���
�����
������������������� ���������
������������������� ���������� ������������������
������

�
�
��
�
�
��
��
�
�
	

�

�����

����

Figure 6.11: Colour Edge Detection evaluation 20 images with and without time
factor parameters

Figure 6.12 shows the evaluation timing for the colour edge detection algo-

rithm with and without the time factor, the results clearly show that for the

images under test the overall timing is halved while using the time factor.

With all the previous results there is no single parameter that can be singled

out by the evaluation with the time factor as a time intensive parameter.

6.6.3.2 Watershed segmentation evaluation

The watershed segmentation can be considered as a new approach to segmen-

tation. It’s related to the idea implemented in region growing segmentation

paradigm. The idea is to still look for ‘discontinuities’ in the images to define

178

6.6 Adding time as a factor

�
�
�
�
�
�

�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
	
�

�
	
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�

�
�
�

	

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�
�

�
	
�
�
�
�

�
	
�
�
�

�
�
�

�
�
�
�

�

�

��

��

��

��

��
�����������
����
��
���
�
�������
���
����

��
�����������
������
��

�������
�������

�
��
�
��
��
	

�
�
��
�
��
��

��

�����
�
����

Figure 6.12: Colour Edge Detection evaluation 20 images with and without time
factor timing

the segment edges. Generally, the discontinuities are defined on the colour levels.

However, other image features can be used such as, for example, texture.

For testing purposes, and to contrast with other algorithms, a pre-processing

colour quantisation stage was added to the normal watershed segmentation im-

plementation. This stage provides an image ‘smoothing’ effect to the input image

before processing by the core watershed algorithm.

Figure 6.13 illustrates the GA optimal results found by the evaluation with

and without the time factor.

The main three parameters used were firstly a watershed threshold parameter

for the core watershed algorithm. The parameter values’ ranges was chosen to

reflect the original authors recommendations. This parameter is varied between

1 and 80. The second parameter is the number of colours parameter (numberOf-

179

6.6 Adding time as a factor

�
�
�
�
�
�

�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
	
�

�
	
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�

�
�
�

	

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�
�

�
	
�
�
�
�

�
	
�
�
�

�
�
�

�
�
�
�

�

��

��

��

��

��

	�

��

��

�

���

��
�������������������������
 ��
����������������������
 �����
������
���������������

�����

�����
������
������������

�����

�� ����!����
��"��
�������

������������������

�� ����!����
��"��
�������

���������������

�
�
��
�
�
��
��
�
�
	

�

�����

����

Figure 6.13: Watershed segmentation evaluation 20 images with and without
time factor parameters

Colors) for the quantisation stage. In these tests, a k-means colour quantisation

stage was used. The number k here means the number of colours that the image

will be reduced to. Similar colours are clustered together according to the near-

est pixel colour. This varied between 8 and 256. If the number of colours in the

image (for example 256) is actually less than or equal to the number given by the

parameter (for example 256) then no quantisation is performed on the image.

The last parameter is the maximum number of iterations (maximalNumberOf-

Iterations) parameter for the k-means algorithm. This is a parameter that con-

trols how may iterations are carried out to search the pixel’s neighbours for colour

similarity as part of the quantisation process.

The first point to observe is that the threshold is always very high, higher

than 60, and there is no difference in this between using the time factor or not

using it. The reason can be attributed to the point mentioned above about

180

6.6 Adding time as a factor

using the hand-segmented images as ground truth. Higher thresholds eliminate

more of the smaller details and segments that are not noticed by the human

hand-segmenter and as such the evaluation tends to prefer higher values for the

threshold parameter.

The other point to observe is that the evaluation is trying to optimise the

parameter set always with lower values for the colour quantisation parameter,

which means a higher smoothing effect on the input images. The quantisation

parameter was not higher than 25-colour palette as target for all the images in

the test but two, and actually the maximum is 50.

Noting that the maximum range is up to 256, then 50 is a relatively low num-

ber and results in high quantisation for natural images full of colours. However,

there is no specific parameter value that is general for all the images.

This can be attributed to the fact each image will have specific original colour

palettes. Also not all objects correspond comparably to the colour quantisation

process and not all objects are identified equally by the quantisation process.

The final observation which has not been mentioned before is that the timing

factor singles out the iteration parameter for ‘extra’ optimisation. The iteration

parameter by definition means more computation time and as such the evaluation

with the time factor keeps this parameter value as low as possible, not more than

10 iterations for all the images.

The evaluation without the time factor results gives no clear preference for

high or low iteration values, which make one conclude that this parameter doesn’t

have much importance for the segmentation accuracy. The evaluation without

the time factor gave no preference for a parameter set with low computation

time and as such did not consider low iteration values as an important target for

181

6.6 Adding time as a factor

optimisation.

Figure 6.14 illustrates the time taken to complete the evaluation with and

without the timing factor for the watershed segmentation. As before, the advan-

tage of using the time factor is clear in reducing the overall time for completing

the evaluation by at least half if not more.

�
�
�
�
�
�

�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
	
�

�
	
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�

�
�
�

	

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�
�

�
	
�
�
�
�

�
	
�
�
�

�
�
�

�
�
�
�

�

�

��

��

��

��

��
�����������
����
��
���
�
�������
���
����

��
�����������
������
��

�������
�������

�
��
�
��
��
	

�
�
��
�
��
��

��

�����
�
����

Figure 6.14: Watershed segmentation evaluation 20 images with and without
time factor timing

6.6.3.3 Colour Watershed segmentation evaluation

Another variation of the watershed algorithm is the colour watershed imple-

mentation introduced by Alvarado (2004). This implementation uses additional

pre/post-processing stages while still maintaining the same watershed algorithm

as a core processing stage. The parameters used here are related to the different

182

6.6 Adding time as a factor

processing stages. The kernel size parameter (kernelSize) is related to the pre-

processing noise reduction stage using a median filter. This parameter is varied

between 1 and 10, with higher values meaning a higher noise reduction effect on

the input image. The watershed threshold factor parameter (minPropForWater-

shedThreshold) is related to the watershed segmentation core processing stage.

The algorithm by design prefer over-segmented results to be processed by the

post-processing stages. This parameter is varied between 0.0 and 0.5 values, with

change resolution of 0.01. If the value is closer to zero then an over-segmented

results will be produced, and higher values closer to 0.5 will produce an under-

segmented results. The last two parameters are related to the post-processing

stage of region merging. The merging threshold (mergeThreshold) parameter

control what regions are merged. This parameter is varied between 0 and 1, with

change resolution of 0.01. If only very similar regions need to be merged then

this parameter needs to be set closer to zero. By contrast higher values closer to

1 make the merging process more tolerant and as a consequence more regions are

merged.

The other parameter is the minimum number of regions (minRegionNumber)

parameter. This used as an additional controlling parameter as a target for the

number of region to be produced by the algorithm. This parameter is varied

between 10 regions and 1000 regions. In this case the parameters’ evaluation is

divided into two different figures because the parameters have different scales, and

the minimum number of regions parameter has a wider range of value. As such

the other parameters will otherwise not be clear in the illustrative figure. Figure

6.15 shows the evaluation results for all the parameters except the minimum

regions parameter. From the figure, one can observe that the parameters related

183

6.6 Adding time as a factor

to the first two processing stages: the noise reduction and the watershed stages,

had fluctuating optimal values (as found by the GA) across all the image dataset,

and a similar result was found when running the evaluation framework on the

whole Berkeley dataset. However, the same can’t be said for the region merging

stage where the evaluation found a stable optimal result across all the images.

Therefore, for the example in this figure it’s clear that the value of the merging

threshold is optimised closer to a value of 1. This means that more regions are

merged and a lower number of regions are produced in the final segmentation

output.

��
��

��

��
��

�

��
��

��

��
��

��

��
��

��

��
��

��

��
��

	�

�	
��

��

��
��

��

��
��

��

��
��

��

��
��

�

��
�

	

��
��

�

��
��

�

��
��

��

�	
��

��

�	
��

�

�
��

�
��

�

�

�

�

�

�

�

	

�

��
�����������������
����������������������� �!���

��
�����������������
�������������������� �!���

"��
��#�$��������������� �!���

"��
��#�$������������ �!��� ���%������������������������
 �!���

���%���������������������
 �!���

�
�
��
�
�
��
��
�
�
	

�

�����

����

Figure 6.15: Colour Watershed segmentation evaluation 20 images with and with-
out time factor parameters

Figure 6.16 illustrates the evaluation results for the minimum number of re-

gions parameter. The values here don’t have a stable value between all the image

set. However, in general they tend to be low compared to the range given for

the search between 10 and 1000. The value most likely is very image specific.

184

6.6 Adding time as a factor

However, both parameters for the merging stage tend to optimise for output

segmentation with less number of regions. These under-segmented outputs cor-

respond to the hand-segmented ground truth.

�
�
�
�
�
�

�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
	
�

�
	
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�

�
�
�

	

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�
�

�
	
�
�
�
�

�
	
�
�
�

�
�
�

�
�
�
�

�

��

��

	�

��

���

���

��
�����
���������������
�����������

��
�����
�����������������
������

�
�
��
�
�
��
��
�
�
	

�

�����

����

Figure 6.16: Colour Watershed segmentation evaluation 20 images with and with-
out time factor parameters

Figure 6.17 illustrates the timing results for the GA evaluation and like the

previous trend found above, there is a clear advantage when using the time factor

to reduce the overall time taken to complete the evaluation.

6.6.3.4 K-means segmentation evaluation

The K-means segmentation algorithms is categorised as a clustering algorithm

like the mean-shift algorithm which will be discussed below. The algorithm im-

plementation uses colour information in the input image to create similar clusters

and these cluster are considered at a later stage to find what constitutes segments

in the image.

185

6.6 Adding time as a factor

�
�
�
�
�
�

�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
	
�

�
	
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�

�
�
�

	

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�
�

�
	
�
�
�
�

�
	
�
�
�

�
�
�

�
�
�
�

�

�

�

	

�

��

��

��

�	

��

��

��
�����������
����
��
���
�
�������
���
����

��
�����������
������
��

�������
�������

�
��
�
��
��
	

�
�
��
�
��
��

��

�����
�
����

Figure 6.17: Colour Watershed segmentation evaluation 20 images with and with-
out time factor timing

The algorithm uses firstly a k-means-based method to quantise the colours of

the input image. This can be tweaked using three parameters: 1) a number of

colours parameter (numberOfColors) used for the output image colour palette,

this parameter is varied between 16 and 4 colours; 2) a threshold delta param-

eter (thresholdDelta) which is used as a factor to stop the algorithm processing

iterations if the palette changes between the iteration is less than this value, this

threshold value variation is given a range between 0.1 and 1.0; and finally 3) the

maximum number of iterations parameter value, which is varied between 1 and

100 iteration. This stage is very similar to the smoothing/quantisation stage used

for pre-processing in the watershed algorithm, as discussed above. This stage is

followed by another smoothing stage that uses a k-nearest-neighbour smoothing

algorithm to smooth out the image further. The kernel size (KernelSize) param-

186

6.6 Adding time as a factor

eter is used to adjust this stage processing. The value is varied between 3 and 5

(odd numbers). Interestingly, in this case both of these stages can be considered

as a pre-processing stages rather than a ‘segments-finding’ stages. The smoothing

stage in effect acts as an extra noise removing and segment defining stage. And

the quantisation stage does most of the work at the start of the segmentation

process. Figure 6.18 illustrates three parameters: kernel size, number of colours

and the threshold delta parameter. The general observation is that there is no

significant difference between the results with the time factor and without it.

�
�
�
�
�
�

�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
	
�

�
	
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�

�
�
�

	

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�
�

�
	
�
�
�
�

�
	
�
�
�

�
�
�

�
�
�
�

�

�

�

�

�

�

	

��
��������������������������
 ��
�����������������������
 �����
������
 ��������������

�����

�����
������
 �����������

�����

��
� ���!"����#���������������

����������

��
� ���!"����#������������

����������

�
�
��
�
�
��
��
�
�
	

�

�����

����

Figure 6.18: K-means segmentation evaluation 20 images with and without time
factor parameters

The evaluation optimises for lower number of colours to quantise and higher

kernel size for the smoothing filter, those two trends highlight the optimisation

for segmentation outputs with a less number of segments in general and as such

are closer to the hand-segmented ground truth images. There is no clear trend

for the threshold delta in this results set. Further examination of the results of

187

6.6 Adding time as a factor

the values of the iteration parameter shows the improvement from adding the

time factor to the evaluation. While using the time factor the evaluation always

optimises for lower number of iterations (less than 20) compared to the results

without using the time factor. This result is illustrated in Figure 6.19.

