Systems and Services for Wearable Computers

Candidate: Neill James Newman

Thesis Submitted for the Degree of Doctor of Philosophy
Department of Electronic Systems Engineering,

University of Essex, Wivenhoe Park, Colchester CO4 3SQ

(© Neill Newman

1st January 2002

i

Abstract

The use of both portable computing and mobile communication has increased
dramatically in the last few years. Mobile devices combining computing and
communications are now being explored and there is competition between man-
ufacturers to provide more features and push the technology.

Integrating an increasing number of features into a small package creates
additional problems to those of mobile operation. Contextual considerations
such as the location and activity of the user become relevant to the interaction
between the human and computer. Therefore a mobile computer should be
able to perceive the environment and adjust the presentation of information
automatically.

The aims of this thesis are to analyse the capabilities of some mobile inter-
action devices; to design a user interface system which takes into account these
capabilities; and to integrate this user interface with a software framework which
enables the machine to perceive the environment and react accordingly.

The thesis starts by specifying and detailing the construction of a mobile
platform for the remainder of this work. This wearable computer consists of
a small PC with a head-mounted display and a commercial portable keyboard
called a Twiddler. A study investigates these interaction devices and contrasts
the Twiddler and various head-mounted displays with a standard keyboard and
mouse. The results show that it is possible to design a user interface which can
increase the speed and accuracy of use of the Twiddler and head-mounted display

devices, but generally they perform poorly in comparison to the normal desktop

il

v

devices. There are also indications of increased fatigue and user frustration
when using these mobile interaction devices.

The observations of the results from the study show that the current desktop
user interfaces are not as efficient in a mobile situation as they are in a desktop
situation. This has prompted the author to investigate alternative user inter-
face systems for mobile computing. A prototype software architecture called
Sulawesi is presented which attempts to address the lack of an alternative user
interface research platform. Sulawesi has been designed to encompasses con-
textual awareness, agent-based systems, and multi-modal user interfaces into a
single development framework.

The software architecture allows physical and hybrid sensors and rendering
mechanisms to be abstracted from applications, and a management layer allows
communication between these subsystems. The user can command the system
via constrained natural language statements. Speech recognition or textual
input allow the user to command the machine, and a dedicated user interface,
tailored to the head-mounted display, or speech rendition are used for output.

Also, a system which allows dedicated agents to process information from
a sensor, and to affect the rendition of information to the user, have been in-
corporated into Sulawesi. A prototype agent which uses contextual information
to affect how the information is displayed to the user is also described in this
work, along with several novel mobile applications that make use of contextual

information.

Acknowledgements

First and foremost, I wish to dedicate this thesis to Tracy for putting up with
the keyboard noise late at night, to my father, Sidney Newman, and to my
mother, Marilyn Newman for their support, and to my sister, Angie! Newman,

for keeping my feet on the ground ;)

Many thanks to go to my supervisor, Dr. Adrian Clark for offering me the
chance to embark on the Ph.D. for keeping me on track and heading in the right

direction, for calming my fears and nurturing my interests.

Thanks to all the people in the VASE lab during my stay, Firstly, thanks
to all the people of the past who have made life considerably more fun here at
the lab, and some of whom I had the additional pleasure of working with on a

project or two.

Thanks to Mike Lincoln for also being a very good friend over the years, for
helping with some tricky coding aspects, for being able to bash around ideas
with, and for introducing me to curry.

Thanks to Eddie Moxey for keeping me company in the lab, and for generally
lowering the tone of conversation whenever possible ;)

Thanks to David Johnston for providing hours of entertainment with his

witty and flowery use of the English language.

!She would be very annoyed if T called her Angela!

vi

Thanks to Panagiotis Ritsos for pursuing the wearables interest in the lab.

Thanks to John Carson for providing a dry and satirical outlook on life.

Thanks to Graham Sweeney for providing some very raw Glaswegian hu-
mour!

Thanks to Andrew Chandler for being a very good friend, and for allowing
me to prove my coding abilities in the Sumatra project.

Thanks to all the VASE lab Quake crew for allowing me to frag them.

Thanks to Adrian and the university sysadmins for allowing Mike and I to
have complete control of the lab infrastructure, and for putting up with us when

things went wrong ;)

Thanks also go to Chris Reeve, Garry Howes, Gary Johnson, Richard Wright,
Robert Lee, Sumudu, and all of the Posse crew for being very good friends, and
a special thank you to the little cat over the road for keeping me company while

writing the thesis, a piece of chicken is on its way.

Lastly, I would like to thank all who know me. Fortunately my visual mem-
ory is very good, and I can remember the faces of all my friends, unfortunately
my ability to remember names is terrible! I know I have forgotten to say thank

you to some people here, so this one is for you.

Contents

1 Introduction
1.1 Introduction
1.2 User interfaces in mobile environments
1.3 Personal digital assistants, portable and wearable computers . . .
1.4 Wearable computers L.
1.4.1 Wearable user interfaces
1.5 Environmental issues oL
1.5.1 Carriageof devices L.
1.5.2 Location of displays
1.5.3 Lighting conditions and display visibility
1.6 Current wearable user interfaces
1.7 Alternative user interfaces for wearable
computersl Lo
1.8 Research aims L
1.8.1 User interfaceissues
1.8.2 Sulawesi

1.9 Outline of the remainder of this thesis

2 A Review of Existing Work in the Area
2.1 Introduction L
2.2 Multimodal architectures

2.3 Multimodal human-computer interaction issues

vii

11
12

14
17
17
18
18

21

viii

CONTENTS

2.4 Multimodal applications L. 25
2.5 Wearable systemso oo 27
2.6 Wearable user interfaces L. 29
2.7 Wearable HCIissues 31
2.7.1 Hand control 31
2.7.2 Speech control 33
2.7.3 Head-mounted displays 35

2.8 Intelligent user interfaces L. 37
2.9 Contextual awareness Lo 40
2.9.1 Gathering contexts 41
2.9.2 Contextual architectures 43

2.10 Current wearable user interface systems 44
2.10.1 Terminal and console systems 44
2.10.2 The X11system 44
2.10.3 The Microsoft Windows system 45
2.10.4 The Emacs system 45

2.11 Wearable software manufacturers 46
2111 Wearix . . v v v o e e 46
2.11.2 WearableTech 47
2.11.3 Tangis 47
2.11.4 Charmed 47
2.11.5 Xybernaut.o Lo 47
2116 Via. . . oo o 48
2117 IBMo 48

2.12 Chapter summary o 48
2.13 Proposed research L. 50
The Construction of a Wearable Computer 55

3.1 The wearable computer, “Rome” 55

CONTENTS ix

3.2 Wearable computer technical specifications 56
3.3 Construction o Lo a7
3.3.1 Power supply problems 61

3.4 Software and operating system configuration 62
3.4.1 Software configuration problems 65

3.5 Construction of the V1 head-mounted display system 66
3.6 Conclusions o 68
4 A Study of some Wearable Interaction Devices 69
4.1 Introductiono oo 69
4.2 Experimental design oo 0oL 71
4.3 Text entry experiment 72
4.4 Direct manipulation experiment 72
4.5 Direct manipulation vs target size experiment 73
4.6 Display technologies experiment 74
4.7 Monocular displays experiment L. 75
4.8 Observations during the experiments 76
4.9 Results and discussiono 76
4.9.1 Experiment one: text entry speed L. 76
4.9.2 Experiment one: text entry accuracy 78
4.9.3 Experiment two: cursor speed 79
4.9.4 Experiment two: cursor accuracy 79
4.9.5 Experiment two: cursor overrun 80
4.9.6 Experiment three: cursor speed 82
4.9.7 Experiment three: cursor accuracy 83
4.9.8 Experiment three: cursor overrun 85
4.9.9 Experiment four: cursor speed 86
4.9.10 Experiment four: cursor accuracy 87

4.9.11 Experiment four: cursor overrun 89

4.9.12 Experiment five: cursor speed
4.9.13 Experiment five: cursor accuracy

4.9.14 Experiment five: cursor overrun

4.10 Chapter summary

4.10.1 Guidelines

Sulawesi, A Contextual User Interface Framework

5.1 Why was Sulawesi designed?

5.2 The Sulawesi architecture and concepts

5.3 The architecture of the Sulawesi framework
5.3.1 The sensor subsystem
5.3.2 The contextual rendering subsystem
5.3.3 The management subsystem

5.4 Sulawesi implementation
5.4.1 Sentence structure
5.4.2 Renderer look-up table
5.4.3 Command buffer
5.4.4 Command execution
5.4.5 Management Subsystem
5.4.6 Sensor Subsystem

5.4.7 Renderer Subsystem

5.5 Chapter summary

Applications built on Sulawesi

6.1 Introduction

6.2 Sensors

6.2.1 Global positioning system

CONTENTS

CONTENTS

6.2.2 Infra-redo Lo
6.2.3 Accelerometer oL L
6.3 Renderers
6.3.1 Gili: A prototype wearable user interface
6.3.2 Text renderer L.
6.3.3 Speech generation
6.4 Commanding the machine
6.5 Location LAL
6.5.1 GPS location translation
6.5.2 Infra-Red Location Translation
6.6 Posture LAL
6.6.1 Contextual rendering based on posture
6.7 Applicationso
6.7.1 News
6.7.2 Spatial reminderso oo
6.7.3 Notes application L.
6.8 Chapter summary
7 Conclusions & Further Work
7.1 A critical appraisal of Sulawesi
7.1.1 The overall architecture
7.1.2 Input
7.1.3 Renderers
7.1.4 Applicationso
7.1.5 Userinterface,
7.2 Conclusions
7.3 Futurework

A User Test Paragraphs

A1 Paragraph One

x1

135
136
137
137
142
142
144
145
147
148
148
151
152
152
153
155
156

159
159
159
160
161
162
162
163
164

177

xii CONTENTS

A2 Paragraph Two 177
B Interface Code 179
B.1 Example reactionary interface code 179
B.2 Example decisionary interface code 181
B.3 Example sensor code L oL 183
B.4 Example renderer code L. 184
C Application Code 185
C.1 Time agent code 185
C.2 Posture LALcode 188
C.3 Slashdot RDF news feed 192
C.4 Newsagent code 194
C.5 Spatial reminder agent code 200

C.6 Notesagent code, 207

List of Tables

1.1

4.1

4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10

Some current wearable user interfaces. 3

Mean and standard deviation of character entry times (millisec-

onds). ... 76
Number of corrections. L. 78
Cursor speed (pixels per millisecond). 79
Cursor accuracy (targets hit). 80
Cursor overrun (pixels). 81
The ¢ values for speed vs target size. 83
The t values for accuracy vs target size. 84
Experiment three: cursor accuracy data. 85
The t values for overrun vs target size. 85

The ¢ values for the cursor overrun vs target size when comparing

the immersive and augmented HMD with the Twiddler. 90

xiii

xiv LIST OF TABLES

List of Figures

1.1 The author with his wearable computer.
1.2 Immersive display.

1.3 Augmented display. Lo L

2.1 Indirect, direct and augmented head-mounted displays.

2.2 The Remembrance Agent.

3.1 The wearable computer system architecture.

3.2 The main case when opened and closed, the external connections
and the two belt slots can be seen on the side of the case (the
white ruler is 30cm in length and has been included only as a rough

indicator of the scale).
3.3 The complete system in its component parts.

3.4 The lid with the motherboard, serial port card

and DC-DC converter.
3.5 The PCMCIA and VGA card ready to be fitted.
3.6 The hard disk and the GPS receiver card ready to be fitted. . . .
3.7 The complete wearable system.
3.8 Output supply rail clamp.
3.9 The M1 HMD.
310 The VIHMD.

3.11 The M1 controller dismantled and placed inside a box.

XV

6

o8

62

67

Xvi

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17
4.18
4.19

4.20

5.1
5.2
9.3
0.4
5.5
0.6
0.7
5.8

LIST OF FIGURES

The Twiddler single-handed keyboard. 70
Applet displaying a graphical target. 73
The Virtual-IO glasses. 74
The M1 head-mounted display. 75
Traveling patterns between two targets. 81
Speed vs target size using the Twiddler and mouse. 82
Accuracy vs target size using the Twiddler and mouse. 84
Overrun vs target size using Twiddler and mouse. 86
Speed vs target size using a mouse. 86
Speed vs target size using the Twiddler. 87
Cursor accuracy vs target size using a mouse. 88
Cursor accuracy vs target size using a Twiddler. 88
Cursor overrun vs target size using a mouse. 89
Cursor overrun vs target size using a Twiddler. 89
Cursor speed vs target size using a mouse. 90
Cursor speed vs target size using a Twiddler. 91
Cursor accuracy vs target size using a mouse. 91
Cursor accuracy vs target size using a Twiddler. 92
Cursor overrun vs target size using a mouse. 93
Cursor overrun vs target size using a Twiddler. 93
Sulawesi architecture. oo L 101
The information abstraction layer (LAL). 102
Commands being processed. 104
The sensor subsystem. 106
The sensor subsystem at start-up. 107
The sensor subsystem when re-detecting sensors. 108
Querying a Sensor.o e 108

Sensor sending a Message. oo .o e oo 109

LIST OF FIGURES xvii

5.9

5.10
5.11
5.12
5.13
5.14
5.15
5.16
5.17

0.18
5.19
5.20
5.21
0.22
5.23
5.24
9.25
0.26
5.27
5.28
5.29

9.30

6.1
6.2
6.3
6.4
6.5

The rendering subsystem. 110
Initialisation of the rendering subsystem. 111
A render redirection message. 112
A render request with no re-directions. 113
A render request with redirection from “a” to “b”. 113
The Management Subsystem. 114
Construction of a Decisionary application. 114
Construction of a Reactionary application. 115

Message-passing from the Sensor Subsystem to the Decisionary

applications. L 115
A Decisionary application processing a command. 116
Class structure for the Sulawesi system. 117
A Reactionary command being processed. 120
A Decisionary command being processed. 121
The Reactionary interface. 122
The Decisionary interface. 123
The ThreadManager class. 124
The message queue transitions. 125
The ServiceManager class. 126
The SENSORBASE interface. 128
The Sensor Subsystem. 128
The RENDERBASE interface. 129
The Renderer Subsystem. 130

GPS generating LLA signal and being broadcast into Sulawesi. . 134

Infra-red transceiver broadcasting an ID. 135
The accelerometer worn on theleg. 137
Gili user interface (Linux + Java). 138

Stacked applications. 139

XViil

6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13
6.14

LIST OF FIGURES

Notes application menu (Windows + Java). 140
Gili application interface. 141
Gili and Sulawesi. L L o oL 143
Location A L. o 145
Location I.A.L. sequence diagram. 146
Map showing locations and cell radii. 148
Posture [.A.L. sequence diagram. 149

Diagram of accelerometer data when sitting, standing and walking. 151

Spatial reminder after being triggered by a location. 154

Listings

B.1
B.2
B.3
B.4
C1
C.2
C.3
C4
C.5
C.6

Example Reactionary Interface Code 179
Example Decisionary Interface Code 181
Example Sensor Code 183
Example Renderer Code 184
Time Agent Code 185
Posture LA.LL. Code, 188
Slashdot RDF news feed file 192
News Agent Code 194
Spatial Reminder Agent Code 200
Notes Agent Code 207

Xix

XX

LISTINGS

Chapter 1

Introduction

1.1 Introduction

During the late 1970’s a few individuals succeeded in adapting electronic systems
so they could provide a useful task while on the move'. These systems were often
crude and provided limited functionality as they were designed for a particular
task. Since then several research groups? have been involved with adapting
personal computers for use in a mobile environment. Due to the reduction in
size of the hardware over the years, these wearable computing systems are now
becoming more of an interest to a wider audience. Researchers from a growing
number of disciplines are experimenting with providing computing power and
information access to mobile users, from architects to archaeologists.

Most general personal computing devices in use today have some kind of
desktop user interface and, as the vast majority of people are used to the desktop
metaphor, it would seem a logical idea to put a desktop user interface onto a
wearable computer to reduce the learning curve of the device. While the idea
of having a computer present all the time may sound appealing, the use of the
desktop metaphor on a wearable device may not be appropriate as it assumes

that the user will be using a standard monitor, keyboard and pointing device.

"http://www.eecg.toronto.edu/ mann/index . html
2MIT, Georgia Tech, Carnegie Mellon, IBM, Sony and Boeing to name a few.

2 CHAPTER 1. INTRODUCTION

Although the metaphor is fairly intuitive on a personal computer, problems arise
when trying to use the desktop interface with some of the alternative input and

output devices available on a wearable computer.

This thesis investigates the characteristics of some of the current wearable
user interface devices and proposes some guidelines for systems based around
these devices. Also proposed is a contextual wearable user interface system
which has been designed to aid in the implementation of non-traditional appli-
cations and user interfaces which encompass context awareness. The architec-
ture is called Sulawesi and attempts to provide an implementation framework
to allow researchers to test and develop wearable user interface systems and

applications.

1.2 User interfaces in mobile environments

Until recently wearable computers were dedicated systems constructed by and
for a single person. The machine was customized to suit the owner’s personal
preferences using non-standard input/output devices to achieve different inter-
action techniques. As can be seen in table 1.1, most of the user interfaces
employed on these machines have been an amalgamation of existing desktop

systems and novel input/output devices.

To date there has been no formal definition of how the interface between
the user and the wearable computer should be constructed. Information about
the various interaction mechanisms available for a wearable User Interface (UI)
system provide an insight into what should not be included in the interface (see
section 4.10). In comparison to the desktop Graphical User Interface (GUI)
there has been little research into the interaction between a person and a com-
puting device which is to be used while on the move. This lack of knowledge

can cause problems when trying to design a wearable user interface.

1.3. PERSONAL DIGITAL ASSISTANTS, PORTABLE AND WEARABLE COMPUTERS3

‘ Name

‘ User Interface components

Steve Mann

NTSC screen, text based + Twiddler
http://wearables.blu.org/showcase/3.html

Ken Williams

M1 head HMD, text based + Twiddler
http://wearables.blu.org/showcase/4.html

Greg Priest-Dorman

M1 HMD, speech synthisis + BAT keyboard
http://www.cs.vassar.edu/ " priestdo/wearable.html

R. Paul McCarty

M1 HMD, X desktop + keyglove
http://wearables.blu.org/showcase/7.html

Timothy Gray

M1 HMD, X desktop + Twiddler
http://wearables.blu.org/showcase/8.html

Thad Starner

M1 HMD, text based + Twiddler
http://wearables.www.media.mit.edu/projects/wearables/lizzy/

Mika Iltanen

M1 HMD, wrist keyboard, finger mouse
http://wearables.blu.org/showcase/10.html

Jeff Hartman

M1 HMD, X desktop + Twiddler
http://www.digiman.org/

Wearable EPSS

Virtual Vision HMD, Windows + trackpad/speech input|44|

Hitachi Wearable

Custom HMD,Windows CE,Touch pad
http://www.hitachi.co.jp/Prod/vims/wia/eng/main.html

Gerd Kortuem

Virtual-IO HMD, Windows + trackpad/speech Input
http://www.hitachi.co.jp/Prod/vims/wia/eng/main.html

Brian Rudy

M1 HMD, Windows + Twiddler
http://wuw.praecogito.com/“brudy/techwear.html

Steve Feiner

Virtual-I0, Windows + trackpad|62]

Table 1.1: Some current wearable user interfaces.

1.3 Personal digital assistants, portable and wearable

computers

The differences between a portable computer, a PDA and a wearable computer

can be summarized in several ways, here comparisons are made between the

types of interaction devices available and the task for which they are to be used.

Portable computers

These are commonly termed laptop devices which run industry standard soft-

ware such as Windows, with a screen, keyboard and pointing device being used

for data entry and object manipulation. While these devices are mobile in the

sense that they can be moved to different locations, it is almost impossible to

4 CHAPTER 1. INTRODUCTION

use them while on the move (e.g. while walking). The user is expected to stop
their current task and manipulate the desktop user interface and waiting until
the machine has produced the desired results. For a desktop machine where a
user solely uses the computer for a given task this may be acceptable, but for a
machine in a mobile environment it would be unrealistic to expect the user to

halt their primary task (such as driving) to assist the machine.

Personal digital assistants

These are usually smaller than the laptop devices, providing a lower power con-
sumption and lower-than-laptop processing power. The palm pilot for instance is
a good example of a PDA with a small physical footprint. It is still fairly usable
for its size with a small touch screen and stylus combined with a graphical user
interface. It can be argued that a PDA is more useful in mobile environments
than a portable desktop machine because it has the ability to communicate in-
formation to the user without requiring the users intervention. For example;
most PDAs posses the ability to turn themselves on at a predefined time and
alert the user of an appointment (usually through a beep or an alarm). It has
been observed that these simple alarms can remind users of an event without

having to manipulate the device.

These two systems fall either side of a loose definition of a wearable comput-
ing system. Steve Mann [65] has stated that “The wearable computer provides
significant processing power, runs continuously, and is always ready to interact
with the user. Unlike a hand held device, laptop computer, or PDA, it does
not need to be opened up and turned on prior to use”. The ability to proactive
detect the users environment and assist the user is also considered an important
feature for a wearable device.

In ubiquitous computing the sensors and processing power are placed within

a fixed environment. An ubiquitous computing environment tries to understand

1.4. WEARABLE COMPUTERS)

and react as changes occur within the environment. Conversely, a wearable com-
puter places the sensors and processing power on a person, and the environment
is not fixed. This makes many of the research problems involved in understand-
ing and reacting to events considerably harder as the environment is not longer

under control.

1.4 Wearable computers

With the reduction of processor size and power requirements over the last few
years there has been an increase in mobile telecommunications and wireless data
access. There are already mobile phones with built in diary functions, and PDA
devices with mobile phone adapters, so it is not hard to imagine that eventually
these devices will merge into a single personal communications device that will

be accessible and operable while on the move.

Observations of the equipment and the environments in which wearable com-
puters can be put to use in soon reveals a very large problem space in relation to
a desktop computing device. A wearable computer poses a different set of issues

and the possible interaction techniques manifest themselves in many forms.

The current generations of wearable computers have many incarnations.
Some have been placed inside shoes [72] while others have been placed inside
jackets and coats [63, 35]. As seen in table 1.1 the most popular commercial
input device used by wearable users is a single-handed chording keyboard called
a Twiddler which has an integrated tilt sensor that can be used to emulate a
mouse. The wearable researchers in the past have used the Twiddler because
of it’s low cost and immediate availability, also a lot of research is focused to-
wards novel applications of wearable computers rather than how to control the
machine. A head-mounted display (HMD) provides a portable graphical dis-
play. Some HMDs are occlusive and project the display into one or both eyes,

while other models provide a see-through display which augments the graphical

6 CHAPTER 1. INTRODUCTION

Figure 1.1: The author with his wearable computer.

display with the real world. The author’s prototype wearable computer can be
seen in figure 1.1 and a description of the construction of the machine is found

in chapter 3.

The author’s wearable computer uses a head-mounted display and Twiddler
to replace the monitor and keyboard of a desktop machine and the initial in-
teraction methods are based around a current desktop user interface. This use
of a desktop interface system assisted in the rapid prototyping of the wearable
computer, but it becomes obvious after only a few minutes of using the ma-
chine that in the long term the user interface is not appropriate. The desktop
scenario usually involves a person sitting at a desk with a screen transferring
information from the machine to the user. Manipulation of an input device such

as a keyboard or a pointing device transfers information from the user to the

1.4. WEARABLE COMPUTERS 7

machine. The position of these devices depends upon the user: some people are
able to type on a keyboard without looking at it, while others place the key-
board directly beneath the screen so they can glance at it to obtain a reference
point for the location of the keys. On the other hand, a pointing device such
as a mouse does not need to be within the user’s peripheral view as current
graphical environments provide sufficient feedback via a mouse pointer for the
user to locate quickly and accurately the pointer on the screen, and generally
there are only two or three buttons on the mouse so the user does not need to

locate the position of the buttons visually.

1.4.1 Wearable user interfaces

Wearable user interface can be classified into two groups. Each takes into ac-
count the environments in which the wearable will be put to use, the kind of
interaction methods that will be available and the tasks the machine will be

expected to perform.

Primary task interface

If a person was using a wearable computer to assist with a task, or to pro-actively
provide information, then it makes sense to try and integrate the information
with their task as seamlessly as possible. This is analogous to a person driving
a car within a speed restricted area. The user’s primary task is driving while
the speedometer is used as an indicator of the car’s speed. The user can glance
at the speedo and gain some knowledge of the car’s speed, they can then focus
their attention back to their driving task and adjust the car’s speed up or down
accordingly.

The author has termed this type of wearable interface a Primary Task Inter-
face (PTI), in that it can provide small amounts of information with a minimum
of distraction. The information could be very terse and rudimentary but enough

to be useful for the user’s task.

8 CHAPTER 1. INTRODUCTION

An example of a wearable PTI would be a system which assists when meeting
people by recognizing them from images captured with a small video camera.
An overlay of the person’s name above their head would allow the user to con-
centrate on speaking to that person without having to concentrate on the user

interface for any length of time.

Secondary task interface

If the wearable computer is not being used in the user’s primary task then there
may be occasions when the computer will be working in the background to offer
potentially relevant information to the user. This type of interface has been
called a Secondary Task Interface (STI) in that it can provide more verbose

information to the user.

An example of a STI would be a tour guide system which offers information
to the user. The user’s primary task in these circumstances might be to avoid
traffic or to admire an ancient building, but if needed the wearable system
could be consulted to provide more detailed information on a particular route
or building. Here the information would be more verbose and require the user to
stop their primary task and focus their attention to the wearable device. It may
also possible for the interface to be primary in some situations and secondary

in others.

1.5 Environmental issues

In order to look at advancing the current wearable user interfaces we need to
observe the types of interaction mechanisms used and the environments in which

they will be used.

1.5. ENVIRONMENTAL ISSUES 9
1.5.1 Carriage of devices

The carriage of the wearable computer will vary depending on the environment
in which the device will be used. Some people have placed the main computer
parts inside a small bag slung over the shoulder as this allows the user to don
and doff the machine easily. This approach was used by several MIT researchers
with the Tin Lizzy® machine. Unfortunately, the carriage of the bag means that
the machine is under constant vibrations and knocks, and this may cause long-
term problems with the hardware. It has also been noted that carrying a delicate
machine in a bag is not ideal as people think it is just a bag and take little care
when walking past the person carrying the machine.

Some people have placed the main processing part of the wearable computer
on the waist via a belt arrangement®. This is a more comfortable position than
the shoulder bag as it does not pull on the shoulders, but the arrangement means
that the machine still suffers from being knocked. Other researchers have placed
the machine on the back (either via a rucksack [62], or on a specially designed
jacket [28]). This has the advantage of not being knocked easily by other people,
but the location makes it difficult to control any switches of buttons which may
be on the physical device.

Also, some people [39] have looked into the carriage of wearable computer
devices, and have suggested that unless careful mounting of the device is consid-
ered, the possibility of back pain and skeletal disorders may arise from incorrect

positioning of the devices.

1.5.2 Location of displays

When designing a wearable user interface, one of the main considerations should
be the type of display and how it will affect the desired application. At the

moment there are three types of display which can be realistically used in a

*http://wearables.www.media.mit.edu/projects/wearables/lizzy/lizzy/index.html
*http://www.cs.vassar.edu/“priestdo/wearable.pics.html

10 CHAPTER 1. INTRODUCTION

mobile environment.

The first type utilizes a normal graphical display which can be worn on
the body, such as PDA screens and arm-mounted displays. These displays are
good for a Secondary Task Interface in that they can work in the background
providing information to the user, and the user can consult the device when
information is needed. The display would not be very suitable for a Primary
Task Interface as it requires the user to focus attention on the device rather

than on their task.

Real
World

LCD.

Figure 1.2: Immersive display.

The second type of display utilizes small liquid crystal displays (approxi-
mately lemx1lem) which are placed in the user’s field of view. These displays,
such as the M1°, usually provide a resolution of around 320 x 240 pixels and are
used in a monocular configuration. This type of display is often referred to as
an immersive display because it is viewed directly and obscures the user’s field
of view (see figure 1.2). Again this type of display has been classified as a Sec-
ondary Task Interface. The main reason is, because it obscures the user’s field of
view, the user cannot easily use the display and focus on a task simultaneously.

The third type of display is similar to the second type (described above),
with small liquid crystal displays (LCD) being used. Instead of the physical LCD
screens being positioned in front of the users eyes, they are placed outside of the
field of view of the user and mirrors are used to bounce the light from the LCD
screens into the eyes of the user (see figure 1.3). These type of displays nearly

always have half-silvered mirrors placed in the user’s field of view: this allows

*http://www.liquidimage.ca/

1.5. ENVIRONMENTAL ISSUES 11

————————— > TRt =
Real
World
Half Silvered
Mirror
L.CD.

Figure 1.3: Augmented display.

the image from the LCD screens to be “augmented” with the image from the
real world. This type of augmentation is used by the MicroOptical corporation
[50] and by I-O Display Systems LLC® in their Virtual IO glasses. This type
of display can be used to implement a Primary Task Interface and overlay
information onto the real world. If the information is provided at a low enough
rate it is possible for the user to proceed with their primary task while still
receiving information from the machine. This type display system is currently
used by fighter pilots around the world: in helmet-mounted head-up displays
the computer overlays targeting information upon the real world to assist the
pilot. At the same time it is possible for the pilot to fly the plane without having

to glance at a computer screen.

1.5.3 Lighting conditions and display visibility

A wearable computer provides a mobile computing platform. This inherently
means that the device could be used indoors and outdoors in different envi-
ronments. One of the main consideration for a graphical user interface on a
mobile computing device is can the user see the user interface clearly enough to
understand it?.

There are certain physical limitations on the display devices available, such

as the amount of light they emit, and these limitations cannot easily be changed.

®http://www.i-glasses.com/

12 CHAPTER 1. INTRODUCTION

Conversely, a user interface for such a device should be usable in many types
of environment. If the machine is to be used outdoors all through the year
then the interface should work just as well on a bright summer day as it would
on a dark winter day. The same should be true if the machine is to be used
during transitional lighting environments such as continuous operation from
indoors to outdoors or from working during the afternoon into the night. Similar
observations of illumination have been recorded by [16] where a field survey
of aircraft engineers was performed. The observations showed that in bright
lighting conditions the users would move their head away from the sun and try
to cast a shadow over the display.

The desktop user has the ability to move away from the interface when
desired. This gives the user a sense of freedom to be able to disassociate them-
selves completely from the machine when needed. On the other hand a user
interface which is present in the user’s field of view all of the time can become
overpowering even when it is not being used actively.

A person has a relatively low amount of bandwidth available with which to
send information from the eye to the brain [2]7. When focusing on a object a
persons eyes do not stay fixed on a single position for long, the eyes tend to
wander around an object rather than staring at a fixed position. A Primary
Task Interface that dominates the user’s field of view may provide a low rate
of information to the user but, unlike the desktop user interface, the HMD
user interface is in permanent view. There may be situations where it would
be required to turn off the user interface, perhaps automatically when certain

conditions arise.

1.6 Current wearable user interfaces

The standard terminals, such as the console of a Unix or DOS system, allows

commands to be entered while in different places. While a text entry system

chapter 2, page 23

1.6. CURRENT WEARABLE USER INTERFACES 13

does not necessitate a textual output, most of the text only modes of interaction
are based around the command line metaphor which produce a textual output.
It can be argued that these console based systems can limit the ability to control
the machine.

The author’s initial experiences with graphical user interfaces provided by
desktop environments, such as Windows95 and X windows, suggests that they
are difficult to control with the Twiddler device. A simple task such as opening
a text editor and entering a paragraph of text was a lot harder than with a

desktop machine. The following observations highlight some of these problems:

e [t was not easy to control the graphical cursor with the Twiddler’s pointing
device. In a brief comparison with a mouse, a trackpad, and a trackball the
Twiddler was perceived as the worst performer. In a mobile environment
a mouse would not be the best device to use as it (obviously) requires a
flat surface to operate, so a trackpad or a trackball might be more suitable
than the Twiddler or mouse. The Twiddler was chosen as it integrated a

textual entry and pointing device into a single package.

e The graphical cursor was difficult to observe while on the move as the
user had two focal points to try and concentrate on: the mouse pointer in
the near field of view and the real world, which was in a further field of
view. This lead to confusion in trying to control the machine and trying

to navigate along a corridor.

e Typing sentences or commands with the Twiddler proved difficult as it
required a lot of practice to use at any reasonable speed. It was noted
that a novice user constantly observes the Twiddler to find which keys
they are pressing. Also, due to the low resolution of the head-mounted

display, it was difficult to read the text, compounding the problem.

e The graphical user interfaces used on the machine (X and Windows95)

meant that the user had to stop what they were doing and focus on com-

14 CHAPTER 1. INTRODUCTION

manding the machine. In some situations there was so much information
being presented to the user they had to stop even the simplest tasks (such
as speaking!) in order to concentrate on the machine. The GUIs were
almost impossible to use while moving about due to the use of point and
click operations. Vibrations caused the pointing device in the Twiddler to
stray away from where the user was trying to position the cursor. Also
the selection boxes and radio buttons in most GUI dialogs were difficult

to select.

e When using the augmented head-mounted display, the variations in light-
ing conditions made it very difficult to see the interface, and sometimes
the real world! The immersive head-mounted display was not as badly
affected by light variations. With both displays it was possible to improve
the legibility of the interface by changing the colour schemes to include

high contrasting colours such as black on white.

These annoyances were at first attributed to the faults of the interaction devices
being used. Further observations revealed that, although in some situations the
devices could never perform as well as a desktop device, they were not the main
cause. The metaphor that underlies the desktop graphical user interface does
not fit in with the concept of a wearable computer, but which component of
a desktop interface is at fault needs to be explored before a remedy can be

proposed.

1.7 Alternative user interfaces for wearable
computers
What would be the ideal user interface for a wearable computer? Due to the

sparse number of wearable user interface systems we need to look further afield

than the wearable computing arena to other areas such as multimodal interfaces,

1.7. ALTERNATIVE USER INTERFACES FOR WEARABLECOMPUTERS15

intelligent agent interfaces and contextual awareness. These fields provide an
insight to a potential wearable user interface, an example of which would be
a system which listens for its user, understands what the user has asked it
to do using speech recognition, gestures, machine vision and other channels
of information, carries out the users request automatically, and presents the
results back to the user when it is most appropriate and in a suitable format.
The machine could also observe the user’s environment and suggest relevant
information when it is convenient to do so.

Investigations into multi-modal systems 2.2 which gather information from
multiple channels have been around since the early eighties [59]. Since then sev-
eral multi-modal systems have been constructed [19], but examination of these
systems reveals that they are specific applications which provide multi-modal
interaction techniques. Although they are good at achieving their desired task,
trying to use the interaction techniques for anything other than the applications
they were written for may be difficult and in some cases impossible. Another
difficulty is that development tools for creating and researching into alternative

user interface systems are scarce. Kortuem et al. writes [27]:

“Sophisticated user-interface management systems are available to
facilitate the development of window-based direct manipulation user
interfaces. Yet, there is almost no support for building non-traditional
user interfaces that make use of voice technology and body tracking
or a combination thereof. In addition, the limited experience in de-
signing user interfaces for hands-free or one-handed operations poses

a serious problem.”