�
�
�
�
�
�

�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
	
�

�
	
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�

�
�
�

	

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�
�

�
	
�
�
�
�

�
	
�
�
�

�
�
�

�
�
�
�

�

��

��

��

��

��

	�

��

��

��
�����������������������

�������������������

��
�����������������������

����������������

�
�
��
�
�
��
��
�
�
	

�

�����

����

Figure 6.19: K-means segmentation evaluation 20 images with and without time
factor parameters

In a similar way, using the time factor again provides much improvement of the

algorithm processing time. The improvement is not the same between different

images. However, there is always a clear improvement. This result is illustrated

in Figure 6.20.

It is also important to point out again that in the case of a high throughput

system, where the need is to process a high number of images not only 20 images

but hundreds of thousands of images (or video frames) if not even more, any time

improvement, however low, is always desirable.

188

6.6 Adding time as a factor

�
�
�
�
�
�

�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
	
�

�
	
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�

�
�
�

	

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�
�

�
	
�
�
�
�

�
	
�
�
�

�
�
�

�
�
�
�

�

�

�

	

�

��

��

��

��
�����������
����
��
���
�
�������
���
����

��
�����������
������
��

�������
�������

�
��
�
��
��
	

�
�
��
�
��
��

��

�����
�
����

Figure 6.20: K-mean segmentation evaluation 20 images with and without time
factor timing

6.6.3.5 Mean-shift segmentation evaluation

The mean-shift segmentation algorithm is another algorithm that can be cat-

egorised as a clustering algorithm, just as the k-means algorithm above. This

test uses the algorithm implementation provided by Comaniciu & Meer (2002)

in their Edge Detection and Image SegmentatiON (EDISON) System with some

modification to expose the parameters used1. Like the k-means, the mean-shift

algorithm uses the colour quantisation process as the main processing stage to

achieve its goal of producing a segmented image. This means mainly that the

segments relate to the colour of the objects in the input image, and while colour is

not the only feature that defines an object in nature it’s quite easy to identify and

1The authors’ code can be found on the following link:
http://www.caip.rutgers.edu/riul/research/robust.html

189

6.6 Adding time as a factor

define in an algorithm compared to other features (such as texture for example).

Figure 6.21 illustrates the evaluation of the first three parameters for the

mean-shift algorithm: The mean-shift search window radius in the colour space

(radiusR) and the window spatial radius in the image grid space (raduisS) pa-

rameters. In addition to the maximum number of trials for choosing a colour

of the chosen region/pixel defined as (maxNeighbourColorDistance) in the mean-

shift search process. All of these parameters are varied between values of 1 to 10

by the evaluation process. In the case of radiusS and radiusR, this represents the

window size and the maximum number of trials for the last parameter.

101085 12003 134008 135037 138032 138078 144067 163014 188005 231015 247085 28075 28096 35058 35070 353013 368078 76002 94079 97017
0

2

4

6

8

10

12

maxTrial without time factor maxTrial with time factor radiusS without time factor radiusS with time factor radiusR without time factor radiusR with time factor

Pa
ra

m
et

er
 v

al
ue

Image
Number

Figure 6.21: Mean-shift segmentation evaluation 20 images with and without
time factor parameters

The main observation here is concerned with the effect of using the time

factor on the value of radiusS parameter. With the time factor, the value is

always equal or less than 2 in the 1-10 range. While without the time factor,

the same parameter value does not have a specific trend, and changes between

190

6.6 Adding time as a factor

different images in the test. The best explanation for this is that this parameter

doesn’t have a great significance for the quality of the segmentation. However,

higher values of this parameter are computationally expensive. There is no similar

trend for the radiusR parameter, and the time factor doesn’t have any effect on

the number of trial parameters.

The other parameter used with the mean-shift algorithm is the maximum

colour distance between neighbouring regions (maxNeighbourColorDistance). The

results for this parameter are illustrated in Figure 6.22.

�
�
�
�
�
�

�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
	
�

�
	
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�

�
�
�

	

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�
�

�
	
�
�
�
�

�
	
�
�
�

�
�
�

�
�
�
�

�

�

��

��

��

��

��

��

��

��
�����������������������
������������� �����

��
�����������������������
���������� �����

�
�
��
�
�
��
��
�
�
	

�

�����

����

Figure 6.22: Mean-shift segmentation evaluation 20 images with and without
time factor parameters for maxNeighbourColorDistance parameter

This parameter is varied between 2 and 40 value and although this parameter

is generally always above 25, there is no clear influence of the time factor on

changing the value selection for this parameter. Again in a similar trend the time

factor addition to the evaluation process optimised the computational time per-

formance for the whole process, where the time taken to complete the evaluation

191

6.6 Adding time as a factor

for each image is always less than 35 minutes. Figure 6.23 illustrate this result.

�
�
�
�
�
�

�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
	
�

�
	
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�

�
�
�

	

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�
�

�
	
�
�
�
�

�
	
�
�
�

�
�
�

�
�
�
�

�

��

��

��

��

��

	�

��

��

�

��
�����������
����
��
���
�
�������
���
����

��
�����������
������
��

�������
�������

�
��
�
��
��
	

�
�
��
�
��
��

��

�����
�
����

Figure 6.23: Mean-shift segmentation evaluation 20 images with and without
time factor timing

Although in some cases, such as image 144067 for example, the time taken

without the time factor is less than the time taken with the time factor for the

evaluation by about 10 minutes, the overall improvement over all the images set

under the test is still greater. Even though some images has a different execution

time for the segmentation process, the parameter choice has a bigger effect on

the segmentation execution time. Overall, the parameters can be optimised to

perform a computationally efficient segmentation process while also not losing

any of the required segmentation quality in the process.

192

6.6 Adding time as a factor

6.6.3.6 Graph-based segmentation evaluation

The graph-based segmentation algorithm introduces a new implementation idea

to finding segments in images and for this experiment Felzenszwalb & Hutten-

locher’s implementation was used. This implementation has three main parame-

ters: a smoothing value (smoothingSigma) for a pre-processing Gaussian filter, a

threshold value (thresholdK) for the core thresholding stage, and finally a mini-

mum segment size parameter (postSgmntSize) imposed by a post-processing stage.

An interesting observation to note is that the graph-based algorithm is com-

posed of three distinct processing stages, some of these stages were used in ear-

lier algorithms’ implementation (like pre-processing smoothing filters, or post-

processing size-enforcing stages) to be used here again. This type of segmenta-

tion algorithm design keeps repeating itself even across different segmentation

algorithm categories in the taxonomy. Figure 6.24 illustrates the evaluation re-

sults of the smoothing filter parameter. This parameter is varied between 0.01

and 1.0 range with change resolution of 0.01, following the algorithm’s authors

suggestion. In general this value is larger than 0.4. However, there is no specific

observation on the effect of the time factor on the value of this parameter across

all the images.

Compared to previous results we should expect a clear trend of a higher

smoothing value for this parameter. However, this not the case. This can be

explained by the use of the post-processing stage that can have a greater defining

effect on the output segmentation that over-shadows the effect from the smoothing

filter. As such the GA evaluation prefers to optimise on that parameter value.

Figure 6.25 illustrates the evaluation results of both the threshold and the

193

6.6 Adding time as a factor

�
�
�
�
�
�

�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
	
�

�
	
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�

�
�
�

	

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�
�

�
	
�
�
�
�

�
	
�
�
�

�
�
�

�
�
�
�

���

���

���

���

���

���

��	

���

���

��

���

�
����������
������������
��
������

�
����������
���������
��
������

�
�
��
�
�
��
��
�
�
	

�

�����

����

Figure 6.24: Graph-based segmentation evaluation 20 images with and without
time factor for smoothingSigma parameter

segment size parameter. The threshold parameter is varied between 10 and 1000,

and the segment size parameter is varied between 1 and 2000 ranges both with

change resolution of 1, following the algorithm’s authors’ suggestion.

The threshold value tends to be of a lower values, as the value is usually

around 500. However, in a few cases it is even lower, as low as 100. The most

significant observation was the value of the segment size parameter that affects

the post-processing stage. It has a very clear trend in which the segment value

is always 1500 or higher but in case of one image, image 28096, is lower than

1500. However, it is still higher than 800. This trend for higher segment sizes is

the same with and without using the time factor. In other words, the evaluation

framework is again trying to optimise the results to match the hand-segmented

images, which have few segmented regions that focus on the main and centred

objects in the image. Furthermore, the pruning stage is computationally cheap.

194

6.6 Adding time as a factor

�
�
�
�
�
�

�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
	
�

�
	
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�

�
�
�

	

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�
�

�
	
�
�
�
�

�
	
�
�
�

�
�
�

�
�
�
�

�

���

���

	��

���

����

����

����

�	��

����

����

��
���������������������
�����

��
�����������������������
 ��������������������������
�����

�����������������������
�����

�
�
��
�
�
��
��
�
�
	

�

�����

����

Figure 6.25: Graph-based segmentation evaluation 20 images with and without
time factor parameters

Thus, the evaluation framework didn’t find a reason to optimise it.

No single parameter has a higher computation time and, therefore, no such

parameter will be singled out by the time factor test. However, the use of the time

factor still provides the same time improvement in the overall set of experiments

across all images. This result is illustrated in Figure 6.26.

6.6.4 Applying time-weighted parameter search on objec-

tive segmentation evaluation

The other significant evaluation method for image segmentation is using objec-

tive techniques as discussed earlier in Section 2.4. As mentioned earlier in (Zhang

et al., 2008), others have already surveyed the use of objective evaluation methods

for image segmentation. The aim here is to explore the effect of the time-weighted

GA parameter search while using objective evaluation and comparing the seg-

195

6.6 Adding time as a factor

�
�
�
�
�
�

�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
	
�

�
	
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�

�
�
�

	

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�
�

�
	
�
�
�
�

�
	
�
�
�

�
�
�

�
�
�
�

�

�

�

�

�

�

	

��
�����������
����
��
���
�
�������
���
����

��
�����������
������
��

�������
�������

�
��
�
��
��
	

�
�
��
�
��
��

��

�����
�
����

Figure 6.26: Graph-based segmentation evaluation 20 images with and without
time factor timing

mentation evaluation results with the results achieved earlier with the subjective

evaluation based on hand-segmented ground truth images.

6.6.4.1 Objective evaluation metrics definitions and equations

Objective evaluation methods (also known as unsupervised evaluation or stan-

dalone methods) by definition don’t use any reference image to perform the seg-

mentation evaluation. For objective evaluation, the F measure evaluation method

was chosen as a representative example. F measure evaluation method was intro-

duced by Liu & Yang (1994). This evaluation measures the average squared colour

error of the segments. Additional improved measures were proposed by Borsotti

et al. (1998), F’ and Q measures, which build on the F measure definition to

minimise any bias for over-segmentation. When a segmentation algorithm pro-

196

6.6 Adding time as a factor

duces more segments than desired for a single object in the image, this outcome

is called over-segmentation. The opposite outcome is called under-segmentation,

when less segments are produced than needed to define the objects in the input

image and as such two or more objects will be defined by one segment.

To define the F, F’ and Q measures, the following notations will be used. Let

S is the input image with height Sh and width Sw, both in pixels. Let AS be the

area of the input image as follow: AS = Sh × Sw. A segmentation is defined as a

set of R regions. Pi is the set of pixels in region i, and Ai = �Pi� denote the area

of the region i. x denote a single colour component in the image, and Vx(p) is the

value of component x for the single pixel p. Thus, the two important equations to

calculate evaluation metrics are: a) the average value of a single component for

each region, and from that we can get b) the squared colour error of each region.

For the colour component z average value for region i equation can be defined as

follow:

V̂z(Pi) =

�
�

p∈Pi

Vz(p)

�
/Ai

✞✝ ☎✆6.9

The squared colour error e of region i and component z can be defined as

follows:

e2
z
(Pi) =

�

p∈Pi

�
Vz(p)− V̂z(Pi)

�2 ✞✝ ☎✆6.10

The F measure for image I with R segmented regions can be defined as follows:

197

6.6 Adding time as a factor

F (I) =
√

R
R�

j=1

�
e2

j�
Aj

� ✞✝ ☎✆6.11

The F � measure for image I with R segmented regions can be defined as

follows:

F �(I) =
1

1000 · AI

����
MaxArea�

a=1

[R(a)]1+1/a

R�

j=1

e2
j�
Aj

✞✝ ☎✆6.12

Where R(a) is the number of segmented regions in the segmented image with

area size that equal a exactly, and MaxArea is the area of the largest region in

the segmented image.