Also, the type of information that should be provided, and how it is presented
should depend on the users circumstances. The use of sensors to gather informa-
tion and some higher level autonomous processing of that information to adjust

or manipulate existing data has been termed contextual awareness [56] by many.

16 CHAPTER 1. INTRODUCTION

Brown etal® have also defined six types of generic context-aware applications,

but they emphasize that:

“it is not our aim to produce a taxonomy: there are plenty of appli-

cations that do not fit any of the generic applications we discuss”

The author believes that the use of proactive autonomous applications that
observe the context of their surroundings and present timely information in a
suitable format will be very important in a mobile environment.

Because of the diverse nature of tasks that wearable computers will be used
for, it is almost impossible to design a single application to suit all needs in
all environments. The aim of the work in this thesis is to provide a system
that is flexible enough to encompass a wide range of interaction techniques and
paradigms, that can be adapted through well-defined programming interfaces,
and can be tailored for a specific purpose. An explanation as to what some of

the terms mean and how the author attempts to achieve them are below.

A multimodal, multimedia system

As defined in the literature, this is the ability to control a machine using
various input modalities, and the machine being able to generate outputs
via different rendering interfaces. The utilization of speech control may be
very desirable in some circumstances, but in other situations there needs
to be alternative ways of controlling the user interface. Providing an
extendible system allows others to develop input and output mechanisms

tailored to their circumstances.

An agent system

Ideally a wearable system should pro-actively assist its user, so it seems

obvious to allow agents to perform the raw processing and automation of

S8Context-awareness: some compelling applications
http://wuw.dcs.ex.ac.uk/ pjbrown/papers/acm.html

1.8. RESEARCH AIMS 17

tasks. The system allows agents (in this work they are interchangeably
called services or applications) to be written by third parties. The prereq-
uisite of this is a well-defined software interface to allow applications to be
integrated automatically into the system. The applications are not to be
functionally limited in any way; and with the use of a small Java wrapper
(see chapter 6 for an example) it is possible to interface with native code

easily.

A proactive system

The system should be able to monitor the environment of its user and
make decisions based on how the system perceives the environment. The
work provides mechanisms to allow agents in the system to view the en-
vironment through the input channels. This means that an agent can act

on the user’s behalf when certain combinations of conditions arise.

1.8 Research aims

1.8.1 User interface issues

In comparison to the desktop user interface, there has been very little research
which attempts to address the interaction problem between a person and a
computing device which is to be used at the same time as being mobile. Smith
et al [11]|, Bass et al [43] and Baber et al [15] provide some information on
various aspects of wearable-human interaction, but there are many commercial
wearable interaction devices for which there is no information available.

While information exists about the performance of virtual keyboards, fore-
arm keyboards and chordic keypads [12], currently there is no information on
the performance of the Twiddler or various head-mounted displays that are be-
ing deployed in wearable computing systems. In order to rectify this lack of

information the following needs to be addressed:

18 CHAPTER 1. INTRODUCTION

e Determine the operational parameters of the Twiddler, the M1 and the

Virtual-I0 head-mounted displays through user trials.

e A set of guidelines produced from this information for the construction of

specialist graphical user interfaces.

It is hoped that this information will be of use to designers of wearable user

interface systems based on the Twiddler and head-mounted displays.

1.8.2 Sulawesi

It has been speculated that the ideal human-computer interface for use in a
mobile/ubiquitous environment would be one which listens for the user; under-
stands what the user has asked it to do; carries out the users request automat-
ically; and presents the results to the user when it is most appropriate and in a
suitable format.

For the author the most interesting question is: What type of software frame-
work is needed to integrate contextual information with a mobile user interface?
In order to investigate this type of user interface, an architecture called Sulawesi
is proposed. The experimental work uses the author’s wearable computer? as

the target platform.

1.9 Outline of the remainder of this thesis

Chapter 2 provides a critique of existing material, focusing on human-computer
interaction with wearable computing, multimodal systems, intelligent user in-
terfaces, contextually-aware systems. Also presented is an overview of current
wearable user interface systems with the pros and cons of each system and a
summary of the features being highlighted.

Chapter 3 describes the construction of the wearable computer used for this

research.

®Described in chapter 3

1.9. OUTLINE OF THE REMAINDER OF THIS THESIS 19

Chapter 4 presents the design, implementation and results from a user test
to determine the limits of some of the current popular wearable interaction
devices. The results from this work are then used to propose a set of guidelines
for designing a user interface system based around these devices.

Chapter 5 presents the design and implementation of the Sulawesi system. Con-
sideration is given to the design of proactive agents, the combination of multiple
sensor data, and the transformation of sensor data into higher-level abstractions.
Chapter 6 describes the creation of context-aware applications within the Su-
lawesi framework using multiple sources of sensor information. A set of imple-
mented examples is described which aim to justify the Sulawesi design. Also
described is the implementation of a wearable graphical user interface based
around the guidelines in chapter 4. Consideration is made within the GUI to
allow the intelligent agents to control the presentation of information to the
user.

Finally, chapter 7 presents a summary of this research and indicates areas of

possible future work.

20

CHAPTER 1.

INTRODUCTION

Chapter 2

A Review of Existing Work in

the Area

2.1 Introduction

At the moment there are only a few people who use wearable computers and
their individual preferences for the user interface varies. This discussion aims
to identify key areas of published work which may be relevant in providing user
interfaces for alternative computing systems. This review highlights the point
that there are indeed types of user interfaces which may be useful for wearable
computers, but there is little information describing how these interfaces are

manifested or the interaction issues involved.

Here the author presents a critique of key material in the areas of Multi-
modal Systems, Wearable Computing Systems, Intelligent User Interfaces and
Contextually Aware Systems. The last part of this chapter looks at what user in-
terfaces are currently being used by wearable researchers and the user interfaces

being deployed by wearable manufacturers.

21

22 CHAPTER 2. A REVIEW OF EXISTING WORK IN THE AREA

2.2 Multimodal architectures

Investigations into computing systems which monitor and react to data from
multiple streams have been around for almost as long as the windows, icons,

menus, pointer (WIMP) paradigm.

In 1979 the first well-known piece of work which simultaneously gathered
data from various streams, inferred a meaning, and produced a response was
constructed by Bolt [59]. By using a magnetic tracker strapped to the hand, a
speech recognition package and a large 3D projection room, it was possible to
gesture that an object should be moved by pointing at the object and moving

the hand from the object to an empty space while uttering “put that there”.

The benefits of a system such as this in an environment where the use of input
devices are restricted, such as a wearable computer, are immediately obvious.
It is argued by Van Dam [6] that this type of user interface paradigm, using
tactile interfaces, natural language understanding, speech recognition and 3D
visualisation techniques will be combined in the future and he has called this

amalgamation of alternative interaction mechanisms a “post-wimp” interface.

While there have been several multimodal systems developed over the last
few years, each provided a different functionality based around a similar design
methodology. Hartung et al. [40] describe a system called HARP which was
designed for the acquisition, integration and representation of multimodal in-
formation. The architecture highlights this design methodology by dividing the
system into four distinct groups which process information at different levels.
The input mapping stage receives signals from sensors and maps the information
into a perceptual space. The cognitive processing stage observes this perceptual
space and attempts to resolve symbolic references. A symbolic database is used
to resolve the symbolic references in the perceptual space. Once the system has
identified which perceptual space is being used, the output mapping stage can

then produce a suitable high-level output in response to results from the cog-

2.2. MULTIMODAL ARCHITECTURES 23

nitive processing stage. The system relies on being able to gather information
from an environment and being able to understand this information, to be able
to process the information and produce a correct response. These concepts and
ideas have had a strong influence on the design of the Sulawesi system which

forms the core contribution of this thesis.

Other multimodal architectures encountered implicitly use this model as
well. The architecture by Wilson et al. [51] uses several expert systems which
gather various pieces of information from the environment. A central controller
decides which expert systems need to communicate with each other in order to
resolve potential ambiguities. Once this has been achieved the controller then

sends the result to a final expert system which displays the information.

Similarly, Moran et al. [20] use the Open Agent Architecture with dedi-
cated agents to gather information from speech and handwriting subsystems. A
modality coordination agent is responsible for combining the information from
these different subsystems and to resolve ambiguous references. From this a sin-
gle understanding can be determined and a facilitating agent is used to delegate

requests to other agents.

In all of these systems there may be many different expert systems or agents
working simultaneously. The fundamental concept here is that the various parts
of each system can be categorised into one of the data gatherer, data processor
or information provider groups. This approach requires significant knowledge
in various domains, such as speech and handwriting recognition, and while the
techniques are well documented there are still problems in trying to resolve
ambiguities and conflicting information. These problems can be seen when a

handwriting system has to decide whether the letter I is an ¢, an [or a 1.

Also, the systems described above are all stand-alone prototypes in that

they are designed for a single purpose. In order to expand, adapt or reuse these

24 CHAPTER 2. A REVIEW OF EXISTING WORK IN THE AREA

systems to perform a different task would be no minor feat, and in some cases it
would be easier to write the new application from scratch. In some cases it may
not be feasible to provide a single architecture for all purposes, but the author
contends that a simple modular architecture, where modules could be added
and tailored for particular applications, could provide enough functionality for

most of the multimodal systems in the field today.

2.3 Multimodal human-computer interaction issues

Some of the multimodal systems encountered by the author try to make the
interface between the machine and the human more natural by using speech
recognition and some form of natural language processing. But how should this
natural language be presented by the user to the machine? And how should the

machine respond if it does not understand?

Some of the problems which arise in multimodal communications, such as
uncertainties, ambiguity and feasibility are discussed by McGee et al. [22], and
McGlashan [66] describes some of the modal management techniques developed
in a speech-only dialogue system. From this work it is clear that two methods
of confirmation for reducing uncertainty and ambiguity have been employed.
The first is an early confirmation technique which attempts to recognise each
modality stream when it is received. When a high scoring match is interpreted
a response is generated so the system can provide immediate feedback. The sec-
ond type of feedback is late confirmation which takes an overview of all modal
inputs and attempts to infer what the user has asked for; only when a high

scoring match has been obtained is feedback generated.

While neither of these methods alone can cope with all situations, the com-

bination of these two techniques can produce a hybrid feedback system which

2.4. MULTIMODAL APPLICATIONS 25

can reduce the deficiency in either of the systems on their own. This idea is es-
pecially important in a multimodal system where several modes of information

will need to be combined to resolve ambiguities.

2.4 Multimodal applications

Nearly all of the multimodal applications in the literature use some form of
agents or expert systems to process information. Faure and Julia [17] investi-
gate the use of agents to analyse multiple modes of interaction. The system
constructed utilises speech recognition, pen input and keyboard interaction to
manipulate a graphical application with dedicated areas in which pen and speech
can manipulate sketches and drawings. To process multiple channels of infor-
mation and respond accordingly, two different agent types were defined: those
which reacted to their environment (“reactive agents”), and those which viewed
their environment and interpreted a higher level of understanding about it. The
prototype system used only reactive agents to respond to events in the user in-
terface. The use of agents which interpret a higher level of understanding were
not used due to the lack of processing power on the target hand-held devices
and the latency involved in providing feedback to the user interface. This may
be a bad sign when trying to develop a multimodal system for mobile devices.
The author believes that the complexity involved with agents which view their
environment and interpret a higher level of understanding will determine the
processing overheads of the mobile device. Also the concept of using two classes
of agents, one reactive and the other making decisions, is invaluable in designing

and building a system which processes multiple streams of information.

Over the last few years, much multimodal work has been in the hand-held de-
vices area, specifically in software for manipulating maps. Oviatt [68] describes

an interface for dynamic interactive maps: it combined speech and a pen in-

26 CHAPTER 2. A REVIEW OF EXISTING WORK IN THE AREA

terface for the navigation and manipulation of a map on a Personal Digital
Assistant. The results from user trials showed that the vast majority preferred
to interact with the map using both speech and pen modalities, with only a
few preferring to use the pen-only interface. Interestingly enough there were
no users who preferred to use the speech-only interface. Similarly Cheyer and
Julia [3] describe their multimodal map work using handwriting, gestures and
speech recognition. This system is slightly different in that it was developed
using the Open Agent Architecture which had the advantage of being able to
communicate with commercial applications such as mail systems, calendar pro-
grams and databases. The down side of using the Open Agent Architecture was
the complexity of the software: the processing requirements for the Personal

Digital Assistant device were increased drastically.

Another area where multimodal interfaces are being actively developed is
the area of Virtual Reality. Commenting on the difficulties with controlling a
virtual environment with a WIMP interface, Wyard and Churcher [57] describe a
prototype multimodal system called MUESLI. The system is able to control the
look and feel of a virtual room by the texture of surfaces such as curtains, walls
and carpets. This is achieved through the combination of speech recognition,
natural language processing and gestures. The benefit of this system is that a
relatively inexperienced user can control an advanced computing environment
with very little training, but this only works for certain situations where the

problem can be easily defined and manipulated.

A similar system, described by Roy and Pentland [19], attempts to resolve
ambiguous references through an adaptive learning algorithm. The system uses
real-time gestures with two colour video cameras and speech recognition. The
interface is manifested on a large back projected screen with a virtual graphical
toucan called Toco. Placed around the toucan are coloured objects and when

the user moves their hand and points to an object, the toucan watches the se-

2.5. WEARABLE SYSTEMS 27

lected item. The user can teach the interface by uttering a phrase like “this is
a red cube” and can query the interface by uttering a phrase similar to “what
colour is this”. This system provides the user with both the forms of feedback
defined by McGee et al.[22] earlier in this chapter: early confirmation is realised
by the toucan moving its head to watch selected objects, and late confirmation

is provided by resolving what the user has asked for and which object is selected.

These combined methods of confirmation work well together. The author has
personally manipulated this system and concludes that the use of both early and
late confirmation in a multimodal interface results in a perceivable improvement
in resolving ambiguities and reducing the amount of confusion experienced by

the user.

2.5 Wearable systems

The person who popularized the idea of wearable computers, Steve Mann, de-

fines [64] a wearable computer as

“a new form of human-computer interaction comprising a small body-
worn computer that is always on and always ready and accessible.
In this regard, the new computational framework differs from that
of hand held devices, laptop computers and personal digital assis-
tants. The “always ready” capability leads to a new form of synergy

between human and computer”.

Mann also discusses the operational modes of a wearable computer and pre-
dicts that a fundamental paradigm shift will occur when these systems provide

capabilities which

“empower the user with useful information”.

28 CHAPTER 2. A REVIEW OF EXISTING WORK IN THE AREA

Other early wearable systems are described by Smailagic and Siewiorek [5] where
three generations of wearable computing hardware are detailed. The system
comprises of head-mounted displays, speech recognition, global positioning sys-
tems, and the relative performance of each system is analysed. It is concluded
that the newer systems provided a lighter, more power efficient system that were

able to run for longer periods of time.

While the hardware requirements for this type of system are a well-understood
mechanical and electronic engineering problem, the way in which a user controls
the machine and the software architectures which support this type of seamless

mobile interaction are less well-understood.

Kortuem [27]| provides a detailed view of the software engineering involved
with wearable computers. The most challenging issues such as limited resources;
limited mobile infrastructure; lack of support for developing non-traditional
interfaces; and the integration of the complex systems are discussed with the
conclusion that there is a serious problem with the lack of understanding in

these areas.

In order to extend the knowledge base Kortuem also provides a detailed
description of software engineering. These findings are then applied to a wear-
able software architecture which attempts to address some of the issues stated
beforehand. While there is no evidence of the architecture actually being im-
plemented, the details of the system seem to address the issues of resource
management and integration of complex systems. Whether this system would
address the problems of developing non-traditional interfaces is not known, but
the author believes it contributes an architecture which could be used as the

foundation for a wearable user interface system.

An architecture designed by Fickas et al. [29] called Proem seems to address

the problem of limited mobile infrastructure initially defined by Kortuem. The

2.6. WEARABLE USER INTERFACES 29

system identifies possible collaboration of wearable users in a changing environ-
ment. Once a collaboration has been identified a session is set up between the
users and collaboration can begin. If the session becomes disconnected, as can
be quite common with mobile communications, the system provides mechanisms
for handling this disconnection gracefully, and also transparently re-establishes
the collaborative session when possible. In order to provide an expandable sys-
tem the architecture abstracts the physical devices from the applications; this
also contributes to the goal of handling disconnected sessions. The authors of
this work comment that Proem only provides a limited subset of a fully-realised
collaborative system; despite this, the work provides an insight into the com-
plexities involved in designing a system to cope with limited infrastructure and

disconnected sessions.

2.6 Wearable user interfaces

The user interfaces that are in common use on today’s desktop computers,
PDAs, virtual reality systems and voice-controlled systems make the computer

the centre of attention. In his article, Weiser [48] argues that
“the world is not a desktop”

He proposes that future computing systems such as wearables and ubiquitous
environments should be focused toward a more invisible user interface, where
the computer gathers information about the environment and responds accord-
ingly. The use of a single modality is condemned in [48], but the possibility
of using mixed modes of interaction depending upon the situation appears to
be consistent with Weiser’s ideas. While it is impossible to conform completely
with the idea of making a computer interface invisible, the notion of making a
user interface that is less obtrusive and more proactive that the current desktop

metaphor is certainly feasible, and is the aim of this work.

30 CHAPTER 2. A REVIEW OF EXISTING WORK IN THE AREA

On a similar note, Rhodes [14] and Lanuday and Kaufmann [38] both argue
that the WIMP (windows, icons, menus, pointers) interface is unsuitable for
use on a mobile computer as it makes some fundamental assumptions about the
user’s situation. The WIMP metaphor assumes that the user has fine motor
control with which to position a cursor, the amount of screen real estate is fairly
large and that the user’s primary task is commanding the machine. As with [48]
above, [14] and [38] conclude that the user interface should provide a progres-
sive amount of interaction depending on the user’s circumstances and the task
they are trying to perform. The ideal system would be able to cope with all
eventualities, but in practice it is very difficult to predict all possible outcomes.
Also, the author has been unable to find any existing wearable computing sys-

tem which demonstrates even the simplest implementation of this concept.