The Q measure for image I with R segmented regions can be defined as follow:

Q(I) =

√
R

1000 · AI

R�

j=1

�
e2

j

1 + log Aj

+

�
R(Aj)

Aj

�2
� ✞✝ ☎✆6.13

The F and Q measures already penalises over-segmentation by a weighting

proportional to the square root of the number of segments. The F measure is

also unaffected by the type or the contents of the input image and doesn’t need

any user defined parameters. As such it is a completely unsupervised evaluation

method. So the F measure is a good representative objective evaluation method.

For objective evaluation, the F measure evaluation method was chosen as a rep-

resentative example. Further discussion on the author’s findings will be provided

198

6.6 Adding time as a factor

below.

6.6.4.2 Results of the F measure evaluation

This test performs the same evaluation test illustrated earlier in Section 6.6.3.5

with subjective evaluation methods on the Mean-shift segmentation. However,

instead of using supervised evaluation with hand-segmented reference images, the

F measure was used as the evaluation method. This provided the cost function

for the GA parameter search.

Figure 6.27 illustrates the objective evaluation results on the mean-shift seg-

mentation similar to Figure 6.21. The only difference is the use of the objective

evaluation F measure.

1
0
1
0
8
5

1
2
0
0
3

1
3
4
0
0
8

1
3
5
0
3
7

1
3
8
0
3
2

1
3
8
0
7
8

1
4
4
0
6
7

1
6
3
0
1
4

1
8
8
0
0
5

2
3
1
0
1
5

2
4
7
0
8
5

2
8
0
7
5

2
8
0
9
6

3
5
0
5
8

3
5
0
7
0

3
5
3
0
1
3

3
6
8
0
7
8

7
6
0
0
2

9
4
0
7
9

9
7
0
1
7

0

1

2

3

4

5

6

7

8

9

10

radiusS without time factor radiusS with time factor radiusR without time factor radiusR with time factor

P
a

ra
m

e
te

r
v
a

lu
e

Image
Number

Figure 6.27: Objective evaluation of Mean-shift segmentation on 20 images with
and without time factor for radiusS and radiusR parameters

The main observation is the effect of using the time factor with the objective

evaluation on the value of radiusS parameter is similar to the effect found when

199

6.6 Adding time as a factor

using the subjective evaluation of the hand segmented images. That is with the

time factor the value of radiusS is always equal or less than 2 in the 1-10 range.

While without the time factor the same parameter value does not have a specific

trend, and changes between different images in the test. One conclusion here

is that the radiusS is a computationally expensive parameter with high values

and as such the time-weighted search method prefers lower values. Additionally,

we can conclude that the F measure is very similar to the subjective evaluation

methods. The reason is that subjective evaluation is dependent on the human

hand-segmented images, which usually contain a very low number segments that

only correspond to the human high-level understanding of the objects in the

images. Likewise the F measure by design prefers segmentation results with less

segments. Hence, the parameters for the segmentation methods tested above in

Section 6.6.2 with the subjective supervised evaluation methods produced similar

results and trends under the objective F measure evaluation to what was achieved

earlier with the subjective evaluation.

In summary, the results found for F, F’, and Q (in addition to other intra-

region uniformity measures like ECW) were similar to the results obtained by

Zhang et al. (2008). These measures can be improved by decreasing the number

of the regions found in the final segmentation results. Furthermore, segmentation

methods that produce segments with few and uniform regions, choose the main

objects (with uniform colours), and discards both the textures and noises in the

input image scores higher with these measures. In other words, segmentation

results very similar to the hand-segmented reference images were used in the

supervised evaluation. In addition, there are other objective methods that can

overcome some of this bias against noisy/textured images segmentation. However,

200

6.6 Adding time as a factor

they have other disadvantages too. The aim is not to use one measure, but a few of

them while balancing between them. The objective evaluation and the subjective

supervised evaluation will be discussed further below.

With regard to the effect of the time factor on computation performance of the

evaluation, the trend is still evident and using the time-weighted search optimises

the whole evaluation process. With the time factor the overall evaluation process

doesn’t take more than 38 minutes for any of the images while there it is not

possible to predict how long it can take without the time factor as the results

fluctuate. Figure 6.28 illustrates the result.

1
0
1
0
8
5

1
2
0
0
3

1
3
4
0
0
8

1
3
5
0
3
7

1
3
8
0
3
2

1
3
8
0
7
8

1
4
4
0
6
7

1
6
3
0
1
4

1
8
8
0
0
5

2
3
1
0
1
5

2
4
7
0
8
5

2
8
0
7
5

2
8
0
9
6

3
5
0
5
8

3
5
0
7
0

3
5
3
0
1
3

3
6
8
0
7
8

7
6
0
0
2

9
4
0
7
9

9
7
0
1
7

0

20

40

60

80

100

120

Total Elapsed time
without time factor
(min)

Total Elapsed time with
time factor (min)

T
im

e
 E

la
p

s
e
d

 i
n

 m
in

u
te

s

Image
Number

Figure 6.28: The timing performance of the objective evaluation of Mean-shift
segmentation on 20 images with and without time factor

So for the case of using the evaluation framework for experiments with many

images (from hundreds to thousands and more) or with video frames from a one

to multiple streaming videos, the optimisation achieved with the time factor will

201

6.7 Concluding Remarks

be too significant not to be utilised to improve the evaluation processing speed.

6.7 Concluding Remarks

6.7.1 Summary

This chapter introduced some new concepts that improve and speed up the seg-

mentation evaluation process: using a GA to reduce the search time significantly;

and introducing a polishing stage to improve the GA results and reduce the num-

ber of generations needed to reach the GA optimal solution and as a consequence

improve the timing performance. Furthermore using a time-weighted cost func-

tion for the GA allows the GA to optimise the segmentation results on the basis

of time in addition to the output quality.

All of these ideas provide improved computation performance with better

quality (avoiding local minima solutions). Thisis improvement is found in both

the parameter search for individual images and also overall evaluation for a set

of images. Also all of these ideas were explored in detail and tested in different

research directions: choice of segmentation algorithms, choice of image set, and

parameter type. There are some important observation that can be concluded

from the results found, which are general observation that cover other segmen-

tation algorithms not considered in this section for space reasons, even though

they were explored during experimentation.

Firstly, the segmentation algorithms are ‘evolving’ with time while still using

the old techniques as sub-stages in some way. For example some implementations

of the edge detection algorithm uses thresholding as the second stage while also

202

6.7 Concluding Remarks

tries to improve over the thresholding results by adding a pre-processing smooth-

ing filter. Or a better example is the graph-based segmentation algorithm that

uses a pre-processing smoothing stage, a core thresholding stage and finally a

post-processing stage that imposes a certain size for the output segments.

While in some cases this ‘evolution’ is quite significant and introducesa inno-

vative methods to solve the same problem, like using a non-maxima suppression

technique instead of thresholding as introduced by Canny and as such the Canny

edge-detection method can be seen as a wholly new method. The author still

thinks the links between these algorithms are significant and could span differ-

ent branches of the taxonomy as introduced at the start of this thesis. Most

similarities are found in the pre/post-processing stages that are used in different

segmentation methods. However, these are not usually exposed to the algorithm

user.

For example one of the processing components that was encountered regularly

during this research is the smoothing filter, which is regularly used as a pre-

processing stage. The colour segmentation algorithms use these smoothing filters

to usually quantise the coloursreduce the noise while preserving the edges in the

images and the noise-reduction also provide regions with uniform colours which

as a consequence reduce the number of the colours in the image palette before

moving it to the core processing stage that will define the segments’ boundaries.

It was clear from the results above that this pre-processing stage is a useful

stage in providing a good segmentation results, while being a relatively cheap

computation stage.

With subjective evaluation using human hand-segmented images the higher

smoothing always provides better results that are very close to the hand-segmented

203

6.7 Concluding Remarks

results provided by the Berkeley database. The higher smoothing levels corre-

spond to a lower number of segments that define the objects in the images and

in most cases closely resemble the hand-segmented results. Because the hand-

segmented images are dependent on human perception of the image. And the

human perceptions and high level semantic human understanding of the image

are both also affected very highly by the colours in the images compared to the

other features (i.e. textures,brightness, among others).

This work concentrated on colour segmentation. However, to some extent,

some of the algorithms tested used stages that take into consideration the bright-

ness and texture cues from the image. An example is the anisotropic-based seg-

mentation algorithm which provides slightly better quality results in some cases,

though with slightly higher computation cost. Additionally, the pre-processing

stage was not the only significant stage for the segmentation quality. A post-

processing stage that eliminates segments according to a pre-defined segments

size or number of segments required in the output image also provides good re-

sult quality in the case of both the subjective and objective evaluation. It is also

has a relatively cheap computation cost compared to the core boundary-defining

stage of the segmentation algorithm.

6.7.2 Discussion

The segmentation algorithm design can be abstracted into a design that includes

three stages: 1) a pre-processing stage; 2) a core boundary defining stage; and

3) a post-processing stage(s). Pre-processing stages are usually used to simplify

the details in the image before applying the core segmentation processing. So in

204

6.7 Concluding Remarks

case of colour images, smoothing or colour quantisation is a good pre-processing

stage. Post-processing stages deal with the outcome of the core segmentation

stages as segments rather than image features. For example, they can be as sim-

ple as defining a certain size for the segments’ sizes to a relatively more complex

processing stages like for example creating a binary tree of the segments and com-

bining a closely related segments according to a pre-defined parameter (Salembier

& Garrido, 1998, 2000).

Figure 6.29 illustrates the idea explained above of the segmentation design

including the different stages using the graph-based and the mean-shift segmen-

tation as an example from different branches of the taxonomy that shares similar

design stages.

Smoothing
filter

Thresholding
stage

Segments
Pruning stage

Pre-Processing
stage(s)

Core segmentation stage
(boundary defining stage)

Post-Processing
stage(s)

Abstract
Segmentation

Algorithm Design

Graph-based
segmentation

Meanshift
filter

Boundary Defining
Stage

Segments
Pruning stage

Meanshift
segmentation

Figure 6.29: The three stages of the segmentation algorithm design with example
of the graph-based and the mean-shift segmentation algorithms

Now not all the segmentation algorithm designs correspond clearly with the

abstract design illustrated above, and in some cases some designs don’t use one

of the stages (or don’t even use both stages, usually in simpler and older seg-

205

6.7 Concluding Remarks

mentation algorithms). However this design gives a good general impression of

the processing components of the segmentation algorithm. As seen in the results

of this chapter, the pre-/post-processing stages have a greater effect on the final

segmentation quality than the processing power spent on iteration of the bound-

ary defining stage for example. In our research, these stages usually are focused

on colour features of the images. However, combining other features to filter the

images for the boundary defining stage can prove to be even more useful as found

by Martin et al. (2004).

The second point is influenced by the fact that subjective evaluation is de-

pendent on the hand-segmented images as ground truth. The evaluation tends

to optimise the parameters to find solutions that provide segmentation results

closer to the hand-segmented images. Hence, the results are focused on main

objects in the hand-segmented images. Human subjects, while identifying and

segmenting objects in the images (or in the world around them), are affected by

both physiological reasons (the deficiencies in the human eye colour perception

and other tendencies to not distinguish the slight changes in the colour levels)

and psychological reasons (human tendencies to have some preconception and use

previously acquired-knowledge to identify objects in their sight frame).

The segmentation algorithms are not affected by a these deficiencies. However,

the smoothing filter that provides highly-smoothed results actually is providing

these ‘human deficiencies’ and hence the evaluation is trying to optimise on the

parameter related to this fact and similarly with other parameters. And even

with the objective evaluation, the F measure in this case is by design and was

made to prefer segmentation outputs with lower number of segments (and large

segments in the same time), which resembles closely the hand-segmented ground

206

6.7 Concluding Remarks

truth used by the subjective evaluation. As a result, the objective evaluation

chooses parameters that correspond closely with the parameter set found with

the subjective evaluation. The other measures based on the F measure, the F’

and the Q, which categorise as intra-region uniformity evaluation metrics also

exhibit bias for under-segmented and less noisy images (hence the significant

effect of the smoothing filter on the final results) and this conclusion corresponds

closely with the conclusion found by Zhang et al. in his extensive survey paper

(Zhang et al., 2008).