In defining a set of elements which are fundamental to wearable computing
user interfaces, Segall and Curry [75] stress the importance of a hands-free
interface system which is usable while being mobile. Also, the idea that the
computer can perceive the user’s environment and use this information to adapt
to the user’s requirements is highlighted. While Segall and Curry only provide a
brief outline of the architecture involved to accomplish these concepts, their work
provides evidence that people in field of wearable computers are not satisfied
with the desktop environment and are searching for a new type of user interface

for their systems.

This statement is reinforced by Heiber et al. [46] who comment that “the
desktop concept has proven very successful for desktop computers, but the
metaphor seems inappropriate for wearable computers with limited screen space
and restricted input devices”. An alternative user interface system for a wear-
able interactive mapping application is discussed where the desktop work space
is replaced by an application manager. This allows the user to view one appli-

cation at a time and toggle between several running applications easily. This

2.7. WEARABLE HCI ISSUES 31

prototype is similar to PDA user interfaces, such as the palm pilot, but it still

assumes that the only input/output mechanism available is the graphical device.

2.7 Wearable HCI issues

The author believes that the key to the widespread adoption of wearable comput-
ers is by enabling seamless interaction with the machine through various input
and output mechanisms. The most obvious input mechanisms use the hands
to control some kind of input device, or the voice to control a speech driven
interface. There are some other mechanisms such as retina-based tracking and
foot/leg control systems, but the author considers these to be impractical for a

widespread ubiquitous wearable control device.

2.7.1 Hand control

Calhoun et al. [32] have provided an overview of several hands-free alterna-
tives that were considered as candidate input devices for a wearable system.
Speech, eye tracking, gesture recognition, electromyographic (EMG) and elec-
troencephalographic (EEG) systems are discussed in great detail. The authors
of this work comment that the amount of control achievable with these devices is
rudimentary, and these devices are difficult to use with current interface systems
because most existing dialogues are tailored for a desktop GUIL. It is suggested
by the authors that that some form of multimodal user interface system which
uses several of the devices described above would provide a more natural user
interface system for a wearable computer.

While some of the devices highlighted in this work might be satisfactory for
wearable deployment, the use of EEG based systems is unlikely to be appropri-
ate due to the amount of sensors that would have to be placed on the body.
Also, because EEG sensors detect small electrical signals in the brain they are

very sensitive to electrical interference and therefore are not well suited for use

32 CHAPTER 2. A REVIEW OF EXISTING WORK IN THE AREA

where electrical noise might interfere.

The use of EMG sensors is explored by Goldstein et al. [47] where they
describe an alternative wearable input device. The system works by picking up
the muscle movements of the fingers using sensors placed on the forearm. A
keyboard is printed on a sheet of paper and placed on a flat surface and the
user presses the characters on the sheet. The EMG sensors detect the signals
and the system can detect which key was pressed by the combination of the
muscle movements used in order to press that key. Their findings show that the
speed achievable with this system is only 16% less than that of the QWERTY
keyboard. The reason for the reduction is not explained by [47], but the au-
thor speculates that the decrease in speed is attributed to the lack of feedback
available to the user. The authors note that the system does not address the
question of how information should be fed back to the user when they have
pressed a key. They also comment about the amount of effort required to use
this system. While their measurements showed a continuous trend toward lower

muscular strain, the subjects in the test perceived the task as more strenuous.

It is speculated that the alternative interface system which provided no
feedback was significantly different to typing on a normal QWERTY keyboard,
therefore the learning curve associated with the task came into play and in-
creased the mental load on the subject. Even so, the author feels that as there
were no sensor devices around the hand area, this type of system could be use-
ful in a mobile environment as long as a flat surface was available. The system
may be usable by typing in the air, but the author speculates that the sensors
detect the difference in muscle movements when the fingers hit a flat surface,
and typing in the air might not produce the desired resistance to produce these

signals.

A similar system to that of Goldstein was devised by Fukumoto and Yoshi-

2.7. WEARABLE HCI ISSUES 33

nobu [26], but instead of using EMG sensors to detect muscle movements, wire-
less accelerometers were placed inside rings on each finger. Again the user typed
on a flat surface and the data from the accelerometers were used to determine
which key was pressed. A chording arrangement was used to enter sequences of
codes. This makes direct comparison with a QWERTY keyboard almost impos-
sible, but the authors conclusions show that an untrained user could remember
and type approximately 27 sequences per hand, at a speed of approximately 130
codes per minute.

The only downfall the author can see with this system is that the physical
sensors need to be placed on each hand and, while the rings are very small,

wearing one on each hand may be uncomfortable and in some cases impractical.

2.7.2 Speech control

In theory the use of speech in a mobile application is very attractive as it allows
relatively intuitive hands free interaction if the interface is well designed. Unfor-
tunately there are problems in deploying a speech-controlled application in an
environment with high ambient and variable noise levels. The noise introduces
errors into the speech recognition system and, while most of the noise can be
filtered out with directional microphones and software filters, the ability of these
systems to cope with changing noise in the environment is still being explored.

Guidelines for using speech control in a wearable application have been pro-
vided by Najjar et al. [45]. The authors comment that “speech recognition tech-
nology presents new challenges to wearable computer user interface designers,
especially in the areas of recognition accuracy and ease of use”. The guidelines
include using speech when the user’s hands or eyes are not available for control-
ling a user interface, such as when the user is moving or focusing on a particular
task.

In order to increase the recognition accuracy and reduce the end user’s work-

load an emphasis is placed on using a short vocabulary and commands that

34 CHAPTER 2. A REVIEW OF EXISTING WORK IN THE AREA

are fairly distinctive from each other. While the contribution provides a good
overview of how to enable an application to use spoken commands, there is very
little detail as to how a speech enabled application should be constructed, how
well it could be expected to perform, or how feedback should be presented back

to the user.

Some of these problems have been addressed by Roy et al. [61] in their survey
of wearable audio computing interaction techniques. The work describes how a
prototype conversational interface called nomadic radio was constructed. The
design is based around a software agent architecture which can be completely
controlled via a speech recognition module. This is different from commercial
speech recognition packages where an existing application would be controlled
via a spoken dialogue. The agents in the system are specifically designed for a
speech-only interface and provide a basic form of feedback to the user’s spoken
commands. The system also attempts to determine the user’s context by lis-
tening to the environment through the microphone. If the system decides that
the user is talking then a short beep is generated rather than the results of a
request being spoken. When the user is ready for the information they can ask

for the message to be played back.

While a speech-only interface may be desirable in some circumstances there
will be environments and situations where a speech interface is not appropriate.
In these cases a system needs to be controllable via a number of alternative
methods and, while the nomadic radio system provides a good example of how
an audio user interface could be designed, the architecture does not provide an

easy method for adapting or controlling the agents via alternative input devices.

There is also no evidence of how well the nomadic radio system works in
terms of performance such as how often commands are mis-interpreted, so trying

to compare this system with others may be difficult.

2.7. WEARABLE HCI ISSUES 35

= > T
L LCD. Half Silvered
Mirror

LCD. LCD.

a) Indirect b) Direct ¢) Augmented

Figure 2.1: Indirect, direct and augmented head-mounted displays.

2.7.3 Head-mounted displays

Most of the wearable computers in existence today use some form of head-
mounted display (HMD) system to project images into the eye. Some HMD
devices use an indirect approach by placing the LCD out of the visual field of
view, while others use a direct approach by placing the liquid crystal projec-
tion unit in front of the eye. A third type of HMD uses half-silvered mirrors
to mix the signals from the display unit with the real world, resulting in an
augmentation of real world and computer generated images (see figure 2.1).
While these HMD units have been around since the mid-1960s [34], it has
only been in the last decade that the use of a portable HMD has been achiev-
able at a reasonable cost. Because of this, the use of these displays has been
concentrated to proof-of-concept prototypes in research labs, so little is known
about what effects the displays would have with everyday use in the real world,

or how environmental conditions will affect the performance of the HMD.

One of the few detailed studies on HMD interaction with a mobile environ-
ment is provided by Revels et al. [9]. Their glasses mounted display (GMD)
system was developed for use by aircraft engineers and the focus of the work is
on varying lighting conditions, the performance in respect to desktop computing
accuracy and the effects of obscured vision with continuous wear. The results
show that the position of the sun affected the direction the subjects faced when
reading the display. Most subjects would stand between 90 and 180 degrees

from the sun, casting a shadow over the display to try and increase the contrast

36 CHAPTER 2. A REVIEW OF EXISTING WORK IN THE AREA

of the device.

In respect to a desktop user interface, the subjects found it very difficult to
locate icons and pointers on the screen due to the lack of contrast. Also, the
amount of control achievable with the pointing device was considered to be too
crude for positioning the cursor, but the author could not determine whether
this was due to the pointing device (a thumb tracker ball) or to the display
device. The methods used in this work and the results from these tests are
interesting. The other studies involving HMD devices are biased toward virtual
reality applications where the user is in a controlled environment. While the
tests provide an in-depth view of how sunlight and other environmental issues
affect HMD, there is no information about how effectively the user was able to

control the user interface using these devices.

Two studies were undertaken by Baber et al. [15] which investigate some
of the human factors of wearable computers. Their first experiment compared
a monocular HMD with a normal cathode ray tube (CRT) screen. The task
was to locate and select a target on the display device. The results showed
that a significant difference in reaction times was observed, with the HMD
user exhibiting speeds that were 1.5 times slower in comparison to the user of
the CRT screen. The authors note that there was no significant difference in
the numbers of errors observed during these tests. They also comment that
the difference in reaction times might be due to the HMD being perceived as

uncomfortable.

Also of interest is the observation of binocular rivalry where information from
one eye competes for attention with information with the other. The authors
of [15] speculate that this may have also attributed to the slower reaction times

for the HMD.

The second study compared the time taken for a user to perform a task using

a wearable-based manual compared to a paper-based manual. The results show

2.8. INTELLIGENT USER INTERFACES 37

that while the wearable computer produced faster task completion times, there

was a noticeable trend for more errors to be made with this device.

The work suggests that although there may be potential benefits to be had
from a wearable computing device, there is a significant difference in efficiency
between using a normal computer screen and an HMD with a graphical target
of a fixed size. What is not investigated in this or any other relevant work
is whether a variation in the size or shape of the target has any effect on the
reaction times of the user. This may provide valuable information as to how
the elements in a graphical user interface could be designed to maximise the

efficiency of the displays.

2.8 Intelligent user interfaces

The field of intelligent user interfaces covers computing systems which can vary
their structure, functionality and purpose so that they appear intelligent to the
user of the system. By using predefined ideas about how the interaction be-
tween a human and a computer should be constructed, it is possible to create a
user interface system which can adapt to the users requirements and aid in the

usability of the system.

A discussion of how a computing system can accommodate individual differ-
ences by using an adaptive user interface is provided by Benyon [23]. The work
discusses some of the important issues about how a person’s cognitive ability,
personality and motor skills contribute to differences in the interaction methods
employed when using a computer. A simple database retrieval task highlighted
that people use a program in different ways. By including a piece of monitoring
code in the database program it was possible for the system to monitor the
user, decide which category the user fell into and adapt the user interface to

match the category. The conclusions from this work showed that there was a

38 CHAPTER 2. A REVIEW OF EXISTING WORK IN THE AREA

noticeable increase the efficiency of the task.

While the work only provides an overview of what is possible with an in-
telligent user interface, there are some important contributions such as how to
monitor a complex operation by splitting it into a subset of smaller operations.
These smaller operations may be easier to understand and an insight as to how

to adapt the user interface may be easier to find.

A system which adapts to the user is explored by Moran et al. [20], where
cooperative agents are used to make decisions about how the interface should be
changed to suit the user. In this work a mapping application gathers information
from multiple sources (pen,speech) and adapts the user interface to provide
the right information in the most appropriate format at a convenient time.
The system provides access to agents running on other machines, so speech
recognition and natural language can be processed on larger workstations and
communicate with the user interface on a PC or a PDA. While there are no
quantitative results from this work the authors suggest that the development
of the architecture allows the system to be split into several smaller domains
with each domain being processed independently, on separate workstations if

necessary.

A similar anticipatory architecture is described by Davidsson et al. [53] in
which an entity has access to various sensors which communicate information to
the internal processing modules. Each module would process this information,
produce a result and communicate this with the other modules in the system.
Once a module has received sufficient information to complete a desired goal
it then produces an output through an effector, resulting in the user interface
being modified. This process allowed the system to encapsulate some basic learn-

ing abilities and predictions about what is likely to happen next in the interface.

An intelligent interface application which has undergone significant testing

2.8. INTELLIGENT USER INTERFACES 39

to be distractzd fros hiz primary tazk,

Motification 2oftwars iz aizo proactive, Hoct of the tiwe & notifier slic
1n the backoround ard dost not intarrupt Lis user. Hhen & maw place of
onoil amciver, & atock price gome balow a certain theeshold, o snothee
triggsr avert ocowrs, the slarm aciivates and informs the W,
Motification software con be an alarm that alexrtz o perzon bto eventz much
a5 the arrival of rew email, or it can be a personalized newz feed that
akonatically zends 3 message when newz thak fitg a perzonal profile is
publishad, In both cases the notification ix proactive, bot these
notiflcations as caciecaily not relatsd to the ussr’: current task, For
acample, in meus systens the *“osnsera™ e all looking st the neusuics,
not st the usar. Canerally speaking, these notifications sre desioned to
pull & parson out of his corrent conted {hoskd and provide information
shout a diFfersst pontaxt thet might requirs hiz atiention. The urgency of
& notification can range from the imeediacy of a fire alarm o & Mews
briefing that iz sonounced, bt intendsd to be read vhenerer comeenient,

ol Pt S T N .
1 + Lewitt fApril 1597 Ratimg the push peoducts, [
2 Hiliar Babe Aug, 1993 Hewz oi—desacd For multissdis neteorks, 3
Libes April 1997 Tel/Th-bassd somie for mell and naws motificsd s

r Dix Mow, 1938 wloving the dazign spoce for notification sed

I P R .

Figure 2.2: The Remembrance Agent.
(from http://www.research.ibm.com/journal/sj/393/part2/rhodes.html)

and development is the Remembrance Agent by Bradley Rhodes [13]. The
system allows the machine to volunteer potentially relevant information by ob-
serving what the user is typing. The system keeps an index of the user’s email,
documents and other text files, and the index contains statistics about the fre-
quency of words in the files. The Remembrance Agent integrates with Emacs or
Microsoft Word and monitors what the user is reading or writing in the editor.
The information in the editor is analysed and an index of word frequencies is
calculated. This is then compared with the main index and a closest match is
determined. These closest matches are then displayed in a section of the editor
as the most relevant information (see figure 2.2).

Although the Remembrance Agent is text only, it seems plausible to adapt
it to provide an audible interface, proactively suggesting relevant information
when the user requires it. Also, the system provides one of the few genuinely
useful intelligent interface systems in that it assists the user and allows them to

focus on their primary task.

It is envisaged that these types of applications, which can adapt to the user

40 CHAPTER 2. A REVIEW OF EXISTING WORK IN THE AREA

and provide relevant information at the correct time, will become very useful
on mobile computing devices with limited interaction abilities. While there are
a few ideas and prototype architectures in the field of intelligent user interfaces,
there is little quantitative information about the performance of these interfaces

in comparison to ‘non-intelligent” systems.

2.9 Contextual awareness

The term “context awareness” is a relatively new expression in the computer
science arena. There have certainly been examples of contextual awareness in
user interfaces in the early 1980s, as with Bolt’s “put that there” [59] work de-
scribed earlier. While Bolt’s work does detect the context of where the user is
pointing, the user still has to control the machine explicitly. It is unclear from
the literature whether a system that is given contextual information by a user is
indeed contextually aware or whether a contextually aware system is one which
gathers the information for itself and applies some basic rules to determine the
context. If the former statement is true then Bolt’s work is indeed a form of
contextual awareness, and the same can be said of any computing device which
gathers information from a keyboard or a mouse! While in a strict sense this
may be true, the author believes than a better definition for contextual aware-
ness is a system which gathers data from the environment as unobtrusively as

possible, automatically makes decisions and reacts according to a set of rules.

The contextually-aware type of systems usually require some type of sens-
ing devices to monitor the environment. The sensors could be as simple as a
pressure switch to tell where a user is standing [24], or as advanced as a video

camera with an image-processing system to detect where a user is looking [25].

In the early 1990s Weiser [48] experimented with a simple form of location-

2.9. CONTEXTUAL AWARENESS 41

aware applications based around a hand-held device. Although this work was
originally aimed at the field of ubiquitous computing, the same goals were in
mind. Weiser is quoted as saying “The challenge is to create a new kind of
relationship of people to computers in which the computer would have to take
the lead in becoming vastly better at getting out of the way so people can just
go about their daily lives”. Contextual awareness is just one part of this goal,
but it is an important one nevertheless. The only way a computing system can

achieve “invisibility” is by helping them to understand their users in detail.

2.9.1 Gathering contexts

The gathering of simple contexts such as location has been explored in detail
by Brown [54]. Using sensors such as IR transceivers and GPS, coupled with
portable computing devices, it is relatively easy to locate a user in a space and
present location-specific information to them. The concept of using contextual
information as a trigger for an event was also introduced by Brown [55]. The
author feels that as long as the sensors, hybrid or otherwise, can provide reliable
and accurate data then the system will be useful in reminding people to do
certain tasks at certain places. The concept of triggers is explored further by
Pascoe [36] where an application running on a PDA uses GPS data to provide
location-specific information to the user. The developed system was used to
provide contextual information to assist an ecologist with the task of tracking
giraffes in Africa [37]. The PDA was used to collect observations and general
data in the field. Instead of the user having to input the location of a certain
piece of information manually, the PDA gathered this information automatically
from the GPS receiver when a piece of information was entered. Also, when the
user returned to a place where information had been saved, the location of
the user triggered the retrieval and display of information saved nearby. The
study shows that the system was perceived as providing useful information on

location about the giraffes movements, which before had only been obtainable

42 CHAPTER 2. A REVIEW OF EXISTING WORK IN THE AREA

by returning to a base camp and plotting the location later that evening. While
this example may not be familiar to most readers, the concept of providing
information at the right time and place is easily recognisable as being of an

advantage.

It is clear that some sensors will not function as expected in some environ-
ments. These problems have been discussed by Beadle et al. [33] and they have
proposed that hybrid sensors are used to compensate for deficiencies in a single
sensor. By using several sensors, each tailored for a particular stimulus, and a
central processing stage with some basic intelligence, it is possible to produce a
“virtual” sensor which can cope with a wider range of eventualities. There are
some problems with this system, namely the ability to resolve conflicting sensor
data. While some sensors will exhibit mutually exclusive types of data, such
as a microphone and a light sensor, there may be instances where the range of
two sensors overlap. It is clear here that the processing required to resolve this

ambiguity may be complex and in some cases impossible.

More complex systems of gathering contextual information are explored by
Starner et al. [69] where the use of a video camera to observe the environment
fits in nicely with Weiser’s ideas about helping computers become invisible.
The system tracks the user’s physical location by identifying targets in the

environment.

The advantages of using such a system is that to cover a large area using
infra-red or radio tags would be very expensive, the cost of the paper targets
being very cheap in comparison. The disadvantage of this system is again to do
with the targets: in order to cover a large area you would need lots of targets
for the camera to recognise. While the practise of deploying strange looking
targets is quite common in research labs, it would not be feasible to ask the
local shop manager if you could place targets around a shop! The technical

problems involved with target identification has largely been solved in [30] and

2.9. CONTEXTUAL AWARENESS 43

[21], with a fairly high accuracy being achieved, but the amount of processing

power required today makes a mobile target identification system expensive.

The most complete contextually aware system the author can find is the
Ubiquitous Talker by Nagao and Rekimoto [41]. The system uses a hand-held
computer and a camera to recognise bar codes on objects. Once an object has
been recognised, contextual information is displayed on the computer screen
about that object. What is interesting about the work is the complete integra-
tion of natural language understanding, speech recognition and rendition. If a
user points the camera at an object and asks a question about it, the system re-
sponds to the question with the relevant information. The author believes that
this type of seamless interaction with the computer, contextual information and

the real world is very important to the field of wearable user interfaces.

2.9.2 Contextual architectures

In order to explore contextual awareness researchers need a platform to base
their experiments on. Most are developed in an ad hoc way, as the primary goal
is to investigate contextual awareness rather than the systems which support
the gathering of information for a contextual system. The current contextual
applications are usually difficult to expand or adapt to embrace a new sensor
or device. To date, the author can find only one example of a generalised archi-
tecture which attempts to provide a standard platform for contextual research
and development. The Context Toolkit detailed by Dey et al. [4] attempts to
provide an architecture which abstracts physical sensors from the higher level
information processing via an interpretation layer which allows sensor data to be
converted into contextual information. A standard API is applied to the system
so that an application can request a particular type of contextual information.

The author of this work hopes that these types of systems will allow re-

searchers to develop an understanding of what a context is, and how it can

44 CHAPTER 2. A REVIEW OF EXISTING WORK IN THE AREA

benefit a user. The main problem is that, because there are no predefined
contexts, it is very difficult to categorise anything but the simplest pieces of
contextual information. It is therefore difficult to design an adequate software
framework to encompass every eventuality. The only way in which this type
of work will push back the boundaries is through an iterative design process,

building on past successes.

2.10 Current wearable user interface systems

At the moment there are only a few people who use wearable computers and

this section looks at the user interfaces employed on these machines.

2.10.1 Terminal and console systems

The traditional terminal and console systems have been used on wearable sys-
tems where the display resolution has been limited. The original terminals were
80 columns by 24 lines of text and the data rate was limited between 200 and
19200 baud. The terminal is ideally suited to low data rate displays, and the
most common LED and LCD dot matrix displays connect via the serial port.
There are a considerable number of applications which run from a terminal, and

many wearable researchers prefer to use it as part of their user interface system.

2.10.2 The X11 system

Researchers who build their own wearable machines often install the Linux op-
erating system. The various distributions usually come with the X11 window
system which does not impose a specific ideology on the user interface. This
allows individual users flexibility to configure the look and feel of their system
by using various window managers, fonts and colours.

The way in which the X11 system has been designed allows it to run on

non-standard displays such as small PDA screens and head-mounted displays.

2.10. CURRENT WEARABLE USER INTERFACE SYSTEMS 45

Some wearable researchers use the X11 environment at a custom resolution to
overcome HMD deficiencies and increase the legibility of the standard terminal

on these devices.

2.10.3 The Microsoft Windows system

The Microsoft Windows operating system is the most commonly-found user
interface on desktop machines, and due to the lack of specific mobile applications
it is not surprising that this user interface is deployed on wearable computers
in the short term. At the moment all of the wearable manufacturers use the
Windows environment as the standard user interface for the machine.
Although Windows provides a common platform for development, it is some-
times impossible to configure the system to use the uncommon hardware or

screen resolutions which are found on wearable platforms.

2.10.4 The Emacs system

Quite a few enthusiasts use the Emacs environment as the user interface for
their wearable computers. At first the author thought it was a little strange to
use a text editor as the user interface, but after a closer look it soon becomes
apparent that Emacs is not just a text editor. The terminal-based version
of Emacs provides an environment complete with an application programming
interface and applications such as a news reader, an email client, a calendar, a
diary, an integrated development environment for C++ and Java, and a web
browser already integrated.

Although the graphical capabilities of Emacs are limited by the console, the
functionality of the system provides the user with a consistent interface and
shares some similar concepts with other user interface systems.

A few wearable enthusiasts! use the Emacs environment in combination

1" Most mnotably Greg Priest-Dormer with his Herbert wearable computer.
http://wuw.cs.vassar.edu/ priestdo/herbertl.html

46 CHAPTER 2. A REVIEW OF EXISTING WORK IN THE AREA

with the Emacs-Speak software?. The commands are entered in the same way
as with the terminal-based version but the output from the Emacs application is
converted to a verbal rendition. This provides a lightweight environment which
can render text easily as it does not require a screen, but there are obvious

limitations with the graphics capabilities of this system!

2.11 Wearable software manufacturers

As the wearable field is still very young and these companies are still in their
early stages, there is very little public information about these systems to date.
The information included here has been found by the author in press releases
and news articles over the last few years. It is obvious that a lot of information
is missing but the manufacturers are secretive when queried about the details of
their systems. The information provided in this section is principally for com-
pleteness, and while the author has tried hard to provide the correct information

it is possible that some of it may have changed by the time of publication.

2.11.1 Wearix

Wearix?

are currently developing two technologies. The ToolWear system is a
development package with reusable software components included. This pro-
vides an environment for developing context-sensitive user interfaces, the auto-
matic recognition of I/O devices and the use of multimedia streaming technolo-
gies. The second system, called UseWear, provides the wearable user with a

complete operating environment with a media-independent user interface that

adapts to the user and application requirements.

*http://emacspeak.sourceforge.net/index.html
% http://www.wearix.com/

2.11. WEARABLE SOFTWARE MANUFACTURERS 47
2.11.2 WearableTech

Edeus? is currently under development at the WearableTech Corporation. They
are developing using Microsoft Windows and have a user interface which encom-
passes the whole screen, providing a consistent interface to all kinds of media and
documents via voice control. The system has the ability to generate documents

through text, voice dictation and video capture.

2.11.3 Tangis

Tangis® is developing software kits that enable third party developers to produce
user interfaces for wearables that work with general-purpose operating systems.
The focus of their work is based on Microsoft Windows and they provide appli-
cation programming interfaces for a variety of speech recognition engines, Visual

Basic, Visual C++, ActiveX and the Microsoft mail and telephony APIs.

2.11.4 Charmed

Charmed® is developing a user system called Nanix. At the moment it is very
difficult to determine exactly whether it is a user interface system, an operating
system or both. There are a reports that it is a highly customised version of
a Linux distribution, which places it firmly in the operating system arena, but
people within Charmed refer to it as the Nanix Ul. Whether this is marketing

hype, or whether there is a dedicated user interface system, only time will tell!

2.11.5 Xybernaut

Xybernaught” is one of the leaders in providing wearable systems. Their prod-

ucts use the Microsoft Windows operating system, IBM’s ViaVoice speech recog-

* http://www.wearabletech.com/
® http://www.tangis.com/

6 http://www.charmed.com/

" http://www.xybernaut.com/

48 CHAPTER 2. A REVIEW OF EXISTING WORK IN THE AREA

nition software and their own LinkAssist software. LinkAssist is a speech-

enabled media toolkit for the creation of a hyper-linked electronic library.

2.11.6 Via

Via® is another of the leaders in supplying wearable systems. Their products
include the Microsoft Windows operating system and IBM’s ViaVoice speech
recognition. Also available is a pen tablet which combines a touch pad with a

hand-held screen.

2.11.7 IBM

IBM have made various press releases about their plans to sell a wearable com-
puter, with television adverts being broadcast on both sides of the Atlantic. The
machine seems to run the Windows operating system and uses their ViaVoice

speech recognition to control the machine.

2.12 Chapter summary

From the literature and available commercial offerings, it is clear that there is not
enough evidence or research material to substantiate the definition of a wearable
user interface. Even so, one thing is obvious from the literature: the classic
WIMP paradigm relies on the user having a fine degree of motor control with a
pointing device but this may be impossible to achieve in a mobile environment.
The problem seems to manifest around the lack of a suitable pointing/selection
device in a mobile environment, as the use of menus, icons and windows (perhaps
not tiled) have been pursued successfully on mobile computers such as the Palm
Pilot and Psion devices in the past. The selection task has been solved on
these devices by using styli to achieve direct selection, but with a HMD this

would be tricky to achieve. Combined with the problem of inadequate selection

® http://www.via-pc.com/

2.12. CHAPTER SUMMARY 49

devices, the use of HMD devices introduces unique environmental issues due
to outdoor lighting conditions, and further understanding of the interaction
between varying natural light and the HMD devices is needed before an attempt
to address this problem is made.

Other factors which will affect the machine are the limitations and character-
istics of the input devices. The use of speech to control the wearable computer
is seen by many as one way in which the lack of sufficient input devices can
be solved. The author believes that, while the use of speech recognition and
natural language understanding may improve the interface between the wear-
able computer and the user, there will be situations where speech control is not
desirable, and alternative forms of input will still be required.

The author believes that the following high level statements provide a good

start for a future mobile user interface system:-

e As the user will be performing other tasks, a mobile graphical interface
which is to be present in the users field of view, for any length of time,
should be as uncluttered as possible to reduce the amount of concentration

needed to operate the user interface.

e The use of pointing devices seems to be a particular problem in a mobile
environment. A mobile interface should make extensive use of menuing
systems with shortcuts manipulated by as few a operations as possible

(perhaps a single button for each menu item).

e The use of high contrasting colours should make the use of the interface

easier in varying lighting conditions through a HMD.

e A dedicated application area where one application at a time may occupy
the space is paramount in reducing the amount of time the user spends

concentrating on the user interface.

e The user interface, menu selection, application selection and manipula-

50 CHAPTER 2. A REVIEW OF EXISTING WORK IN THE AREA

tion should be controllable via speech as well as a point/click and direct

selection.

Alternative user interfaces have been explored in the multimodal, contextual
awareness fields where systems gather information from the environment through
obtrusive and unobtrusive means. Most of the multimodal systems that are try-
ing to address deficiencies in the user interfaces are usually confined to where
the applications or interaction devices are not standard. The data from the
devices are processed and an appropriate form of response is generated.

Most of the intelligent user interfaces in the literature use some form of agent
to process information and two fundamental types of agents highlighted in the
literature. The first type reacts to a user’s commands and returns the relevant
information, while the second type interprets information over a period of time
and makes decisions to provide information based on certain criteria.

In the literature, the concepts of autonomy, awareness, intelligence, and the
ability to understand the user through various interaction mechanisms are con-
sidered important features of a future wearable user interface. But the biggest
hurdle for any wearable user interface designer is the lack of a well-defined soft-
ware framework to facilitate research and development. This means that any
exploration into alternative user interface paradigms that use contextual aware-
ness or multimodal systems is difficult due to the lack of infrastructure and the

low amount of software reuse available.

2.13 Proposed research

The aim of this research is to explore context-aware user interface issues and to
determine an operational framework to pursue these investigations. The author
attempts to combine traditional user interface techniques with sensor and agent
technologies to form a single development platform for contextual user interface

research for deployment on a wearable computer.

2.13. PROPOSED RESEARCH o1

The first piece of work provides the reader with an empirical study of the
some common wearable interaction devices. This study is used to determine
the operational parameters of the devices and construct a set of guidelines with
which a traditional graphical user interface systems can be constructed. The
next piece of work involves the design and construction of a contextual agent
based system, which will allow dedicated agents to process information from
various sensors and react accordingly. Finally these two pieces of work are amal-
gamated by incorporating a a graphical user interface, designed in accordance
with the proposed guidelines in chapter 4, with the contextual agent system.

The Sulawesi contextual agent system uses several concepts from the previ-

ously mentioned literature review.

Sensor systems

Applications rely on receiving information from a variety of sensor systems such
as speech recognition, accelerometers, global positioning systems, keyboards and
pointing devices; and are constructed using a range of hardware and software.
The use of sensors to gather information about the environment is fundamental
in many multimodal applications [19, 59| and should be incorporated into the
framework. A standard approach should be applied to the construction of in-
terfaces to these sensor systems, to address problems highlighted by [27], and a
single paradigm of data delivery used”. This will simplify the task of application
development and make the system expandable, allowing the simple integration

of future sensor technologies.

Natural language

When a person is mobile a common form of communication with another person
is speech. In order to make the user interface more accessible while on the

move the use of speech recognition and natural language parsing go hand-in-

9 This is described in section 5.2.1.

52 CHAPTER 2. A REVIEW OF EXISTING WORK IN THE AREA

hand!®. A system which can understand fairly natural sentences and interprets
commands from them has already been explored by [61], and the incorporation of
a speech recognition /sentence processing stage within the Sulawesi architecture
would provide the translation from human voice into text. The use of a rule
based language parser interface would allow speech and other natural forms of
expression like handwriting to be transformed into a command which can be
executed. The architecture should also be adaptable enough for an third party
application and the related command/sentence processing to be incorporated

into the system with ease.

Contextual rendering

A mobile application should provide information when it is most appropriate
and in a suitable format. The use of the multiple sensors to gather information
about the environment can be used to determine the users situation. The infor-
mation could determine the users location, physical position, whether the user
is sleeping or whether they are speaking to somebody. This contextual informa-
tion should determine how the machine communicates with the user. A separate
rendering layer would allow contextual rendering decisions to be made'!. The
system should be able to render information in various formats depending on the
current context of the mobile user. This rendering layer should normally be hid-
den from applications while providing a standard interface for the applications

to request that information be rendered.

Agent based applications

The construction of an application should be as simple as possible. Sulawesi
should be able to hide the complexities of the multiple sensor systems, the nat-
ural language parsing and the contextual rendering systems from the application

by providing a standard interface into the management system. This allows de-

10 This is described in section 5.2.2.
11 This is described in section 5.2.3.

2.13. PROPOSED RESEARCH 93

velopers to focus on the purpose of their application rather than having to worry
about the complex sensor systems that lie beneath. As with the systems de-
veloped by [17] there would two different types of agents within the system,
type A which reacts to events in the environment, and those which interpret a
higher level of understanding of the environment an react when certain criteria

are met.

System management

The combination of multiple sensor systems, contextual rendering systems and
agent-based applications implies that some form of management is needed to
provide a standard interface for all the components to communicate by. Sulawesi
has been designed and implemented to tackle what has been considered to be
important challenges in a wearable user interface, namely the ability to accept
input from any number of modalities, and perform (if necessary) a translation
to any number of modal outputs. The system would consist of a management
agent, similar to [52], which combines the sensor and contextual rendering sys-
tems and would also control the flow of messages and construction of agents

within the framework.

54 CHAPTER 2. A REVIEW OF EXISTING WORK IN THE AREA

Chapter 3

The Construction of a Wearable

Computer

3.1 The wearable computer, “Rome”

The wearable computer that has been developed is similar in design of the Tin
Lizzy' prototype by Thad Starner. While the architecture uses PC104 cards in a
similar way to the Tin Lizzy, the enclosure contains the whole machine including
the power supply, the head-mounted display controller and a GPS receiver. The
most obvious visible difference from the Tin Lizzy is the use of a cast aluminium
enclosure with a belt attachment, this allows the heat generated by the machine
to dissipate into free air. This design also allows the whole machine to be
placed on one side of the hips, with a battery pack on the other side to counter
balance the weight of the machine. A modified M1 head-mounted display has
also been constructed which combines a boom microphone and speaker. The
construction and use of the machine has enabled the author to get a better
understanding of how a user interacts with a wearable computer, and some of

the issues surrounding the interaction devices.