Even for other objective evaluation methods that don’t have these biases,

Zhang et al. (2008) concludes after his extensive survey that all the existing

objective evaluations assume that the pixels in the input images follow one ho-

mogenous distribution model. They usually uses a Gaussian-based distribution

model, and are only focused on low-level features of the images and don’t include

any high-level semantic understanding of the objects in the images. Higher-level

semantics can only usually be employed for segmentation algorithms that are

aimed at certain applications. Medical cancer cell identification is one example,

where a prior medical knowledge of the shape and size of the cancer cell can be

incorporated into the evaluation, and also in the segmentation algorithm design.

Another method to incorporate this prior knowledge is by using machine learn-

ing techniques. For example, using a continuous evaluation process built into the

segmentation process (like the machine learning frameworks mentioned in the

introduction) (Zhang et al., 2005, 2006). The author thinks that this approach is

an interesting approach for future work in this area and will need further study

in the coming years. And our findings of the improvement achieved with the GA,

polishing stage, and the time-weighted cost functions can be easily implemented

207

6.7 Concluding Remarks

in such frameworks.

In conclusion, the author thinks that evaluating different segmentation algo-

rithms against each other will not give the best way of achieving the goal of the

ultimate segmentation algorithm design, but looking at the algorithms’ process-

ing stages and how they affect the segmentation results. Furthermore the future

approaches to designing better segmentation algorithms should not be based on

producing new designs of the segmentation algorithms that are usually slightly

better under certain condition, but looking at what processing stages that make

the segmentation algorithms and how effective they are in both the segmentation

quality and the computation performance. So instead of building the machine

learning framework that optimises the segmentation algorithms, we can provide

the framework with interchangeable and parameter-varied filtering components

that can be combined to produce a suitable algorithms. We can’t emphasise more

the need to include the computation performance as an evaluation metric which

is usually neglected in previous research while only focusing on the segmentation

quality.

208

7
Conclusion

The research for this thesis explored the field of colour image segmentation and

the balance required to achieve a good quality segmentation results while still

attaining an efficient processing performance. As segmentation is but only one of

the stages in any computer vision or image understanding application, a highly

efficient and fast computation process is a goal in itself. However, speed itself is

of little value if the results are wrong, and as such, the segmentation evaluation

field has also progressed. This field provides a wide variety of methods to test

the quality of segmentation results and the performance of the segmentation al-

gorithms and their implementations. The author’s research focussed on finding

the best ways to optimise the current set of segmentation algorithms, especially

because there is still no general mathematical model that can be used as a basis

for a general-solution to segmentation. The optimisation aims to achieve the best

segmentation quality possible with the methods available while still performing

this in a computationally efficient manner. The research led us to the impor-

209

7.1 Findings

tance of the segmentation parameters used and how they relate to the general

image filtering processes that are used across the different categories of image

segmentation algorithms.

Along the way, the research led to an efficient implementation of an evalua-

tion set-up for the segmentation algorithms to help with optimising the results.

Combining cluster computing and genetic algorithms improves the overall search

speed for the best parameters for a number of segmentation algorithms. This

framework can be modified and improved to help related research into evaluation

in the image-processing field.

7.1 Findings

The thesis had two focuses: firstly, understanding the image-segmentation process

and what affects this process’ output segmentation quality and, at the same time,

affects its overall performance. To achieve this, the second focus was using and

optimising the evaluation framework to help in the same goal. So, for example,

adding the GA module optimised the parameter search speed to arrive at an

optimal parameter set. In addition, the evaluation framework was enhanced using

distributed computing and genetic algorithms. Both areas brought important

insights and improved the author’s understating of the general requirements and

trade-offs faced by a computer vision system designer.

The performance gained by the evaluation framework improvements can help

in implementing the evaluation as an online system integrated with the segmen-

tation system itself for continuous testing and adjustment of the segmentation

parameters depending on the input images. Those inputs can have high com-

210

7.1 Findings

putational requirements, especially if consideration is taken of the fact that the

input can be a continuous video stream and not one but multiple streams. The

advent of high definition images/videos also makes demands on any processing

system.

The first contribution of this thesis is the proposal for a computationally ef-

ficient environment for conducting quantitative algorithm testing for image seg-

mentation. Utilising a harness in a scripting language provides a structured route

to testing, in such a way that various evaluation metrics can be applied. To im-

prove the speed of evaluation a cluster computer can act as a throughput engine.

However, this assumes a full or exhaustive search is made, whereas the search

can be optimised by using a genetic algorithm as a convenient tool. The thesis

provides guidance on how to apply a genetic algorithm to the problem of find-

ing input parameters to a segmentation algorithm. The given parameters should

improve the segmentation according to an objective or cost function.

The second contribution arose from the experimental output of the first con-

tribution: the importance of the parameter settings on the final segmentation

quality and the execution performance. Furthermore, this resulted in finding

the link between those parameters and the underlying components of the image-

processing filters that are used to build the different segmentation algorithms.

The process basically is divided into three stages: 1) pre-processing stage; 2)

core segmentation stage; and 3) a post-processing stages. Using common image-

filtering stages between the different image segmentation algorithms is helpful.

Those filters usually are basic filters (like a smoothing filter, colour quantisation,

and region pruning). However, they have a significant affect on the segmentation

performance and output quality.

211

7.2 Reflections

7.2 Reflections

The second contribution is the more important finding in the author’s opinion.

Research into segmentation algorithms tends to introduce new ideas and im-

plementations in their algorithms’ design. Usually these new algorithms only

provide slightly better results for certain applications. Furthermore, the research

only provides test results on a few images or a very limited set without image

type variety, that is the results are application-specific. One of the reasons for

the author’s belief is that there is no standard framework to test and evaluate

the segmentation algorithms, or even a standard set of images for evaluation that

different segmentation research can use and compare results. Therefore, provid-

ing this facility will help contrast the segmentation results across the field, and

advances can be quantified in a better way.

Although this thesis discussed several solutions for image segmentation eval-

uation frameworks, and image data-sets, and used one of them for testing: the

Berkeley Segmentation data-set, and researched several approaches to evaluation

(analytical, subjective and objective), each has some shortcomings that have been

highlighted previously. To summarise:

The research found that, by design, most algorithms share quite similar pro-

cessing stages, even across algorithms that belong to different categories in the

taxonomy presented. Furthermore, these processing stages are actually related

to the segmentation algorithms’ input parameters and certain values are quite

advantageous for both the segmentation quality and computation performance.

For example, using the Berkeley hand-segmented images, then smoothing stages

with the high value for smoothing actually provides better results and reduces the

212

7.2 Reflections

over-segmentation. Hand-segmentation seems very dependent on the recognition

of colour in the images and, although the boundary-defining processing with-

out any pre-processing can usually define boundaries in coloured objects, these

are usually subtle and ‘missed’ or unrecognised by the humans. Even segmen-

tation evaluation using computer-synthesised images as ground truth can hardly

be generalised. (Haralick, 2000; Zhang et al., 2008). Furthermore, for most

reference images, there is no guarantee that one generated reference image, ei-

ther human-segmented or computer-synthesised, is better than another. In other

words, reference images are essentially subjective. Thus, evaluation methods us-

ing these reference images are considerably subjective. Similarly, both subjective

and objective evaluation methods have their own shortcomings. For example,

subjective evaluation has a dependence on the external definition of the segments

before starting the evaluation, and hand-segmentation can take a long time to

complete. For objective evaluation, there is still no one method that can be

considered as the best evaluation method.

On the other hand, the recent suggestions and advances in research using

machine-learning techniques for both improving and speeding-up the segmenta-

tion process are, the author thinks, a step in the right direction. This research

shows clear advantages to using GAs to speed-up the evaluation process and to

arrive at an optimal answer faster. The framework itself was improved further

by using mathematical optimisation in a polishing stage and testing the seg-

mentation quality and computation performance according to their parameter

variations. The author can’t emphasise enough the advantage gained using the

time-weighted cost functions in the evaluation process, and future research will

need to take advantage of this improvement.

213

7.3 Improvements and Further work suggestions

Evaluation Framework

Input

image(s)

Segmentation Algorithm

Pre-Processing

Stage(s)

Core-processing

Stage

(Boundary-Defining)

Post-Processing

Stage(s)

Evaluation Process

Cost Function
Evaluation

method(s)

Output

image(s)

Optimised input

parameters and

processing

stages choices

Figure 7.1: An abstract graph of an improved and combined segmentation and
evaluation framework

7.3 Improvements and Further work suggestions

For future work, the aim is to access these processing stages discussed above, and

add an additional factor of variation into a continuous evaluation framework that

can optimise the segmentation process as more input images are processed, as

suggested recently by Chabrier et al. (2008); Zhang et al. (2006). The difference

will be, instead of only optimising parameters for the segmentation algorithms as

a whole, as the current solution proposes, the pre-/post-processing filters need to

be varied too as needed (turning them on/off) while also varying their parameters

to optimise the final segmentation results. This we propose will both provide

better segmentation results and allow for higher sensitivity for different image

segmentation applications.

Figure 7.1 illustrates an abstract graph for a future system of combined seg-

mentation and evaluation framework. The framework should be scripted to run

the same test on a set of images automatically. However, the framework in this

case will not only vary the parameter automatically for a pre-set of parameters

range and step value, as was carried out in this research, but will also adjust and

214

7.3 Improvements and Further work suggestions

choose the type and the number of pre-/post-processing stages. The framework

can also be improved to automatically run not only one configured evaluation

algorithm, but also run multiple of evaluation algorithms, the results of which

can be combined in the end to choose the best parameter sets and processing

stages to segment the next image in the set. The cost function can also combine

a time-weighted factor to take into consideration the computational performance

of the segmentation algorithm.

Although this framework will add additional steps to the segmentation pro-

cess, these steps can be distributed to different processing nodes, either multiple

processors or processor cores. So for example at the start of the framework run, a

couple of segmentation processes can be started on different nodes and then their

results can be sent for evaluation. In this case, each evaluation operation can also

take place on a completely different processing node. The evaluation results can

be then fed back to optimise the next batch of the segmentation runs, and this

cycle can continue completely automated and independent from external input

after the first start.

215

A
Publications

Published:

1. H. Al-Muhairi, M. Fleury, and A. Clark. A computationally efficient evalu-

ation environment for image segmentation. In International Conference on

Machine Vision ICMV07, pages 129–134, 2007. (Al-Muhairi et al., 2007a)

2. H. Al-Muhairi, M. Fleury, and A. Clark. Computationally efficient quanti-

tative testing of image segmentation with a genetic algorithm. In IEEE 3rd

Int. Conf. on Signal-Image Technology and Internet-based Systems, 2007.

(Al-Muhairi et al., 2007b)

3. H. Almuhairi, M. Fleury, and A. Clark. Time-weighted quantitative testing

of image segmentation with a genetic algorithm. In Signal Processing and

Information Technology (ISSPIT), 2009 IEEE International Symposium on,

pages 271 –276, 14-17 2009. (Almuhairi et al., 2009)

4. H. Almuhairi, M. Fleury, and A. F. Clark. Time-weighted evaluation of im-

216

age segmentation with a genetic algorithm. In 5th International Conference

on Computer Vision Theory and Applications (VISAPP 2010), Angers,

France, May 2010. (Almuhairi et al., 2010c)

Submitted:

1. H. Almuhairi, M. Fleury, and A. F. Clark. Genetic algorithm-based testing

of image segmentation algorithms. In S. Ramakrishnan and I. M. M. El

Emary, editors, Computational Intelligence Techniques in Handling Image

Processing and Pattern Recognition. LAP Lambert Academic Publishing,

2010. (Almuhairi et al., 2010a)

2. H. Almuhairi, M. Fleury, and A. F. Clark. Parameter-orientated segmenta-

tion algorithm evaluation. In The 3rd International Conference on Image

and Signal Processing (CISP 2010), Yantai, China, 2010. (Almuhairi et al.,

2010b)

217

B
Appendix B

B.1 Thresholding evaluation

For this experiment, two parameters were exposed from the thresholding algo-

rithm to be varied by the GA evaluation framework. Thresholding algorithm

produce a ‘binary’ segmentation of either ‘objects’ and ‘background’ pixels as

detailed in Chapter 2. The parameters define the thresholds values for the pixels,

where within the range between these two values the pixels are considered as

‘object’ and the rest as ‘background’ segments.

Figure B.1 illustrate the results of the parameters for the Thresholding algo-

rithm. In this case there was no distinguishable trend in the parameters found as

solutions between the different images under test or even between the evaluation

without and with the time factor. However this not the case with all the rest of

the algorithms as will be described below for other algorithms cases.

The other important illustration shows the same images set -represented on

218

B.1 Thresholding evaluation

��
��
��

��
��
�

��
��
��

��
��
��

��
��
��

��
��
��

��
��
	�

�	
��
��

��
��
��

��
��
��

��
��
��

��
��
�

��
�

	

��
��
�

��
��
�

��
��
��

�	
��
��

�	
��
�

�
��

�
��
�

�

���

���

���

���

���

��	

���

���

��

�

�
����������
�������
��������
����
�

�������������
�������
���
���������
�

�
����������
�������������
����
�

�������������
�������������
����
�

�
�
��
�
�
��
��
�
�
	

�

�����

����

Figure B.1: Thresholding evaluation 20 images with and without time factor
parameters

the x-axis like above- however representing the time taken to complete the full

evaluation for 20 generations with and without the time factor. The y-axis rep-

resent the time taken in minutes.

Figure B.2 shows the timing results for the thresholding algorithm, in the case

its clear that the effect of adding the time factor on the overall time taken by the

evaluation is to lower the overall time taken compared to the evaluation without

the time factor.

In general, for the set of 20 images tested on, the evaluation with the time

factor didn’t take more than 30 minutes and not less than 10 minutes, as such,

there is very small difference between the time taken among all the images.

This not the case without the time factor, the reason is that without the

time factor, the GA evaluation have no consideration for the time taken by the

parameter combination solution in each population created and in some cases

219

B.1 Thresholding evaluation

�
�
�
�
�
�

�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
	
�

�
	
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�

�
�
�

	

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�
�

�
	
�
�
�
�

�
	
�
�
�

�
�
�

�
�
�
�

�

��

��

	�

��

���

���

���

�	�

��
�����������
����
��
���
�
�������
�������

��
�����������
������
��

�������
�������

�
��

�
��

��
�
�
�
�
��
�
��

��
�

�

�

!��"��#��$��

Figure B.2: Thresholding evaluation 20 images with and without time factor
timing

can actually spend more time with the parameters sets that are computationally

expansive however don’t actually provide any comparable improvement on the

segmentation accuracy.

And for the same reason there is a big difference between the time taken

between different images and even different runs for the same image, in this case

for the results illustrated in Figure B.2, between a maximum of 150 minutes or

take as minimum as 20 minutes. And as expected the GA evaluation without the

time factor don’t optimise the results on the time taken basis and as such don’t

have any preferences for population that are time efficient.

So in this case even when the time factor didn’t provide any new insights

on the parameters values, where further tweaking of the evaluation setting can

provide some useful results, its still the great saving in the time taken to complete

220

B.2 Edge Detection evaluation

the evaluation alone is a great improvement that we would like to highlight here

with these results.

B.2 Edge Detection evaluation

Edge Detection similarly have two parameters for use in the evaluation. In this

case, the parameters are lower threshold (also called maximal threshold), which

represent the fraction of the automatically computed maximum threshold found

in the input image.

And higher threshold (also called minimum threshold) is used to consider if

the neighbour pixels to the edges found by the first parameters are also edges if

they are higher than the product of the two parameters.

A more detailed illustration with visual segmentation results will be provided

in the coming Chapter 4. For this section the focus is on the timing factor effect

on the results.

Figure B.3 show the parameters found to be best with the GA evaluation with

and without the time factor. In this case, unlike the thresholding, there is a clear

‘best’ parameter set values and there is no difference between the results without

the time factor and with the time factor, as such there is no parameter that is

time intensive.

Its important to note here that these two parameters are actually related to

sub-stage in the edge detection, the non-maxima suppression stage, which is sim-

ilar to a thresholding stage, and actually can be interchanged with thresholding,

however for our testing here we used the non-maxima suppression to test more

segmentation sub-processing stages.

221

B.2 Edge Detection evaluation

�
�
�
�
�
�

�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
	
�

�
	
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�

�
�
�

	

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�
�

�
	
�
�
�
�

�
	
�
�
�

�
�
�

�
�
�
�

���

���

���

���

���

���

��	

���

���

��

���

�
����������
�������
��������
����
�

�������������
�������
���
���������
�

�
����������
�������������
����
�

�������������
�������������
����
�

�
�
��
�
�
��
��
�
�
	

�

�����

����

Figure B.3: Edge Detection evaluation 20 images with and without time factor
parameters

This stage is actually preceded with an image gradient computation -a smooth-

ing filter- stage. This stage uses Sobel operator in this case however other can

also be used (Prewitt operator for example).

The focus here is not to explore all the variation of the edge detection algo-

rithm, other researchers provide more detailed descriptions, however the focus

is to highlight how algorithms ‘evolve’, like edge detection depend on ‘thresh-

olding’ stage, however include pre-processing smoothing stage to complete the

segmentation process.

Figure B.4 illustrate the timing results and again its clear that the overall

evaluation time is reduced by the using the timing factor in the evaluation.

In this case looking at the previous figure too, the evaluation process with the

timing factor reduces the timing while still arriving at the same parameters set

found by the evaluation without the timing factor.

222

B.2 Edge Detection evaluation

�
�
�
�
�
�

�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
	
�

�
	
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�

�
�
�

	

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�
�

�
	
�
�
�
�

�
	
�
�
�

�
�
�

�
�
�
�

�

�

�

�

�

�

	

�

��
�����������
����
��
���
�
�������
���
����

��
�����������
������
��

�������
�������

�
��
�
��
��
	

�
�
��
�
��
��

��

�������
�����

Figure B.4: Edge Detection evaluation 20 images with and without time factor
timing

B.2.1 Canny Edge Detection evaluation

Canny edge detection algorithm adds improvement to the ‘smoothing’ stage, the

original authors suggest a more optimal gradient filter, the second stage is a

similar non-maxima suppression stage to the section above for consistency which

was actually first introduced by Canny in his 1986 paper. Similarly the same two

parameters are used.

Figure B.5 shows the parameters, and similar to results of the edge detection

algorithm found above, there is a clear trend to the ‘optimal’ parameters set.

That is lower threshold parameter equal 1.0 and higher threshold parameter equal

0.1, and there is no difference between the results found with the time factor or

without it, and is consistent among all the images under test.

223

B.3 Rain-falling Watershed segmentation evaluation

�
�
�
�
�
�

�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
	
�

�
	
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�

�
�
�

	

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�
�

�
	
�
�
�
�

�
	
�
�
�

�
�
�

�
�
�
�

���

���

���

���

���

���

��	

���

���

��

���

�
����������
�������
��������
����
�

�������������
�������
���
���������
�

�
����������
�������������
����
�

�������������
�������������
����
�

�
�
��
�
�
��
��
�
�
	

�

�����

����

Figure B.5: Canny Edge Detection evaluation 20 images with and without time
factor parameters

Similarly there is a similar result on using the time factor on the overall time

taken to complete the evaluation, the time factor almost halves the time taken in

almost all the 20 image evaluations performed, Figure B.6 illustrate the evaluation

timing for the Canny Edge detection with and without the timing factor.

B.3 Rain-falling Watershed segmentation evaluation

B.4 Anisotropic-based segmentation evaluation

224

B.4 Anisotropic-based segmentation evaluation

�
�
�
�
�
�

�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
	
�

�
	
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�

�
�
�

	

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�
�

�
	
�
�
�
�

�
	
�
�
�

�
�
�

�
�
�
�

�

�

�

	

�

��

��

��

��
�����������
����
��
���
�
�������
���
����

��
�����������
������
��

�������
�������

�
��
�
��
��
	

�
�
��
�
��
��

��

�����
�
����

Figure B.6: Canny Edge Detection evaluation 20 images with and without time
factor timing

�
�
�
�
�
�

�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
	
�

�
	
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�

�
�
�

	

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�
�

�
	
�
�
�
�

�
	
�
�
�

�
�
�

�
�
�
�

�

��

��

��

��

��

	�

��

��

�

��
�������������������������
 ��
����������������������
 �����
������
���������������

�����

�����
������
������������

�����

�� ����!����
��"��
�������

������������������

�� ����!����
��"��
�������

���������������

�
�
��
�
�
��
��
�
�
	

�

�����

����

Figure B.7: Rain-falling Watershed segmentation evaluation 20 images with and
without time factor parameters

225

B.4 Anisotropic-based segmentation evaluation

�
�
�
�
�
�

�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
	
�

�
	
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�

�
�
�

	

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�
�

�
	
�
�
�
�

�
	
�
�
�

�
�
�

�
�
�
�

�

��

��

��

��

��

	�

��

��

��
�����������
����
��
���
�
�������
���
����

��
�����������
������
��

�������
�������

�
��
�
��
��
	

�
�
��
�
��
��

��

�����
�
����

Figure B.8: Rain-falling Watershed segmentation evaluation 20 images with and
without time factor timing

�
�
�
�
�
�

�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
	
�

�
	
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�

�
�
�

	

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�
�

�
	
�
�
�
�

�
	
�
�
�

�
�
�

�
�
�
�

�

�

��

��

��

��

��
����������������������

�����

��
������������������������
 ���
������������������������
 ���
���������������������

�
�
��
�
�
��
��
�
�
	

�

�����

����

Figure B.9: Anisotropic-based segmentation evaluation 20 images with and with-
out time factor parameters

226

B.4 Anisotropic-based segmentation evaluation

�
�
�
�
�
�

�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
	
�

�
	
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�

�
�
�

	

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�
�

�
	
�
�
�
�

�
	
�
�
�

�
�
�

�
�
�
�

�

��

��

	�

��

���

���

���

�	�

���

��
�����������
������
���
�

�������
�������

��
�����������
������
��
����
���
�������

�
��
�
��
��
	

�
�
��
�
��
��

��

�����
�
����

Figure B.10: Anisotropic-based segmentation evaluation 20 images with and with-
out time factor timing

227

C
Appendix C

228

���

���

���	

��
�

��

�� ��

 ��

�

��

Figure C.1: Variation of segmentation for the same results in Fig. 4.7 with pa-
rameter settings for Watershed segmentation

229

���

���

���	

��
�

��

�� ��

 ��

�

��

Figure C.2: Variation of segmentation for the same results in Fig. 4.11 with
parameter settings for Rain-falling segmentation

230

��

�����
�������

	�	 	�

�

	�

��

	��

�

�	

�		�

	��

Figure C.3: Variation of segmentation for the same results in Fig. 4.15 with
parameter settings for Colour Watershed segmentation

231

��

���

����
	
� �

��

 ��

 ��

�

�

Figure C.4: Variation of segmentations for the same results in Fig. 4.17 with
parameter settings for K-mean segmentation

232

���

������

�	
��
��

� ��

�

��

�

�

��

����

�

���

Figure C.5: Variation of segmentations for the same results in Fig. 4.19 with
parameter settings for Mean-shift segmentation

233

References

Al-Muhairi, H., Fleury, M. & Clark, A. (2007a). A computationally ef-

ficient evaluation environment for image segmentation. In International Con-

ference on Machine Vision ICMV07 , 129–134. 7, 145, 216

Al-Muhairi, H., Fleury, M. & Clark, A. (2007b). Computationally effi-

cient quantitative testing of image segmentation with a genetic algorithm. In

IEEE 3rd Int. Conf. on Signal-Image Technology and Internet-based Systems .

7, 145, 216

Almuhairi, H., Fleury, M. & Clark, A. (2009). Time-weighted quantitative

testing of image segmentation with a genetic algorithm. In Signal Processing

and Information Technology (ISSPIT), 2009 IEEE International Symposium

on, 271 –276. 216

Almuhairi, H., Fleury, M. & Clark, A.F. (2010a). Genetic algorithm-

based testing of image segmentation algorithms. In S. Ramakrishnan & I.M.M.