"http://wearables.www.media.mit.edu/projects/wearables/lizzy/index.html

25

56 CHAPTER 3. THE CONSTRUCTION OF A WEARABLE COMPUTER

3.2 Wearable computer technical specifications

Hardware

PC 104 Cyrix 133MHz 586 microprocessor, IDE, floppy, keyboard, serial,
20 MB RAM (AMP?)

PC 104 VGA card, trident chipset 1/2 MB RAM (AMP)

PC 104 Single PCMCIA type II controller + slot (expandable for two
cards) (AMP)

PC104 Four port serial card (AMP)

1.0 GB 2.5" Seagate IDE hard disk.

HCI devices

Twiddler keyboard

V1, a modified M1 head mounted display.
I/O devices

PCMCIA D-LINK DE-650 Ethernet card

CMC Allstar 12 channel GPS receiver

Custom IR transceiver
ADXL-202 accelerometer

Power supply
12V DC input, 5V @ 20W, 9V @ 9W output.

Batteries, 2x Duracell DR11 (6V @ 3.6 Ah) NiMH

Software
Linux (Redhat 5.2)

Sulawesi

2pdvanced Micro Peripherals, The Chancel, St John’s, Little Ouse,
Cambridgeshire, CB7 4TG

3.3. CONSTRUCTION o7

3.3 Construction

The enclosure for the Wearable Computer has been constructed using an off-the-
shelf 82mm x 188mm x 120mm cast aluminium box. Aluminium was preferred
over a plastic or ABS case because of the combined heat dissipation properties,
the robustness and the weight of the material. The case (see figure 3.2) has
two slots cut in the back into which a leather belt is inserted. The slots are
positioned at the top of the case to allow the machine to hang on the waist
and the upper part of the leg. This gives the machine some support when the
wearer is moving about. A laptop hard disk is used as they have been designed

1/O devices

4‘ GPS receiver
4‘ IR transceiver

HCI devices
—C oD
V1 HMD
PC104
CPU —
Twiddler IDE disk card
o
a
S
PC104 =
4—port o
serial card %
>
o
Z
PC104
Ethernet PCMCIA
card controller
PC104
M1 HMD VGA —
controller card

+9V +5V
Power Supply

+12V
(oo)
Battery Belt

Figure 3.1: The wearable computer system architecture.

to operate under higher G forces and withstand vibrations better than a normal
hard disk. The hard disk has been positioned at the bottom of the case, which

means that it is more susceptible to adverse vibration. The main reason for not

58 CHAPTER 3. THE CONSTRUCTION OF A WEARABLE COMPUTER

placing the hard disk higher up in the case, and thus reducing vibration, was due
to the heat dissipation of the system, the accessibility of external connections
and the physical location of the PC104 hardware interfaces.

The two original connectors for the Twiddler were replaced with a single
4-pin mini DIN connector and a 4-pin mini socket was added to the case, this
reduced the space requirements of the external Twiddler interface. Other con-
nectors, such as the power in/out, the serial ports and the GPS antenna have

been placed at the top of the machine.

Figure 3.2: The main case when opened and closed, the external connections
and the two belt slots can be seen on the side of the case (the white ruler is 30cm
in length and has been included only as a rough indicator of the scale).

The core of the system is based around PC 1042 cards. These are placed
in the centre of the the case. The hard disk, the PC 104 cards and the power
supply are all attached to the lid of the case. The PC 104 bus has been placed
parallel to the sides of the lid: this means that when cards are placed in the
PC 104 stack the connectors point toward the top and bottom of the case and
therefore make the cabling a little easier.

Figure 3.3 shows the machine before construction. The left hand image
shows (from top left to bottom right) the VGA converter, the GPS antenna, the
main case, the Twiddler, the head-mounted Display, the PC 104 components,
various circuits and cables, a battery pack, various screws, mounting brackets,
and a leather belt. The right hand image shows the PC 104 components (from

top left to bottom right): a four-port serial card, a PCMCIA docking card, the

*http://www.controlled.com/pcl04faq/

3.3. CONSTRUCTION 59

hard disk, the GPS receiver, the motherboard (with DC-DC converter attached),
and the VGA card.

The first PC 104 card placed in the stack is the CPU and motherboard
card (see figure 3.4). This has been designed to allow the CPU heat-sink to be
pressed against the case lid to help with the heat dissipation. The next card on

the stack is the four-port serial card which slots onto the motherboard card.

Figure 3.4: The lid with the motherboard, serial port card
and DC-DC converter.

Two 6V Duracell rechargeable camcorder batteries are used in serial to pro-
vide 12V at 3.6 amps into the Wearable Computer. The power supply for the
PC 104 cards requires a 5V rail capably of supplying 2.2 Amps (peak) and a
9V rail is needed for the VGA to NTSC scan converter. The 9V supply is gen-
erated by a simple regulator. The 5V power rail is generated by an off-the-shelf
20 Watt DC-DC converter. This converts 12V to 5V with a specified efficiency
of 80 — 90%, which means that at most only 20% of the input power is lost as

heat. Because the DC-DC converter is fairly efficient a heat sink is not required

60 CHAPTER 3. THE CONSTRUCTION OF A WEARABLE COMPUTER

as the device functions at full load in free air without any undesirable effects.
The input to the wearable has been chosen to be 12V so that the machine
could be connected to a power supply or a car cigarette lighter. After the initial
construction of the system the battery lifetime was determined by running the
wearable computer until batteries were unable to supply power and the 9V reg-
ulator shutdown. At this point the HMD powered down and the running time
could be determined. The system was left running idle and this test was per-
formed four times, each time the batteries were able to supply power for 3 hours
(£5 minutes). The peak power consumption has been measured at 15 Watts
when the machine is booting, when the CPU is idle the power consumption
is reduced to just over 6 Watts, and the machine dissipates 8-10 Watts when

running the X Window system and being used.

Figure 3.6: The hard disk and the GPS receiver card ready to be fitted.

The next card in the stack is the PCMCIA controller. A slot has been cut in
the top of the case to allow insertion and removal of PCMCIA cards. The last

card in the stack is the graphics card. The VGA connector has been removed

3.3. CONSTRUCTION 61

from the PCB and an extension cable made which bolts to the inside of the case
(see figure 3.5).

The hard disk for this machine has been taken from a Toshiba Libretto.
The GPS receiver is roughly the same size as the disk, so they have been bolted

together and placed next to the PC 104 stack (see figure 3.6). Once all the com-

Figure 3.7: The complete wearable system.

ponents are assembled, the case is closed and the peripheral items are attached.
Figure 3.7 shows the completed system with Twiddler, head-mounted display
system and GPS antenna. The VGA scan converter fits on top of the case and

the batteries are attached to the belt.

3.3.1 Power supply problems

After the power supply had been tested with light loads, it was considered to
be safe to plug into the PC 104 cards. At first only the PC 104 motherboard,
the VGA card and the hard disk were used to test the system. The system was
booted and the machine powered up as expected. The machine was dismantled
and the other PC 104 cards were fitted, but this time when the power was turned
on nothing happened. The monitor plugged into the machine did not wake up
from the suspend mode, there was no initial BIOS screen and no initialisation
of the graphics card.

The system was reverted back to the minimal set of PC 104 cards. This
time the system powered up and the monitor woke up from being suspended,

but there was no BIOS prompt and the machine appeared to have hung. At this

62 CHAPTER 3. THE CONSTRUCTION OF A WEARABLE COMPUTER

stage it was noticed that the hard disk was not spinning (as it usually does when
powered up). The hard disk was tested in a laptop machine and appeared to be
working correctly. After several conversations with the manufacturer, the fault
was found to be caused by the DC-DC converter. This functioned correctly
when a low load was being pulled from the supply rails, but when a higher
load was connected, the converter would respond to the initial start-up current
by overshooting the desired voltage. This caused a very short, large spike to
appear on the 5V rail, and this was affecting the motherboard by corrupting the

BIOS and stopping the machine from booting. Although the DC-DC that was

+12V — DC-DC
convertor

GND ,
| ! time
ggwer

+5V

Cl1
+12V — DC-DC Hl +5v TV

Sv| - —
GND _|, convertor §| _|c : Zl_|C2 [W

T .
4L Cl=10nF | power time

J— C2=22uF on
Z1=5.1V20W

Figure 3.8: Output supply rail clamp.

ordered included a built in regulator, the device received was a slightly different
model which did not regulate the output supply. Once the problem had been
identified a few smoothing capacitors and a zener diode clamp were added to
the output supply rail to stop the spikes (see Figure 3.8). This made certain

that the supply rail could not rise above 5.1V and corrupt the BIOS.

3.4 Software and operating system configuration

At the time of development, the operating system chosen for the wearable com-

puter was RedHat version 5.2, upgraded with the Linux 2.2.9 kernel. The main

3.4. SOFTWARE AND OPERATING SYSTEM CONFIGURATION 63

reason for using a Unix-based operating system was the ability to control the
machine without a graphical user interface, and to easily integrate a prototype
user interface with the current functionality of the operating system. Since the
author’s research was primarily concerned with mobile user interfaces the use
of a windowing oriented operating system would have placed constraints on the
way the machine presented information to the user (this is explained further in
section 5.2.3). Operating systems such as Microsoft Windows 9x and MacOS
require the user to control the machine via the manipulation of graphical ob-
jects, control via any other means can be difficult without developing custom
software to achieve a desired task. On the other hand, operating systems such
as Linux and BSD provide adequate control of the machine via command line
user interfaces. Built in shell scripting languages enables existing software to
be manipulated and plugged together via simple commands and controlled by
alternative interfaces. The choice of a command based operating system over
a graphical based one was solely due to the ability to develop alternative user
interfaces and control existing software via scripting languages easily.

The original head-mounted display was a set of I-glasses by i-O Display
Systems? with a resolution of 320 x 240. The XFree86° Setup tool was used to

configure X to use 320 x 240.

The Twiddler driver software was used to detect the Twiddler keyboard on
the correct serial port. The Twiddler driver was configured and added to the
/etc/rc.d/rc.local script, which starts the driver when the machine is first
booted. Initially the console mode of the Twiddler driver functioned correctly
but when X windows was started the Twiddler would not work. The Twiddler
driver was using a program called a2x to control the X session, and it was
complaining that it could not load the “libXaw.so” library even though it was

clearly in the library load path. The author copied the correct library into the

“The company has recently changed its mname from Virtual I/O, see
http://wuw.i-glasses.com/index.html
“http://www.xfree86.org/

64 CHAPTER 3. THE CONSTRUCTION OF A WEARABLE COMPUTER

same directory as the a2x executable, after which the program loaded correctly.

After upgrading to the 2.2.9 Linux kernel it was noticed that the machine
would hang for about a minute when first booted. This happened between the
"uncompressing kernel" message and the next stage of the boot loader. After
approximately one minute the kernel would boot and everything functioned cor-
rectly. The author could not remember the 2.0 kernel exhibiting this behaviour.
It was observed that with the keyboard disabled in the BIOS and no QWERTY
keyboard present, the 2.0 kernel did not exhibit this behaviour. In contrast, the
2.2 kernel exhibited a significant time delay between uncompressing the kernel
and booting. The author speculates that the 2.2 kernel is trying to ascertain
whether a keyboard is present and is waiting until the device detection code

times out.

The boot process has been configured to insert the relevant PCMCIA mod-
ules into the kernel. The card services program detects when a PCMCIA card is
inserted and has been configured to run a script depending on what type of card
is inserted. A script has been written to allow the automatic configuration of
the network when a PCMCIA network card is inserted, and automatic network
shutdown when the card is removed. The network script works by bringing up
the new network interface with the correct IP address; the default route is then
configured to point to the interface and the correct DNS entries are added to the
/etc/resolv.conf file. When the network card is removed, the script brings
down the interface and removes the default route and the DNS entries for the

device.

The default Linux kernel automatically detects 2 serial ports. The addition
of a four-port serial card means that an initialisation script had to be written
to instruct the kernel of these additional devices. The device entries have been
made in /dev/ using the mknod program (with the correct major and minor num-
bers of the serial ports). Once the device entries existed, a script initialises the

serial ports at boot time. The script uses the setserial program to configure

3.4. SOFTWARE AND OPERATING SYSTEM CONFIGURATION 65

the device node, IRQ and memory address range of the serial ports.

3.4.1 Software configuration problems

The first problem was noticed when the machine booted. The serial port initiali-
sation script only detected four serial ports with an error message of " /dev/ttyS4-
5 not a valid device". This was found to be a limitation of the default kernel
which only supports four serial port devices. The rc.serial script was changed
to only initialise four of the six serial ports (as only four were needed) and the
machine was re-booted. Although the four serial ports were being configured
the first serial port was very intermittent. The setserial program was used to
report the correct IRQ, memory address range, and uart for the device. The
serial line status program, statserial, was used to check the status of the se-
rial lines. The statserial program would not initialise the first serial port and
would produce a segmentation fault when asked to do so. The other three de-
vices were tested with statserial and all worked as expected. This fault was
noticed intermittently on both the 2.0 kernel and the 2.2 kernel. Eventually
the fault was identified; The serial port initialisation script was setting up the
serial ports using setserial but, until a program accessed the device, the TRQ
for the serial port was not reported in the /proc/ interrupts table. This table
was being used by the card services program to allocate dynamically an TRQ
to a PCMCIA card. When the PCMCIA network card was inserted, the card
services program was allocating the IRQ for first serial port to the network card.
This resulted in the statserial program producing a segmentation fault when
the network card was inserted. The problem has been resolved by configuring
the card services program to reserve IRQs for the serial ports and to not allocate

them to the PCMCIA devices when they are inserted.

66 CHAPTER 3. THE CONSTRUCTION OF A WEARABLE COMPUTER

3.5 Construction of the V1 head-mounted display sys-

tem

The original Tekgear M1 HMD has been modified and has been nicknamed the
Visor Mk 1 (V1). The original Tekgear M1 came with a “light duty” headband®
which is very similar to the ones used on the older style Walkman headphones.
The M1 could be placed over the eye but the headband did not feel safe enough

on the author’s head to walk down the road with. The M1 was opened, the

Figure 3.9: The M1 HMD.

head fastener contained a small circuit board with a few components on (see
figure 3.9) where twelve wires entered the board from the main unit, and sixteen
wires went to the eyepiece. Consultation with Dr. Jerry Bowskill, previously at
BT research labs, revealed that the circuit could safely be moved from the head
fastener to the main body of the M1 controller. It was decided at this point
that the M1 eyepiece should be detached from the head fastener and placed on
a more suitable head mounting.

The author has borrowed Thad Starner’s use of safety glasses to mount the
display, with a few modifications (see figure 3.10). The main problem with
moving the M1 eyepiece was due to the number of wires entering the unit.

A standard VGA cable has fifteen wires and therefore could not be used
so a separate wiring loom for the headmount was constructed. As the display

device was going to be placed on the head the loom needed to be as small and

SNewer versions of the M1 come with a much more sturdy “heavy duty” headband.

3.5. CONSTRUCTION OF THE V1 HEAD-MOUNTED DISPLAY SYSTEM 67

Figure 3.10: The V1 HMD.

flexible as possible. If the cable was too large the weight of the cable would pull
on the headmount and may becoming uncomfortable to the user, if the cable
was too stiff this would have restricted the movement of the head. A section
of small flexible VGA cable was connected to each arm of the safety glasses,
providing thirty cables to the HMD unit. It was decided to add a speaker and
boom mic to the headmount. A small bracket has been made and is used to
attach the speaker/mic to the glasses. The four cables from the speaker/mic

unit are connected to some of the spare wires in the loom.

Figure 3.11: The M1 controller dismantled and placed inside a box.

A GND, 5V, 9V and 12V supply have been connected to the loom and an
LED was fitted to the headmount as a power indicator. To date, there are still
eight wires spare in the loom, and it is envisaged that in the future a small
camera could be fitted which would use four or five of these spare wires. The
other end of the loom have been run into a small aluminium box where the M1
controller is located (see figure 3.11). A pass through power/audio/video cable

has been made to connect to the main Wearable Computer.

68 CHAPTER 3. THE CONSTRUCTION OF A WEARABLE COMPUTER
3.6 Conclusions

The resulting wearable computer has enabled the author to carry out most of
the research presented in this thesis. While the construction of the machine has
been engineered to withstand the rigours of being in a mobile situation, the size
and weight of the machine remains problematic. The processing power available
from the machine is not adequate enough to allow integration of the Sulawesi
system and the speech recognition software, nevertheless, the experienced gained
in the construction and use of the system has proved useful in the remainder of

the research presented in this thesis.

Chapter 4

A Study of some Wearable

Interaction Devices

4.1 Introduction

The current generation of wearable computers use various devices for controlling
the user interface. There have been several novel input devices such as the
wear-clam |73] and the wristcam [7], but these are research prototypes. Unless
wearable researchers are specifically designing mobile interaction devices, the
most popular commercially available input device at the moment is a single-
handed keyboard called the Twiddler!.

The Twiddler is a portable chording keyboard with an internal movement
sensor which can be used to control a cursor in a graphical user interface. There
have been claims? that the typing speeds achieved on the Twiddler are similar
to that of a standard QWERTY keyboard, but no proof of these claims have
been produced.

Many researchers use some form of head-mounted display on their wearable
computer. The suitability of these displays for virtual reality user interfaces has

been studied in laboratories [60], but the uncontrolled real-world environment in

"http://www.handykey . com/
*http://www.handykey.com/site/testimonials.html

69

T0CHAPTER 4. ASTUDY OF SOME WEARABLE INTERACTION DEVICES

which a wearable display will be used prompts some interesting questions. Some
of these questions, such as can the display be seen in direct sunlight? can be
answered and designed around using traditional engineering techniques. On the
other hand, questions such as is an augmented interface usable when walking?
are not so easy to answer and require studies to provide an insight into the

interaction between the devices and the user interface.

F

Figure 4.1: The Twiddler single-handed keyboard.

The aim of these experiments is to provide some quantitative information
about the current interaction mechanisms used by wearable researchers. The
interaction devices play a critical part in determining how usable the wearable
user interface is. It is intended that there will be sufficient information from
these experiments to provide guidelines for designing wearable user interfaces

using these devices.

4.2. EXPERIMENTAL DESIGN 71

4.2 Experimental design

The following experiments were designed to test some general aspects of the
various interaction devices. A within-subjects [2]> design was used, and a bal-
ancing operation was employed to reduce the effects of learning and biasing the
results. This balancing operation [2] makes sure that the first test a subject
undertakes is alternated between different subjects.

Some six subjects were used for the tests. Two subjects were under 21, two
were between 22 and 31, and two between 31 and 40. Of the six subjects only
one was female. All the subjects were computer literate and experienced in
using a QWERTY keyboard. Of the subjects, half were aware of the Twiddler
but had never used it and the other half had never even heard of the Twiddler.
Six subjects would normally be regarded as a small sample for a trial; however,
as we shall see, statistically-significant results can be inferred even from this
sample size.

An anechoic chamber was used during the experiment to minimise external
influences, but it is noted that the controlled environment was not realistic for ei-
ther a desktop or a wearable computer. A computer equipped with Windows95
and a 17-inch monitor with a screen resolution set to 640x480, a QWERTY
keyboard, the Twiddler and two different types of head-mounted displays were

connected to the machine.

The experiments were performed so that the author could gain an insight into
interaction mechanisms. The speed and accuracy of the text entry capabilities,
and the cursor manipulation achievable with the Twiddler are compared to a
standard QWERTY keyboard and a mouse. The study also compares the speed
and accuracy of different head-mounted displays to determine what part they
play in affecting the results obtained from Twiddler.

Without this information it would be impossible to design a graphical user

3Chapter 12, page 348.

72CHAPTER 4. ASTUDY OF SOME WEARABLE INTERACTION DEVICES

interface to take advantage of the Twiddler’s characteristics.

4.3 Text entry experiment

The first experiment was designed to compare the speed and accuracy of a
text entry task using a standard QWERTY keyboard and the Twiddler. The
goal was to type in text into a full screen Java applet. To reduce the effects of
learning two different paragraphs of text were used and they were approximately
550 characters in length (see Appendix A) The first paragraph was used to
familarise the user with the equipment and the method, while the second was
used to gather data for analysis. The paragraphs took 2-3 minutes to type on
a QWERTY keyboard and were considered to be of sufficient length to avoid
any short-term learning effects. The paragraphs contained only letters of the
alphabet: the full stops, punctuation, and special characters were removed from
the text during the tests. The paragraphs were chosen for their clarity and
conciseness and, while they had no particular statistical characteristics, it was
felt that they provided a sample of what is expected to be typed with the devices.

The applet recorded each keystroke and the time at which the key was
pressed, and the data were analysed to determine the speed and error rates

achievable with the devices.

4.4 Direct manipulation experiment

The second experiment was designed to test the speed and accuracy of position-
ing a graphical cursor on the cathode ray tube (CRT) screen using a standard
mouse and the Twiddler’s pointing device. The goal was to position the cursor
over a target and select it with the pointing device.

A full screen Java applet, seen in figure 4.2, generated twenty graphical
targets, one at a time in a random position on the screen. The targets consisted

of three circles: the outer one was black with a radius of 50 pixels, the middle

4.5. DIRECT MANIPULATION VS TARGET SIZE EXPERIMENT 73

circle was white with a radius of 40 pixels and the inner circle was red with
a radius of 30 pixels. When the target was selected it would disappear and a
new target would appear at a random position. The applet recorded all cursor
movement and cursor events, which allowed the data to be analysed off-line.
The subjects were positioned approximately 60cm away from the CRT screen

during this test

Figure 4.2: Applet displaying a graphical target.

4.5 Direct manipulation vs target size experiment

In experiment three, the user was asked to select a graphical target which was
randomly placed on the CRT screen. The difference between this and the second
experiment was that the applet displayed 15 targets of one size; then the size of
the targets was reduced and another 15 were displayed; and so on. The target
size was calculated using the central disc to determine the sizes of the two outer
annulae. The size of the middle circle was determined by adding 10 pixels to the
size of the centre circle, and the overall target size was determined by adding 10
pixels to size of the middle circle. At the start of the test the centre circle radius

was set to 50 pixels, and decreased by 10 pixels every 15 selected targets. This

TACHAPTER 4. ASTUDY OF SOME WEARABLE INTERACTION DEVICES

resulted in an experiment using 5 sets of targets with the centre radii set to 50,
40, 30, 20 and 10 pixels respectively. The object of this experiment was to see

how small a graphical target could be reliably selected using the Twiddler.

4.6 Display technologies experiment

The fourth experiment was designed to compare a normal CRT screen, an aug-
mented head-mounted display system and an immersive head-mounted display,
the aim being to find out whether the head-mounted displays have an effect
on the pointing devices. The experiment was similar in design to the third ex-
periment with all combinations of input devices (Twiddler, mouse) and output

devices (screen, augmented HMD, immersive HMD) being tested.

Figure 4.3: The Virtual-10 glasses.

The HMD display system used during this experiment was a set of Virtual-
IO glasses (see figure 4.3). This HMD uses two 320%240, 8-bit colour LCD
screens and two half-silvered mirrors to reflect the images into the user’s eyes.
The Virtual-IO glasses work by splitting the 640x480 VGA signal into two,
sending the even scan lines to one eye and the odd scan lines to the other. The
HMD also has a clip-on visor which enable them to swap between augmented
(see-through) or immersive modes (occluded) easily. The subjects were again
placed approximately 60cm away from the CRT screen, while the HMD displays

were positioned approximately 3cm away from the subjects eyes.

4.7. MONOCULAR DISPLAYS EXPERIMENT 75

4.7 Monocular displays experiment

The last experiment was designed to compare and contrast an augmented monoc-
ular HMD and an immersive monocular HMD system. The design was similar to
the fourth experiment with all combinations of input devices (mouse, Twiddler)
and output devices (augmented HMD and immersive HMD) being tested.

The Virtual-10 glasses, with one of the eye pieces removed to make them
monocular, was used as the augmented HMD system. In this configuration, the
Virtual-10 glasses only displayed the even lines in a 640x480 image, producing
a visible resolution of 320x240 with 8 bit colour and the HMD units were placed

approximately 3cm away from the subjects eyes.

Figure 4.4: The M1 head-mounted display.

The Tekgear M1 (see figure 4.4) was used as the immersive HMD system.

This provides a resolution of 320x240 grey scale, though Tekgear comment that

“The M1 utilizes an additive sampling technique that compresses

the complete VGA frame into the 320x240 format with minimal

apparent loss in quality” *.

*quoted from the M1 FAQ on http://www.tekgear.ca/displays/mifaq.html

T6CHAPTER 4. ASTUDY OF SOME WEARABLE INTERACTION DEVICES

Even though the devices have a similar display resolution on paper, the M1 ap-
peared to be clearer. This test was designed to find out whether the appearance

of a higher quality HMD affected the manipulation devices.

4.8 Observations during the experiments

All subjects were observed from outside the sound-proofed room during the
tests. It was noted that during experiment one a few people decided to use the
Twiddler with two hands, one hand to hold it with and the other to press the
keys.

After all experiments involving the Twiddler, the volunteers complained of
fatigue in the hand and wrist, and one subject stopped half way through ex-
periment one and refused to continue due to severe cramp in their index finger.

This subject completed the other tests successfully.

4.9 Results and discussion

4.9.1 Experiment one: text entry speed

The text speed entry times were measured by calculating the mean time differ-
ence between each key-press. There are cases where two key-presses resulted in
one character being entered, for example an upper case letter at the start of a
sentence required the shift key and then the character key. The briefing sheet
given to each user stated that upper case letters were to be entered as lower
case, but some users still entered upper case letters during the tests. The shift

keys were not used in calculating the time difference between the characters.

\ [Twiddler | QWERTY |

Paragraph 1 2415 + 603.9 | 302 £+ 80.6
Paragraph 2 1828 + 373.8 | 365 + 91.2
Experienced user || 1651(mean) | 420(mean)

Table 4.1: Mean and standard deviation of character entry times (milliseconds).

4.9. RESULTS AND DISCUSSION 7

The analysis of the test data can be seen in table 4.1 with the null and
alternative hypothesis defined as follows, Hy: u = po, Hy : g < po (where p and
o are the respective means of the QWERTY and Twiddler). The results were

analysed using a one-tailed ¢-test® where ¢ was calculated using the following

formula:
‘— T — o
s/v/n
where T is the mean value of the test samples

o is the hypothesized population mean
s is the sample standard deviation

n is the number of test samples

The analysis shows that the results were significant at the 1% level (t<p.015 =
8.75). It can be seen in table 4.1 that the first test produced a result of 2.4
seconds per character for the Twiddler compared with 0.3 seconds for the QW-
ERTY keyboard. The results of learning for the Twiddler device can be seen
when the first and the second paragraph results are compared. The character
entry time has reduced by approximately 0.6 seconds and the standard deviation
has dropped to 2/3 of the initial value.

A person who had been using the Twiddler for over a year was also asked
to complete the second paragraph to provide some form of direct comparison.
Although only one experienced subject was used, the character entry times for
the second paragraph were within the mean and standard deviation of the other
users.

The results in table 4.1 suggest that the Twiddler is approximately 4.5 times
slower than the QWERTY keyboard for entering text. Using the results ob-
tained, the average person in these tests could type approximately 180 characters
a minute on a QWERTY keyboard, whereas with the Twiddler they could only

achieve approximately 33 characters a minute. The speed was also compared

®See [2] pages 399-401.

7TSCHAPTER 4. ASTUDY OF SOME WEARABLE INTERACTION DEVICES

to a relatively experienced user of the Twiddler. The times achieved by the
test sample were comparable to the experienced user, but even the experienced
user was still in the order of 4 times slower when compared to the QWERTY
keyboard. From these results the author concludes that the Twiddler can be
used without much training as the inexperienced subjects were approaching the
same speeds as the experienced subject.

After the experiment, all of the subjects complained of fatigue in the hand
and wrist. It is speculated that this fatigue was partly due to the length of time
spent using the Twiddler and partly due to mental frustration at how slow they

found the device.

4.9.2 Experiment one: text entry accuracy

The second test was used to determine the accuracy of the Twiddler device
when compared to a QWERTY keyboard. The subjects were asked to input
the text exactly as it appeared on the test sheet, and the input accuracy was
observed by counting the number of backspace keys that were pressed. This
provided information that a user had spotted a mistake during the test and had

corrected it.

| [Twiddler | QWERTY |

Paragraph 2 346 £163 | 174 £ 25
Experienced user 11 8

Table 4.2: Number of corrections.

The results from the test data were analysed using a t-test, and were found
to have a 96.2% probability of being significant (t<g.055 = 2.36). By dividing
the number of errors by the number of characters (550), it can be seen that the
percentage of errors for the experiment was approximately 6.3% and 3.16% for
the Twiddler and QWERTY keyboard, respectively.

The results indicate that the Twiddler user produces approximately twice

the number of errors when compared to the QWERTY keyboard.

4.9. RESULTS AND DISCUSSION 79
4.9.3 Experiment two: cursor speed

The analysis of the data was used to determine the raw speed of the person using
the device. The user was asked to select any region of the targets as quickly
as possible. In this test the pixel movement times were calculated by recording
the route traveled from the last target to the current target and dividing that
distance by the time taken to reach the next target. This produced a timing
value in pixels per millisecond. The data were analysed using a -test and were
found to be significant at the 1% level (t<¢.01,6 = 62.7). Analysis of the data

can be seen in table 4.3.

‘ H Twiddler ‘ Mouse ‘
| Cursor Speed | 0.196 + 0.01 | 0.506 + 0.06 |

Table 4.3: Cursor speed (pixels per millisecond).

The observations of the device during the tests seem to imply that there is
a non-linear relationship between the cursor movement on the screen and the
amount of physical movement that is needed when using the Twiddler. This is
different to the mouse which (in unaccelerated mode) has a linear relationship
between the mouse movement and the cursor moving on the screen. The author
concludes that this is due to the non-linear properties of liquid movement sensor
within the Twiddler, further tests would need to be performed to determine the
exact relationship between physical and cursor movement.

The results show that the Twiddler is approximately 2.5 times slower in
manipulating a cursor around a 640x480 graphical display and selecting a target
with a radius of 50 pixels. This result can have a significant impact on the

performance of a standard desktop application with a complex user interface.

4.9.4 Experiment two: cursor accuracy

This analysis was used to determine the accuracy of the pointing device. The

user was required to select the red innermost region of the target. The number

S80CHAPTER 4. ASTUDY OF SOME WEARABLE INTERACTION DEVICES

of incorrect selections of the target was calculated by comparing the number
of times the pointing device’s selection button was pressed with the number of
times the target was selected. The data were analysed using a t-test and were
found to be 97% significant (t<g.05,6 = 2.18), and the result is summarised in

table 4.4.

‘ H Twiddler ‘ Mouse ‘
| Cursor Accuracy | 8.16 + 5.98 [2.83 + 2.23 |

Table 4.4: Cursor accuracy (targets hit).

The results show that when selecting a target with a radius of 50 pixels, the
Twiddler produces approximately 3 times the number of errors when compared
to the mouse. The standard deviation of the results from the twiddler are
high enough to cross over with the results obtained from the mouse and this is
reflected in the ¢-test which produces a 97% significant result.

From this significance figure it is possible that some users will be able to
obtain comparable results with both devices. It is therefore recommended that
these results are carefully interpreted. The result does not mean that the Twid-
dler is less accurate when compared with the mouse but the results do suggest
that there is a difference between these devices. In order to find out which
device performs better more testing would be needed to reduce the amount of

error obtained in the test.

4.9.5 Experiment two: cursor overrun

Upon completion of the data analysis of the second experiment, it was observed
that an extra piece of important information, not initially considered in the
experiments, existed in the data. It was possible to determine how far the user
had moved the input device in order to select a certain target, and therefore it
was possible to gain an insight into how effective the devices were.

The ideal case for any device would result in a user moving the cursor in a

perfectly straight line between the two targets. In the real world the inaccu-

4.9. RESULTS AND DISCUSSION 81

"""" Optimal
s Twiddler

---- Mouse LS

Figure 4.5: Traveling patterns between two targets.

racies of the pointing devices and the individual person’s motor control result
in deviation of the cursor from the optimum path. With this knowledge it is
possible to determine the optimum distance between two targets and subtract

the actual distance traveled. This can be seen graphically in figure 4.5.

This results in an overrun value which can be used to determine how accurate
the device is. The overrun value is the combination of the amount of error in the
user’s hand/eye coordination and the sensitivity and accuracy of the pointing
device. The data were analysed using a t-test and were found to be significant

at the 1% level (t<0.005,6 = 4.12). The results can be seen in table 4.5.

‘ H Twiddler ‘ Mouse ‘
‘ Cursor Overrun H 852.7 + 4484 ‘ 97.7 + 34.2 ‘

Table 4.5: Cursor overrun (pixels).

The results were not originally envisaged as part of the experiment, but the

analysis of the data revealed that the information was just as important as the

82CHAPTER 4. ASTUDY OF SOME WEARABLE INTERACTION DEVICES

accuracy and speed results. The amount of overrun seems to indicate how much
effort was needed to control the pointing device. The results show that there
is a significant difference in the amount of overrun needed in order to select a
target. In order to locate the cursor over a target and select it, the subjects in
this experiment required nearly 9 times the amount of distance to be traveled
with the Twiddler when compared to the mouse.

The author suspects that the overrun contributes to the fatigue and an-
noyance experienced with the Twiddler device. It is also speculated that the
overrun values are directly linked to the speed and accuracy of the Twiddler’s
pointing sensor, and a decrease in the overrun values would increase the speed

and accuracy of the device.

4.9.6 Experiment three: cursor speed

The pixel movement times were calculated the same way as in experiment two.
The data were analysed using a t-test and the results were found to be significant

at the 1% level (see table 4.6).

0.35

Cursor speea
"Twiddler" +——

"Mouse" +--x--- |
03| |]
025 | ‘ E
« x |
2 02} |]
c 1
[=]
(53
Q
2 1
S 015 X i
01} } }]

0.05 - 1

0 1 1 1 1 1
0 10 20 30 40 50 60

Centre target size (pixels)

Figure 4.6: Speed vs target size using the Twiddler and mouse.

The results in figure 4.6 suggest that, with a mouse, as the target size de-

creases, the speed at which the user can control the mouse also decreases. This

4.9. RESULTS AND DISCUSSION 83

observations is in agreement with Fitts law [58] which states that ‘“the time to
acquire a target is a function of the distance to and size of the target”. In con-
trast, the size of the target does not have an effect on the speed of the Twiddler
as the speed remains almost constant regardless of the target size. These results

have some profound implications for the use of the Twiddler.

Target size | 50 40 30 20 | 10
t<ooo1,6 | 372262133 | 11.1|5.1

Table 4.6: The t values for speed vs target size.

The results for the second experiment show that the Twiddler is significantly
slower to use than the mouse, probably because of the overrun discussed above.
The author thought that the Twiddler would exhibit a reduction in speed as the

target size was reduced, but as is shown this was not the case.

4.9.7 Experiment three: cursor accuracy

The accuracy of the third experiment was calculated in the same was as in
experiment two. The data were analysed using a t-test and the analysis revealed
that the results were statistically significant at the 5% level (see table 4.7),
except for the data for the 40-pixel target which was 86% accurate. This means
that the 40-pixel target results may not be as accurate as the other results, and
further experiments would be required to reduce the amount of error obtained.