El Emary, eds., Computational Intelligence Techniques in Handling Image Pro-

cessing and Pattern Recognition, LAP Lambert Academic Publishing. 217

Almuhairi, H., Fleury, M. & Clark, A.F. (2010b). Parameter-orientated

segmentation algorithm evaluation. In The 3rd International Conference on

Image and Signal Processing (CISP 2010), Yantai, China. 217

Almuhairi, H., Fleury, M. & Clark, A.F. (2010c). Time-weighted evalua-

tion of image segmentation with a genetic algorithm. In 5th International Con-

234

REFERENCES

ference on Computer Vision Theory and Applications (VISAPP 2010), Angers,

France. 217

Alvarado, P. (2004). Segmentation of color images for interactive 3D object

retrieval . Ph.D. thesis, RWTH-Aachen. 29, 64, 94, 182

Bader, D.A., JáJá, J., Harwood, D. & Davis, L.S. (1996). Parallel algo-

rithms for image enhancement and segmentation by region growing, with an

experimental study. The Journal of Supercomputing , 10, 141–168. 35

Basu, M. (2002). Gaussian-based edge-detection methods - a survey. IEEE

Transactions on Systems, Man, and Cybernetics, Part C , 32, 252–260. 55

Bennett, K.P. & Parrado-Hernández, E. (2006). The interplay of opti-

mization and machine learning research. J. Mach. Learn. Res., 7, 1265–1281.

144

Beucher, S. & Lantuejoul, C. (1979). Use of watersheds in contour de-

tection. In International Workshop on Image Processing: Real-time Edge and

Motion Detection/Estimation, Rennes, France.. 28

Bhanu, B., Lee, S. & Ming, J. (1989). Adaptive image segmentation using

a genetic algorithm. In Proceedings of a workshop on Image understanding

workshop, 1043–1055, Morgan Kaufmann Publishers Inc., San Francisco, CA,

USA. 143

Borràs, A. & Lladós, J. (2009). Modelling human segmentation trough color

and space analysis. In CAIP ’09: Proceedings of the 13th International Confer-

235

REFERENCES

ence on Computer Analysis of Images and Patterns , 898–905, Springer-Verlag,

Berlin, Heidelberg. 13

Borsotti, M., Campadelli, P. & Schettini, R. (1998). Quantitative eval-

uation of color image segmentation results. Pattern Recogn. Lett., 19, 741–747.

196

Bowyer, K. & Phillips, P.J. (1998a). Empirical Evaluation Techniques in

Computer Vision. IEEE Computer Society Press, Los Alamitos, CA, USA.

119

Bowyer, K.W. & Phillips, P.J. (1998b). Overview of work in empirical eval-

uation of computer vision algorithms. In K.W. Bowyer & P.J. Phillips, eds.,

Empirical Evaluation Techniques in Computer Vision, IEEE Comp Press, CA,

USA. 119

Burjorjee, K. (2007). Towards a sound theory of adaptation for the simple

genetic algorithm. 144

Busin, L., Vandenbroucke, N. & Macaire, L. (2008). Color spaces and

image segmentation, vol. 151 of Advances in Imaging and Electron Physics ,

chap. 2, 65–168. Elsevier Inc., Orlando, FL, USA. 20

Campbell, N.W., Thomas, B.T. & Troscianko, T. (1996). Neural net-

works for the segmentation of outdoor images. In Solving Engineering Prob-

lems with Neural Networks. Proceedings of the International Conference on

Engineering Applications of Neural Networks (EANN’96). Syst. Eng. Assoc,

Turku, Finland , vol. 1, 343–6. 13

236

REFERENCES

Canny, F.J. (1986). A Computational Approach to Edge Detection. IEEE

Trans. Pattern Anal. Mach. Intell., 8, 679–698. 22, 23, 55

Caselles, V., Kimmel, R. & Sapiro, G. (1997). Geodesic active contours.

Int. J. Comput. Vision, 22, 61–79. 13, 16

Chabrier, S., laurent, H. & Emile, B. (2005a). Perfromance evaluation of

image segmentation: application to parameters fitting. In 13th European Signal

Processing Conference EURASIP’05 . 112, 144

Chabrier, S., Rosenberger, C. & Emile, B. (2005b). Segmentation eval-

uation by fusion with genetic algorithm. In 13th European Signal Processing

Conference EURASIP’05 . 112, 144

Chabrier, S., Rosenberger, C., Emile, B. & Laurent, H. (2008).

Optimization-based image segmentation by genetic algorithms. EURASIP

Journal on Image and Video Processing , 2008, 1–10. 112, 144, 214

Chamorro-Mart́ınez, J., Sánchez, D. & Prados-Suarez, B. (2003). A

fuzzy color image segmentation applied to robot vision. In J. Benitez, O. Cor-

don, F. Hoffman & R. Roy, eds., Advances in Soft Computing, Engineering,

Design and Manufacturing , 129–138, Springer. 13

Chen, C.W., Luo, J. & Parker, K.J. (1998). Image segmentation via adap-

tive k-mean clustering and knowledge-based morphological operations with

biomedical applications. IEEE Transactions on Image Processing , 7, 1673–

1683. 32

237

REFERENCES

Chen, T.W., Chen, Y.L. & Chien, S.Y. (2008). Fast image segmentation

based on k-means clustering with histograms in hsv color space. In Multimedia

Signal Processing, 2008 IEEE 10th Workshop on, 322 –325. 13

Cheng, H.D., Jiang, X., Sun, Y. & Wang, J. (2001). Color image seg-

mentation: advances and prospects. Pattern Recognition, 34, 2259–2281. 12,

14

Chojnacki, W., Brooks, M., van den Hengel, A. & Gawley, D. (2004).

A new constrained parameter estimator for computer vision applications. Image

and Vision Computing , 22, 85–91. 144

Ciesielski, K.C. & Udupa, J.K. (2007). A general theory of image segmenta-

tion: level set segmentation in the fuzzy connectedness framework. In J.P.W.

Pluim & J.M. Reinhardt, eds., Medical Imaging 2007: Image Processing , vol.

6512, 65120W, SPIE. 12

Cohen, P.R. (1995). Empirical methods for artificial intelligence. MIT Press,

Cambridge, MA, USA. 123

Comaniciu, D. & Meer, P. (1997). Robust analysis of feature spaces: color

image segmentation. In Proceedings of 1997 IEEE Conference on Computer

Vision and Pattern Recognition, 750–755. 13

Comaniciu, D. & Meer, P. (2002). Mean shift: A robust approach toward

feature space analysis. IEEE Trans. Pattern Anal. Mach. Intell., 24, 603–619.

67, 69, 153, 154, 189

238

REFERENCES

Courtney, P., Thacker, N. & Clark, A.F. (1997). Algorithmic modelling

for performance evaluation. Mach. Vision Appl., 9, 219–228. 8, 119

Cramariuc, B., Gabbouj, M. & Astola, J. (1997). Clustering based region

growing algorithm for color image segmentation. In Digital Signal Processing

Proceedings, 1997. DSP 97., 1997 13th International Conference on, vol. 2,

857–860. 12

Cumani, A. (1991). Edge detection in multispectral images. Computer Vision,

Graphics, and Image Processing: Graphical Models and Image Processing , 53,

40–51. 57

De Smet, P. & Pires, R.L.V.P.M. (2000). Implementation and analysis of

an optimized rainfalling watershed algorithm. vol. 3974, 759–766, SPIE. 29

DeSouza, G.N. & Kak, A.C. (2002). Vision for mobile robot navigation: A

survey. IEEE Trans. Pattern Anal. Mach. Intell., 24, 237–267. 3

Droogenbroeck, M.V. & Barnich, O. (2005). Design of statistical mea-

sures for the assessment of image segmentation schemes. In A. Gagalowicz &

W. Philips, eds., CAIP , vol. 3691 of Lecture Notes in Computer Science, 280–

287, Springer. 43

Everingham, M., Muller, H. & Thomas, B. (2001). Evaluating image seg-

mentation algorithms using monotonic hulls in fitness/cost space. In T. Cootes

& C. Taylor, eds., Proceedings of the 12th British Machine Vision Conference

(BMVC2001), 363–372, BMVA. 117, 143, 144, 166

239

REFERENCES

Everingham, M., Van Gool, L., Williams, C.K.I., Winn,

J. & Zisserman, A. (2008). The PASCAL Visual Object

Classes Challenge 2008 (VOC2008) Results. http://www.pascal-

network.org/challenges/VOC/voc2008/workshop/index.html. 118

Everingham, M.R., Muller, H. & Thomas, B.T. (2002a). Algorithm eval-

uation by probabilistic fitness/cost analysis and application to image segmen-

tation. In D. Suter & A. Bab-Hadiashar, eds., Proceedings of the 5th Asian

Conference on Computer Vision (ACCV2002), 580–586, Asian Federation of

Computer Vision Societies (AFCV). 111, 112, 143, 144

Everingham, M.R., Muller, H. & Thomas, B.T. (2002b). Evaluating im-

age segmentation algorithms using the pareto front. In A. Heyden, G. Sparr,

M. Nielsen & P. Johansen, eds., Proceedings of the 7th European Conference on

Computer Vision (ECCV2002), Part IV (LNCS 2353), 34–48, Springer. 112,

143, 144, 166

Fan, J., Han, M. & Wang, J. (2009). Single point iterative weighted fuzzy

c-means clustering algorithm for remote sensing image segmentation. Pattern

Recognition, 42, 2527 – 2540. 2

Felzenszwalb, P.F. & Huttenlocher, D. (2004). Efficient graph-based im-

age segmentation. International Journal of Computer Vision, 29, 167–181. 104,

193

Fu, K. & Mui, J. (1981). A survey on image segmentation. Pattern Recognition,

13, 3–16. 6

240

REFERENCES

Geist, A., Beguelin, A., Dongarra, J., Jiang, W., Manchek, R. &

Sunderam, V. (1994). PVM: Parallel virtual machine: a users’ guide and

tutorial for networked parallel computing . MIT Press, Cambridge, MA, USA.

36

Gevers, T. (2002). Adaptive image segmentation by combining photometric

invariant region and edge information. Pattern Analysis and Machine Intelli-

gence, IEEE Transactions on, 24, 848–852. 34

Gevers, T. & Stokman, H.M.G. (2003a). Classifying color edges in video

into shadow-geometry, highlight, or material transitions. IEEE Transactions

on Multimedia, 5, 237–243. 24, 176

Gevers, T. & Stokman, H.M.G. (2003b). Robust photometric invariant re-

gion detection in multispectral images. International Journal of Computer Vi-

sion, 53, 135–151. 34, 57, 63

Goldberg, D.E. (1989). Genetic Algorithms in Search, Optimization, and Ma-

chine Learning . Addison-Wesley Longman Publishing Co., Inc., Boston, MA,

USA. 150, 152

Goldman, D., Yang, M. & Bourbakis, N. (2002). A neural network-based

segmentation tool for color images. In ICTAI ’02: Proceedings of the 14th

IEEE International Conference on Tools with Artificial Intelligence, 500, IEEE

Computer Society, Washington, DC, USA. 17

Gonzalez, R.C. & Woods, R.E. (2002). Digital Image Processing . Prentice-

Hall, Upper Saddle River, N.J., USA, 2nd edn. 3, 11, 19, 23, 58

241

REFERENCES

Guyon, I., Markhoul, J., Schwartz, R. & Vapnik, V. (1998). What size

test set gives good error rate estimates? IEEE Trans. Pattern Anal. Mach.

Intell., 20, 52–64. 117

Hall, D. (2006). Automatic parameter regulation of perceptual systems. Image

and Vision Computing , 24, 870–881. 144

Haralick, R. (2000). Validating image analysis algorithms. Keynote Address at

SPIE Medical Imaging , 2–16. 168, 213

Haralick, R.M. & Shapiro, L.G. (1985). Survey: Image segmentation tech-

niques. Comput. Vision, Graphics, Image Processing , 29, 100–132. 6, 38, 40

Haris, K., Estradiadis, S.N., Maglaveras, N. & Katsaggelos, A.K.

(1998). Hybrid image segmentation using watersheds and fast region merging.

IEEE Transactions on Image Processing , 7, 1684–1699. 29

Holland, J.H. (1975). Adaptation in natural and artificial systems: An intro-

ductory analysis with applications to biology, control, and artificial intelligence.

University of Michigan Press. 150

Hoover, A., Jean-Baptiste, G., Goldgof, D.B. & Bowyer, K.W.

(1994). A methodology for evaluating range image segmentation techniques.

In Second IEEE Workshop on Applications for Computer Vision, 264–271. 39

Hoover, A., Jean-Baptiste, G., Jiang, X., Flynn, P.J., Bunke, H.,

Goldgof, D.B., Bowyer, K.W., Eggert, D.W., Fitzgibbon, A.W. &

Fisher, R.B. (1996). An experimental comparison of range image segmenta-

tion algorithms. IEEE Trans. Pattern Anal. Mach. Intell., 18, 673–689. 39

242

REFERENCES

Huang, H., Chen, Y. & Hsu, W. (2002). Color image segmentation using a

self-organizing map algorithm. Journal of Electronic Imaging , 11, 136. 17

Huang, Q. & Dom, B. (1995). Quantitative methods of evaluating image seg-

mentation. In ICIP ’95: Proceedings of the 1995 International Conference on

Image Processing (Vol. 3)-Volume 3 , 3053, IEEE Computer Society, Washing-

ton, DC, USA. 42, 127

Ibanez, L., Schroeder, W., Ng, L. & Cates, J. (2005).

The ITK Software Guide. Kitware, Inc. ISBN 1-930934-15-7,

http://www.itk.org/ItkSoftwareGuide.pdf, 2nd edn. 116

Ito, N., Shimazu, Y., Yokoyama, T. & Matushita, Y. (1995). Fuzzy logic

based non-parametric color image segmentation with optional block processing.

In CSC ’95: Proceedings of the 1995 ACM 23rd annual conference on Computer

science, 119–126, ACM, New York, NY, USA. 17

Jain, A.K., Murty, M.N. & Flynn, P.J. (1999). Data clustering: a review.

ACM Computing Surveys , 31, 264–323. 31

Kass, M., Witkin, A. & Terzopoulos, D. (1988). Snakes: Active contour

models. International Journal of Computer Vision, 1, 321–331. 13, 16

Klinker, G.J., Shafer, S.A. & Kanade, T. (1987). Using a color reflection

model to separate highlights from object color. In Proc. First International

Conference on Computer Vision (ICCV), 145–150. 34

243

REFERENCES

Klinker, G.J., Shafer, S.A. & Kanade, T. (1988). Color image analysis

with an intrinsic reflection model. In Proceedings of the Second International

Conference on Computer Vision (ICCV), 292–296. 34

Klinker, G.J., Shafer, S.A. & Kanade, T. (1990). A physical approach to

color image understanding. International Journal of Computer Vision (IJCV),

4, 7–38. 13, 34

Koschan, A. (1995). A comparative study on color edge detection. In 2nd Asian

Conf. on Computer Vision ACCV’95 , 574–578. 22, 24

Koschan, A. & Abidi, M. (2005). Detection and classification of edges in color

images. Signal Processing Magazine, IEEE , 22, 64 – 73. 23

Köthe, U. (1995). Primary image segmentation. In G. Sagerer, S. Posch &

F. Kummert, eds., DAGM-Symposium, Informatik Aktuell, 554–561, Springer.

14, 25

Kravtchenko, V. & Little, J. (1999). Efficient color object segmentation us-

ing the dichromatic reflection model. Communications, Computers and Signal

Processing, 1999 IEEE Pacific Rim Conference on, 90–94. 34

Kubassova, O., Boyle, R.D. & Radjenovic, A. (2006). Evaluation of colour

image segmentation results. In Proceedings of the Joint Disease Workshop, 9th

International Conference on Medical Image Computing and Computer Assisted

Intervention, vol. 1, 72–79. 43

244

REFERENCES

Kurgöllüs, F. & Sankur, B. (1999). Image segmentation based on multi-

scan constraint satisfaction neural network. Pattern Recognition Letters , 20,

1553–1563. 11, 12

Kurokawa, H., Kaneko, S. & Yonekawa, M. (2009). A color image segmen-

tation using inhibitory connected pulse coupled neural network. Advances in

Neuro-Information Processing: 15th International Conference, ICONIP 2008,

Auckland, New Zealand, November 25-28, 2008, Revised Selected Papers, Part

II , 776–783. 13

Kurugollu, F., Sankur, B. & Harmancl, A.E. (2001). Color image seg-

mentation using histogram multithresholding and fusion. Image Vision Com-

put., 19, 915–928. 13

LaValle, S.M. & Hutchinson, S.A. (1995). A framework for constructing

probability distributions on the space of image segmentations. Comput. Vis.

Image Underst., 61, 203–230. 12

Levine, M.D. & Nazif, A.M. (1985). Dynamic measurement of computer

generated image segmentations. Pattern Analysis and Machine Intelligence,

IEEE Transactions on, PAMI-7, 155–164. 41

Lim, Y.W. & Lee, S.U. (1990). On the color image segmentation algorithm

based on the thresholding and the fuzzy c-means techniques. Pattern Recogn.,

23, 935–952. 17

Liu, J. & Yang, Y.H. (1994). Multiresolution color image segmentation. IEEE

Trans. Pattern Anal. Mach. Intell., 16, 689–700. 196

245

REFERENCES

Liu, S., Qiao, Y.y. & Wen, Q.k. (2009). Segmentation of multispectral re-

mote sensing images based on ant colony optimization algorithm. In GEC ’09:

Proceedings of the first ACM/SIGEVO Summit on Genetic and Evolutionary

Computation, 891–894, ACM, New York, NY, USA. 2

Lucchese, L. & Mitra, S.K. (1999). Unsupervised segmentation of color im-

ages based on k-means clustering in the chromaticity plane. In CBAIVL ’99:

Proceedings of the IEEE Workshop on Content-Based Access of Image and

Video Libraries , 74, IEEE Computer Society, Washington, DC, USA. 31, 34

Lucchese, L. & Mitra, S.K. (2001a). Color image segmentation: A state-

of-the-art survey. In Proc. of the Indian National Science Academy (INSA-A),

vol. 67, 207–221, Indian National Science Academy. 2, 6, 23

Lucchese, L. & Mitra, S.K. (2001b). Color segmentation through indepen-

dent anisotropic diffusion of complex chromaticity and lightness. In Proc. of

2001 Int’l Conference on Image Processing (ICIP 2001), vol. 1, 746–749. 34

Luger, G.F. (2004). Artificial Intelligence: Structures and Strategies for Com-

plex Problem Solving . Addison Wesley, 5th edn. 32

Ma, W.Y. & Manjunath, B.S. (1997). Edge flow: A framework of boundary

detection and image segmentation. In CVPR ’97: Proceedings of the 1997 Con-

ference on Computer Vision and Pattern Recognition (CVPR ’97), 744–749,

IEEE Computer Society, Washington, DC, USA. 12

MacQueen, J. (1967). Some methods for classification and analysis of multi-

variate observations. In L.M. Le Cam & J. Neyman, eds., Proceedings of the

246

REFERENCES

fifth Berkeley Symposium on Mathematical Statistics and Probability , vol. 1,

281–297, University of California Press, Berkeley, CA, USA. 66

Maeda, J., Kawano, A., Saga, S. & Suzuki, Y. (2007). Unsupervised per-

ceptual segmentation of natural color images using fuzzy-based hierarchical

algorithm. In B.K. Ersbøll & K.S. Pedersen, eds., SCIA, vol. 4522 of Lecture

Notes in Computer Science, 462–471, Springer. 13, 17

Malamas, E.N., Petrakis, E.G.M., Zervakis, M., Petit, L. & Legat,

J.D. (2003). A survey on industrial vision systems, applications and tools.

Image and Vision Computing , 21, 171–188. 2

Marroquin, J.L. & Girosi, F. (1993a). Some extensions of the k-means al-

gorithm for image segmentation and pattern classification. Tech. rep., Mas-

sachusetts Institute of Technology, Cambridge, MA, USA. 31

Marroquin, J.L. & Girosi, F. (1993b). Some extensions of the k-means algo-

rithm for image segmentation and pattern classification. Tech. rep., Cambridge,

MA, USA. 66

Martin, D.R., Fowlkes, C., Tal, D. & Malik, J. (2001). A database of hu-

man segmented natural images and its application to evaluating segmentation

algorithms and measuring ecological statistics. In International Conference on

Computer Vision, 416–425. 43, 117, 118, 127, 146, 147

Martin, D.R., Fowlkes, C.C. & Malik, J. (2004). Learning to detect nat-

ural image boundaries using local brightness, color, and texture cues. IEEE

Trans. Pattern Anal. Mach. Intell., 26, 530–549. 117, 123, 206

247

REFERENCES

Maxwell, B. & Shafer, S. (1997). Physics-based segmentation of complex

objects using multiple hypotheses of image formation. Computer vision and

image understanding(Print), 65, 269–295. 17

McInerney, T. & Terzopoulos, D. (1996). Deformable models in medical

image analysis: A survey. Medical Image Analysis , 1, 91–108. 27

Meijster, A. & Roerdink, J.B.T.M. (1995). A proposal for the implemen-

tation of a parallel watershed algorithm. In CAIP ’95: Proceedings of the 6th

International Conference on Computer Analysis of Images and Patterns , 790–

795, Springer-Verlag, London, UK. 28, 35

Melkemi, K.E., Batouche, M. & Foufou, S. (2006). A multiagent sys-

tem approach for image segmentation using genetic algorithms and extremal

optimization heuristics. Pattern Recogn. Lett., 27, 1230–1238. 144

Moga, A.N. & Gabbouj, M. (1997). Parallel image component labeling with

watershed transformation. IEEE Trans. Pattern Anal. Mach. Intell., 19, 441–

450. 29, 36

Moga, A.N., Cramariuc, B. & Gabbouj, M. (1995). A parallel watershed

algorithm based on rainfalling simulation. In Proc. 12th European Conf. Circuit

Theory and Design, 339–342. 29, 36

Mühlenbein, H. & Schlierkamp-Voosen, D. (1993). Predictive models for

the breeder genetic algorithm i. continuous parameter optimization. Evolution-

ary Computation, 1, 25–49. 152

248

REFERENCES

Nelder, J.A. & Mead, R. (1965). A simplex method for function minimiza-

tion. Computer Journal , 7, 308–313. 162

Nethercote, N. & Seward, J. (2007). Valgrind: a framework for heavyweight

dynamic binary instrumentation. SIGPLAN Not., 42, 89–100. 49

Nicolescu, C., Albers, B. & Jonker, P. (1999). Parallel watershed al-

gorithm on images from cranial ct-scans using pvm and mpi on distributed

memory system. In J. Dongarra, E. Luque & T. Margalef, eds., PVM/MPI ,

vol. 1697 of Lecture Notes in Computer Science, 418–425, Springer. 35, 36

Nixon, M. & Aguado, A.S. (2008). Feature Extraction & Image Processing,

Second Edition. Academic Press, 2nd edn. 55

Olague, G. (2007). Evolutionary computer vision. In GECCO ’07: Proceed-

ings of the 2007 GECCO conference companion on Genetic and evolutionary

computation, 3458–3507, ACM, New York, NY, USA. 144

Otsu, N. (1979). A threshold selection method from gray-level histograms. IEEE

Transactions on Systems, Man and Cybernetics , 9, 62–66. 51

Ousterhout, J.K. (1998). Scripting: higher level programming for the 21st

century. Computer , 31, 23–30. 120

Ouyang, C.S., Chou, C.T., Jhan, C.F. & Huang, J.Y. (2009). An im-

proved approach for image segmentation based on color and local homogeneity

features. In ICASSP ’09: Proceedings of the 2009 IEEE International Confer-

ence on Acoustics, Speech and Signal Processing , 1225–1228, IEEE Computer

Society, Washington, DC, USA. 12

249

REFERENCES

Pappas, T. (1992). An adaptive clustering algorithm for image segmentation.

IEEE Transactions on Signal Processing , 40, 901–914. 32

Paragios, N. & Deriche, R. (1999). Geodesic active regions for supervised

texture segmentation. In ICCV ’99: Proceedings of the International Confer-

ence on Computer Vision-Volume 2 , 926, IEEE Computer Society, Washing-

ton, DC, USA. 3

Park, M.H., Park, R.H. & Lee, S.W. (2005). Efficient shot boundary detec-

tion for action movies using blockwise motion-based features. In Advances in

Visual Computing , vol. 3804, 478–485. 53

Pham, D.L., Xu, C. & Prince, J.L. (2000). A survey of current methods

in medical image segmentation. In Annual Review of Biomedical Engineering ,

vol. 2, 315–338. 2

Pham, N.A., Morrison, A., Schwock, J., Aviel-Ronen, S., Iakovlev,

V., Tsao, M.S., Ho, J. & Hedley, D. (2007). Quantitative image analysis

of immunohistochemical stains using a cmyk color model. Diagnostic Pathology ,

2, 8. 20

Pignalberi, G., Cucchiara, R., Cinque, L. & Levialdi, S. (2003). Tuning

range image segmentation by genetic algorithm. EURASIP J. Appl. Signal

Process., 2003, 780–790. 144

Polak, M., Zhang, H. & Pi, M. (2008). An evaluation metric for image

segmentation of multiple objects. Image and Vision Computing , In Press,

Corrected Proof, –. 43

250

REFERENCES

Polheim, H. (2005). GEATbxSurvey: Evolutionary Algorithm Toolbox for MAT-

LAB, version 3.7 . Online at http://www.geatbx.com/docu/index.html. 152

Pratt, W.K. (2001). Digital Image Processing: PIKS Inside. John Wiley &

Sons, Inc., New York, NY, USA. 116

Pun, T., Gerig, G. & Ratib, O. (1994). Image analysis and computer vision

in medicine. Computerized Medical Imaging and Graphics , 18, 85–96, (Special

Issue: Multimedia Techniques in the Medical Environment). 2

Reddi, S., Rudin, S. & Keshavan, H. (1984). Optimal multiple threshold

scheme for image segmentation. IEEE TRANS. SYST. MAN CYBER., 14,

661–665. 22

Rehrmann, V. & Priese, L. (1998). Fast and robust segmentation of natural

color scenes. In ACCV ’98: Proceedings of the Third Asian Conference on

Computer Vision-Volume I , 598–606, Springer-Verlag, London, UK. 12

Rekik, A., Zribi, M., Hamida, A.B. & Benjelloun, M. (2007). Review of

satellite image segmentation for an optimal fusion system based on the edge

and region approaches. International Journal of Computer Science and Network

Security (IJCSNS), 7, 242–250. 3

Ridler, T. & Calvard, S. (1978). Picture thresholding using an iterative

selection method. Systems, Man and Cybernetics, IEEE Transactions on, 8,

630–632. 21

Ripley, B.D. & Hjort, N.L. (1995). Pattern Recognition and Neural Net-

works . Cambridge University Press, New York, NY, USA. 32

251

REFERENCES

Roberts, L.G. (1963). Machine perception of three-dimensional solids . PhD in

Electrical engineering, Dept. of Electrical Engineering, Massachusetts Institute

of Technology, US. 22

Roerdink, J.B.T.M. & Meijster, A. (2000). The watershed transform: Def-

initions, algorithms and parallelization strategies. Fundamenta Informaticae,

41, 187–228. 60

Rotem, O., Greenspan, H. & Goldberger, J. (2007). Combining region

and edge cues for image segmentation in a probabilistic gaussian mixture frame-

work. Computer Vision and Pattern Recognition, IEEE Computer Society Con-

ference on, 1–8. 12

Russell, S.J. & Norvig, P. (2002). Artificial Intelligence: A Modern Approach

(2nd Edition). Prentice Hall. 32

S. Levachkine, J.S. (2000). Image segmentation as an optimization problem.

Computation and Systems , 3, 245–263. 144

Saber, E., Tekalp, A.M. & Bozdagi, G. (1996). Fusion of color and edge

information for improved segmentation and edge linking. In ICASSP ’96: Pro-

ceedings of the Acoustics, Speech, and Signal Processing, 1996. on Conference

Proceedings., 1996 IEEE International Conference, 2176–2179, IEEE Com-

puter Society, Washington, DC, USA. 12

Sahoo, P.K., Soltani, S., Wong, A.K. & Chen, Y.C. (1988). A survey

of thresholding techniques. Computer Vision, Graphics, and Image Processing ,

41, 233–260. 6, 18, 22, 38, 41

252

REFERENCES

Salembier, P. & Garrido, L. (1998). Binary partition tree as an efficient

representation for filtering, segmentation and information retrieval. Image Pro-

cessing, International Conference on, 2, 252. 205

Salembier, P. & Garrido, L. (2000). Binary partition tree as an efficient rep-

resentation for filtering, segmentation and information retrieval. IEEE Trans-

actions on Image Processing , 9, 561–576. 113, 205

Sapiro, G. & Ringach, D.L. (1996). Anisotropic diffusion of multivalued im-

ages with applications to color filtering. Image Processing, IEEE Transactions

on, 5, 1582–1586. 73

Schoenemann, T. & Cremers, D. (2007a). Globally optimal image segmen-

tation with an elastic shape prior. In IEEE International Conference on Com-

puter Vision (ICCV), Rio de Janeiro, Brazil. 144

Schoenemann, T. & Cremers, D. (2007b). Introducing curvature into glob-

ally optimal image segmentation: Minimum ratio cycles on product graphs. In

IEEE International Conference on Computer Vision (ICCV), Rio de Janeiro,

Brazil. 144

Sethian, J.A. (1999). Level Set Methods and Fast Marching Methods . Cam-

bridge Monograph on Applied and Computational Mathematics, Cambridge

University Press, Cambridge, U.K. 13, 14, 16, 25, 27

Sezgin, M. & Sankur, B. (2004). Survey over image thresholding techniques

and quantitative performance evaluation. Journal of Electronic Imaging , 13,

146–165. 19, 20, 53

253

REFERENCES

Shafer, S.A. (1985). Using color to separate reflection components. 10, 210–

218. 34

Shen, H.L., Zhang, H.G., Shao, S.J. & Xin, J.H. (2008). Chromaticity-

based separation of reflection components in a single image. Pattern Recogni-

tion, 41, 2461 – 2469. 34

Shotton, J., Winn, J., Rother, C. & Criminisi, A. (2006). Textonboost:

Joint appearance, shape and context modeling for multi-class object recognition

and segmentation. In European Conference on Computer Vision, 1–15. 118

Singh, A., Terzopoulos, D. & Goldgof, D.B. (1998). Deformable Models

in Medical Image Analysis . IEEE Computer Society Press, Los Alamitos, CA,

USA. 13

Snir, M., Otto, S.W., Walker, D.W., Dongarra, J. & Huss-

Lederman, S. (1995). MPI: The Complete Reference. MIT Press, Cambridge,

MA, USA. 36

Sonka, M., Hlavac, V. & Boyle, R. (1993). Image Processing, Analysis,

and Machine Vision. Thomson-Engineering. 21, 51

Sumengen, B. & Manjunath, B.S. (2005). Edgeflow-driven variational image

segmentation: Theory and performance evaluation. In IEEE Transactions on

Pattern Analysis and Machine Intelligence. 73

Tsai, Y.H.R. & Osher, S. (2003). Level set methods in image science. In

International Conference on Image Processing (ICIP), vol. 2, 631–634. 16, 27

254

REFERENCES

Verevka, O.A. & Buchanan, J.W. (1995). Local k-means algorithm for color

image quantization. In Graphics/Vision Interface ’95 , Quebec Canada. 66

Vincent, L. & Soille, P. (1991). Watersheds in digital spaces: An efficient

algorithm based on immersion simulations. IEEE Trans. Pattern Anal. Mach.

Intell., 13, 583–598. 16, 28, 87, 88

Wang, H. & Suter, D. (2003). Color image segmentation using global informa-

tion and local homogeneity. In C. Sun, H. Talbot, S. Ourselin & T. Adriaansen,

eds., Proc. VIIth Digital Image Computing: Techniques and Applications . 11,

12, 14

Wang, J., Thiesson, B., Xu, Y. & Cohen, M. (2004). Image and video

segmentation by anisotropic kernel mean shift. In Computer Vision - ECCV

2004 , 238–249, Springer. 69

Welch, B.B. & Hobbs, J. (2003). Practical Programming in Tcl & Tk . Pren-

tice Hall Professional Technical Reference. 120

Wesolkowski, S., Tominaga, S. & Dony, R.D. (2000). Shading- and

highlight-invariant color image segmentation using the mpc algorithm. vol.

4300, 229–240, SPIE. 34

Weszka, J. & Rosenfeld, A. (1978). Threshold evaluation techniques. IEEE

Trans. Systems, Man and Cybernetics , 8, 622–629. 38

Weszka, J.S. (1978). A survey of threshold selection techniques. Computer Vi-

sion, Graphics, and Image Processing , 7, 259–265. 6, 18, 38, 41

255

REFERENCES

Withey, D. & Koles, Z. (2007). Medical image segmentation: Methods and

software. In Noninvasive Functional Source Imaging of the Brain and Heart and

the International Conference on Functional Biomedical Imaging, 2007. NFSI-

ICFBI 2007. Joint Meeting of the 6th International Symposium on, 140 –143.

2

Xu, C., Pham, D.L. & Prince, J.L. (2000). Image segmentation using de-

formable models. In M. Sonka & J.M. Fitzpatrick, eds., Handbook of Medical

Imaging , vol. 2, 129–174, SPIE Press. 13, 27

Yang, C.K. & Tsai, W.H. (1996). Reduction of color space dimensionality by

moment-preserving thresholding and its application for edge detection in color

images. Pattern Recogn. Lett., 17, 481–490. 20

Yang, L., Albregtsen, F., Lønnestad, T. & Grøttum, P. (1995). A

supervised approach to the evaluation of image segmentation methods. In CAIP

’95: Proceedings of the 6th International Conference on Computer Analysis of

Images and Patterns , 759–765, Springer-Verlag, London, UK. 38, 39, 40

Yang, Q. & Kang, W. (2009). General research on image segmentation algo-

rithms. I.J. Image, Graphics and Signal Processing , 1, 1 – 8. 12, 14

Yasnoff, W.A., Mui, J.K. & Bacus, J.W. (1977). Error measures for scene

segmentation. Pattern Recognition, 9, 217 – 231. 117

Yeo, N., Lee, K., Venkatesh, Y. & Ong, S. (2005). Colour image segmen-

tation using the self-organizing map and adaptive resonance theory. Image and

Vision Computing , 23, 1060–1079. 17

256

REFERENCES

Zhang, C. & Wang, P. (2000). A new method of color image segmentation

based on intensity and hue clustering. In ICPR ’00: Proceedings of the Inter-

national Conference on Pattern Recognition, vol. 3, 613 – 616, IEEE Computer

Society, Los Alamitos, CA, USA. 13

Zhang, H., Fritts, J.E. & Goldman, S.A. (2003). An entropy-based ob-

jective evaluation method for image segmentation. vol. 5307, 38–49, SPIE. 42,

126

Zhang, H., Fritts, J.E. & Goldman, S.A. (2005). A co-evaluation frame-

work for improving segmentation evaluation. In I. Kadar, ed., Signal Processing,

Sensor Fusion, and Target Recognition XIV. Edited by Kadar, Ivan. Proceed-

ings of the SPIE, Volume 5809, pp. 420-430 (2005)., vol. 5809 of Presented

at the Society of Photo-Optical Instrumentation Engineers (SPIE) Conference,

420–430. 112, 144, 207

Zhang, H., Cholleti, S., Goldman, S.A. & Fritts, J.E. (2006). Meta-

evaluation of image segmentation using machine learning. In CVPR ’06: Pro-

ceedings of the 2006 IEEE Computer Society Conference on Computer Vision

and Pattern Recognition, 1138–1145, IEEE Computer Society, Washington,

DC, USA. 112, 144, 207, 214

Zhang, H., Fritts, J. & Goldman, S. (2008). Image segmentation evalua-

tion: A survey of unsupervised methods. Computer Vision and Image Under-

standing , 110, 260–280. 6, 43, 48, 168, 195, 200, 207, 213

Zhang, Y.J. (1996). A survey on evaluation methods for image segmentation.

Pattern Recognition, 29, 1335–1346. 6, 38, 41, 48, 126

257

REFERENCES

Zhang, Y.J. (1997). Evaluation and comparison of different segmentation algo-

rithms. Pattern Recognition Letters , 18, 963–974. 38

Zhang, Y.J. (2001). A review of recent evaluation methods for image segmenta-

tion. In Signal Processing and its Applications, Sixth International Symposium

on, vol. 1, 148–151. 42

258