The results in figure 4.7 show that the Twiddler is consistently less accurate
than the mouse when the target sizes are varied. The largest difference can be
seen between the 30 and 20 pixel points. Here the mouse still has an accuracy
in the 80 percent region while the Twiddler falls to the 30 percent mark. At the
10 pixel point the accuracy of the mouse falls to roughly the same accuracy as
the Twiddler.

The data for this tests were studied and it was found that user number
1, for some reason, has a very low accuracy for this test but their speed and

overrun results are similar to the other users. The user was consulted to check

84CHAPTER 4. ASTUDY OF SOME WEARABLE INTERACTION DEVICES

100

T
Cursor accuracy

"Twiddler" ———

"Mouse" ---x--+

80 1

60 - 1

Percentage

40 + ‘ g

SRV

20 1

0 1 1 1 1 1
0 10 20 30 40 50 60

Centre target size (pixels)

Figure 4.7: Accuracy vs target size using the Twiddler and mouse.

Target size 50 40
value of ¢ t<0.05’6 =24 t<0_15’6 =14
30 20 10
t<0.0256 = 2.9 | t<0.01,6 = 6.3 | t<0.0256 = 3.0

Table 4.7: The t values for accuracy vs target size.

that they understood the methods involved in the experiment, which they said
they did. The data obtained were examined to ascertain whether the user had
any trouble clicking on the target, but the data showed that the person rarely
missed the target. The reason for the very low accuracy can be explained by the
user not clicking on the red circle as required, but on the white or black parts
of the target. This can only be achieved by the user having trouble locating
the pointer over the desired target with the Twiddler, by not paying attention
to the cursor location when pressing the Twiddler’s selection button or by the
user having some kind of hand/eye coordination problem. The author suspects
that the first explanation is correct, but the errors obtained during these tests is
larger than would have been expected. If we examine the data (shown in table

4.8) we find that there are marked individual differences in the results.

For example, the 30 pixel target has an average of 59.9%, but the span of this

result is between 86% and 33%. It is important to recognise that these artifacts

4.9. RESULTS AND DISCUSSION 85

highlight the wide range of individual differences, and that further tests would
need to be undertaken with a greater sample of subjects to reduce the standard
deviation. However, the author wishes to point out that even with these results,
the difference between the Twiddler and the mouse are statistically significant

in defining the operational parameters of the device.

| User || 50 | 40 [30 | 20 [10 |
1 11 13 33 18 5.2
2 75 93 76 40 40
3 73 80 [375 | 11.7 | 117
4 93 80 80 53 | 31.25
5 60 60 | 46.6 | 13.3 | 26.6

6 80 80 86 93 20

Mean 65 67 59.9 31.5 224
S.D. 28.6 28.7 23.4 19.5 12.8

Table 4.8: Experiment three: cursor accuracy data.

The results show that between the 30 and 20 pixel point mark there is a
significant decrease in target accuracy with both devices. The Twiddler is less
accurate than the mouse at these levels and any target which is smaller than
30 pixels in radius will probably be harder to select. This will require more
button clicks and will probably increase the amount of frustration experienced

by a user.

4.9.8 Experiment three: cursor overrun

The overrun of the third experiment was calculated in the same was as in ex-
periment two. The data were analysed using a t-test and all the results were

found to be significant at the 1% level (see table 4.9).

Target size | 50 40 30 20 10
£<0.001,6 4.75 | 4.84 | 5.27 | 3.73 | 7.69

Table 4.9: The t values for overrun vs target size.

The results in figure 4.8 show that the Twiddler requires a significantly

greater amount of movement in order to select a particular target. These results

86CHAPTER 4. ASTUDY OF SOME WEARABLE INTERACTION DEVICES

800

T
Cursor overrun

"Mouse" —+—

"Twiddler" +--x---

600 [1

Distance (pixels)
B a
o o
o o
T T
L L

w
=]
]
T
L

200 | 4 |
100 1
S S S S
o ‘ ‘ ‘ ‘ ‘
0 10 20 30 40 50 60

Centre target size (pixels)

Figure 4.8: Overrun vs target size using Twiddler and mouse.

also imply that for the Twiddler there is an increase in effort required to select
targets between 30 and 20 pixels in radii. This was not entirely unexpected as
the test subjects all complained of fatigue and annoyance (see section 4.8) when

using the Twiddler to select the smaller targets.

4.9.9 Experiment four: cursor speed

The data obtained from the tests were analysed and the results from the exper-

iment can be seen in figures 4.9 and 4.10.

0.35 T
Mouse Cursor speed
"screen" —+—
“immersive" ---x--+
"augmented" :--%---
03 9 g

ozs | : | f

o
N
T
*
—
*
—
*
X
*
x
L

1%}

g o

S X

8 o

S o015} 1
01} 1
0.05 | 1

0 Il Il Il Il Il
0 10 20 30 40 50 60

Centre target size (pixels)

Figure 4.9: Speed vs target size using a mouse.

4.9. RESULTS AND DISCUSSION 87

0.35

T

Twiddler Cursor Speed
 "screen" —+—i
"immersive" ---x--+

03 L augmented" :-----! i

I
N
T
!

Milliseconds
o
=
(4]
T
L

3 . i
R) e 31{ f*{
o1 f by i i -

0.05 - 1

0 10 20 30 40 50 60
Centre target size (pixels)

Figure 4.10: Speed vs target size using the Twiddler.

The results® show that the normal CRT screen, the immersive head-mounted
display and the augmented head-mounted display have no little effect on the
speed of use of of the pointing device. As the target size reduces, all three
display systems show a small, comparable decrease in speed when the mouse
is used. With the Twiddler there appears to be no difference in speed when

comparing the target size against the various display systems.

4.9.10 Experiment four: cursor accuracy

The data obtained from the test were analysed and the results can be seen in
figures 4.11 and 4.12. The results again show that again there is little differ-
ence in accuracy when comparing a normal CRT screen, an augmented or an

immersive head-mounted display.

5The results are based on target sizes in increments of 10; the graph shows the results
shifted either side of the 10 marks to make the data easier to read.

88CHAPTER 4. ASTUDY OF SOME WEARABLE INTERACTION DEVICES

100 T HEI
Mouse Accuracy i
"screen” —+— P
“immersive" --x--+ - o
"augmented" :--%---! . ix
80 - P i 1
ix il
60 - * * ,
A T : :
j=2]
]
c
[}
e
I i '
o : : :
40 * |] 7
20 B % 1
o i ‘ ‘ ‘ ‘
0 10 20 30 40 50 60

Centre target size (pixels)

Figure 4.11: Cursor accuracy vs target size using a mouse.

100 T
Twiddler accuracy
"screen” ——+—i
90 | “immersive" ---x--+ i
"augmented" :--%---! .
80 | E
70 ; i
60 | RE : : R
[} H " H
§ 50 ; : ; i
1<} ' : :
51 - :
a : * : :
40 ; : ; | b
30 | 1 ? | 3 7]
20t T i 1
X 1
*1 :
10 L : 4
0 1 I I I I
0 10 20 30 40 50 60

Centre target size (pixels)

Figure 4.12: Cursor accuracy vs target size using a Twiddler.

However, the results show that with a mouse there is a difference in accuracy
between the CRT screen and the immersive/augmented HMD when the target
size is smaller than 30 pixels. It was originally envisaged that the combination
of an immersive/augmented HMD would reduce the accuracy of the Twiddler
but when the data were analysed there were few differences in accuracy between

the three display types.

4.9. RESULTS AND DISCUSSION 89
4.9.11 Experiment four: cursor overrun

The data obtained from the test were analysed and the results from the exper-

iment can be seen in figures 4.13 and 4.14.

120 T
Mouse Cursor Overrun
"screen” —+—
“immersive" +--x--+
"augmented" :--%---!
100 B
80 B i
% ‘ ?
] | :
X | | |
c 0 T | *
@ r vy H ' !
b X L % T
e | x|
40 | ’ E —
20 B
0 I I I I I
0 10 20 30 40 50 60

Centre target size (pixels)

Figure 4.13: Cursor overrun vs target size using a mouse.

1200 T T
Twiddler Cursor Overrun
"screen" —+—
“immersive” +---x---
"augmented" :--*---!
1000 B
800 B
»
]
X
=
@ 600 4
o
=
8
2
e 1
400 | i i g
% . %
2001 f X 3 *] 1
0 I I I I I
0 10 20 30 40 50 60

Centre target size (pixels)

Figure 4.14: Cursor overrun vs target size using a Twiddler.

The results show that there is little difference in the amount of overrun when
comparing the CRT screen, immersive and augmented HMD with the mouse.
But when the results for the Twiddler are analysed, an unexpected result ap-

pears. While the CRT screen and the immersive HMD follow a similar pattern,

90CHAPTER 4. ASTUDY OF SOME WEARABLE INTERACTION DEVICES

Target size 50 40
value of ¢ t<0_005’6 =4.3 t<0.2’6 =1.1
30 20 10
t<0.0056 = 4.4 | t<0.005,6 = 10.3 | t<0.005,6 = 12.9

Table 4.10: The ¢ values for the cursor overrun vs target size when comparing
the immersive and augmented HMD with the Twiddler.

the augmented display exhibits a consistently greater amount of overrun for
all the targets. In most cases the results are statistically significant at the 5%
level. This suggests that using the augmented HMD may reduce the amount
of overrun, and therefore the physical effort required to manipulate the Twid-
dler keyboard. These results were backed up by four out of the six subjects
commenting that the augmented display seemed easier to use with the Twiddler

when compared to the CRT screen or the immersive HMD.

4.9.12 Experiment five: cursor speed

The data obtained from the experiment were analysed and the results can be

seen in figures 4.15 and 4.16.

0.3
Mouse Cursbr Speed
"ML
"Virtual-10" +--x--4 T
025 -
%
0.2 |
x X
%)
°
c
o
® 015
2
=
0.1 |
0.05
0 I I I I I
0 10 20 30 40 50 60

Centre target size (pixels)

Figure 4.15: Cursor speed vs target size using a mouse.

The results show that there is no significant speed difference when using the

monoscopic Virtual-IO or the M1 head-mounted displays. In this situation the

4.9. RESULTS AND DISCUSSION 91

0.18

0.16

0.14

0.12

0.1

0.08

Milliseconds

0.06

0.04

0.02

Twiddler éursor Speed
N
"Virtual-l0" +--x--4)
1 ’s !
¥ i ! j ; i
I I I I I
10 20 30 40 50 60

Centre target size (pixels)

Figure 4.16: Cursor speed vs target size using a Twiddler.

cursor speed does not depend on the visible screen resolution in a monocular

display system. The author was expecting the immersive display to exhibit an

increase in speed due to the higher physical resolution of the immersive display

device, but this was not the case.

4.9.13 Experiment five: cursor accuracy

The data obtained from the experiment were analysed and the results can be

seen in figures 4.17 and 4.18.

100

90

80

70

60

50

Percentage

40

30

20

10

T
Mouse Cursor Accuracy
VI

"Virtual-10" +--x---

S S —

2
L

—

Lo

10 20 30 40 50 60
Centre target size (pixels)

Figure 4.17: Cursor accuracy vs target size using a mouse.

92CHAPTER 4. ASTUDY OF SOME WEARABLE INTERACTION DEVICES

100

Twiddler‘Cursor Accuracy‘
ML
"Virtual-10" ---x--+

80 1

60 | 1

Percentage

40 - i

20 * |

| 1 1 1 1
0
0 10 20 30 40 50 60

Centre target size (pixels)

Figure 4.18: Cursor accuracy vs target size using a Twiddler.

The results show that there is no significant difference between the aug-
mented and immersive HMDs in the accuracy tests. The author was expecting
a noticeable difference in accuracy due to the M1’s higher perceptible resolution,

but both displays perform similarly.

4.9.14 Experiment five: cursor overrun

The data obtained from the test were analysed and the results from the exper-
iment can be seen in figures 4.19 and 4.20.

The results show that there is no difference in the amount of overrun be-
tween the augmented and the immersive HMDs. In experiment four (page 89)
the amount of overrun was significantly lower for the augmented HMD: this
experiment shows that the advantage is lost when a monocular display is used.
Although the higher perceptible resolution of the M1 provides a smaller mean
and standard deviation when compared to the Virtual-IO glasses, the results

are not significantly different.

4.10. CHAPTER SUMMARY 93

200 T
Mouse Cursor Overrun

ML
180 | "Virtual-10" ---x--+ i

= = =
N} N o
o o =]
T T T
! ! !

Distance (pixels)
o
o
o
T
L

80 - i i i 1

X % ;
: i X
40 | k E

20 | 1

0 10 20 30 40 50 60
Centre target size (pixels)

Figure 4.19: Cursor overrun vs target size using a mouse.

700

Twiddlerbursor Overrun ‘
ML
"Virtual-10" +--x---

600 |- 1

500 |- 1

IN
o
)
T
L

Distance (pixels)
w
o
o
T
L

200 | 1

100 | 1

0 ! ! ! ! !
0 10 20 30 40 50 60

Centre target size (pixels)

Figure 4.20: Cursor overrun vs target size using a Twiddler.

4.10 Chapter summary

The first few experiments provide the reader with an analysis of the average
speeds and accuracy obtainable with the Twiddler input device for a particular
group of people. This information is used by the author to design a graphical
user interface for the Sulawesi architecture, using the Twiddler as an input de-

vice; see chapter 6. With a well-designed interface the Twiddler can be exploited

94CHAPTER 4. ASTUDY OF SOME WEARABLE INTERACTION DEVICES

to provide an efficient way of controlling the user interface.

The results for experiment one suggest that the user of the Twiddler has
a maximum speed and accuracy which is significantly lower than a QWERTY
keyboard. Inexperienced subjects quickly approach the same speeds as that of
an experienced user, suggesting that the device has a maximum typing rate of
approximately 4 times slower than the QWERTY keyboard. The accuracy of
the Twiddler is dependent on the experience of the user and, with training, the
accuracy can be reduced to a comparable rate of a QWERTY keyboard.

The speed of text entry on the Twiddler will have an obvious impact on the
types of application that can be used. For example, a word processor might be
acceptable if a short note or letter were to be typed, but for a long, complex
document it may be unsuitable. The test paragraphs are relatively small in
comparison to this document, therefore it would be up to the designer to decide
whether the wearable system would be used for the entry of large amounts of
text. If so then another type of input mechanism, such as an arm mounted
keyboard,or speech recognition may be more suitable.

The maximum speed achievable seems to be due to having to press two or
more keys to obtain a single character. Chord keyboards such as the Microwriter
[2]” use chording to offer a significant speed increase by assigning a chord, a
syllable or a whole word to a certain key or keys. The main difference between
the Microwriter and the Twiddler is that the former was designed to be used
with both hands and was fairly efficient. The Twiddler was designed to be used
in one hand only, so any advantages that were gained by using two hands to
enter chords have been lost.

This assignment of words or macros to the chords on the Twiddler has been
applied by many, and claims of an input rate of 50+ words a minute is mentioned
in [10]. On the evidence of this evaluation, this can only be achieved by assigning

macros to each key. It is speculated that this assignment would indeed provide

TAlso see http://www.tifaq.com/keyboards/other-keyboards.html

4.10. CHAPTER SUMMARY 95

an increase in word speed, but it is also likely that an increase in the amount of

time taken to learn the new chording pattern would be noticed.

The results for the second experiment suggest that the pointing device on
the Twiddler is far from ideal for manipulating the smaller widgets, such as the
radio buttons or check-boxes that proliferate in current desktop environments.
The author speculates that a combination of the poor position sensing device
used in the Twiddler and the non-linear behavior of that device contribute to the
slow speeds, low accuracy and high overruns observed. Also, unless the amount
of overrun is decreased, the amount of effort and frustration experienced will
put many people off from using the Twiddler. Indeed this appears to have
been noted by HandyKey who have replaced the tilt sensor for mouse control
in the original Twiddler with a pointing stick (as found on IBM laptops) in the
Twiddler 2.

The results from the third test show that as the target size gets smaller; the
Twiddler’s cursor manipulation speed slows down, the accuracy decreases and
the amount of overrun required to select a target increases. Again, this reflects
the coarseness of the sensor in the Twiddler. The results (seen in figure 4.7) also
show that as the radius for the target size decreases to 30 pixels the amount of
overrun for the Twiddler decreases, but between 30 and 20 pixels the amount
of overrun rises sharply. This result implies that the optimal target size for the

Twiddler would be somewhere between 30 and 20 pixels in radius.

The second and third experiments indicate that the pointing device on the
Twiddler is adequate for a task that requires a cursor to be placed and clicked
over an area approximately 30 pixels in radius. The results show that this is, in
some sense, the optimal size for the targets: anything smaller requires a signifi-
cant increase in effort and patience by the user, anything larger than 30 pixels
will take up valuable screen real estate on a 640 x 480 display. The author spec-
ulates that the ratio between the target size and screen size will remain constant

if the screen resolution is increased, as the main influence on performance is the

96CHAPTER 4. ASTUDY OF SOME WEARABLE INTERACTION DEVICES

Twiddler device rather than screen resolution. These observations indicate the
poor performance of the pointing device in the Twiddler, and it is expected that
in a mobile environment the amount of control achievable with the pointing
device will decrease rapidly. From these results the author suggests that the use
of pointing tasks in a wearable user interface should only be undertaken when
necessary. The use of non-graphical windowing, menu and icon systems should

be explored before relying on traditional pointing tasks.

The results from the fourth experiment show that the CRT and immersive
HMD do not have a large effect on the results obtained from the Twiddler. How-
ever, the augmented HMD may reduce the the amount of overrun experienced
when using the Twiddler. As the author speculated earlier in this chapter, the
speed and accuracy of the device is related to the amount of overrun experi-
enced. This result may justify the use of the augmented HMD to reduce the

amount of overrun experienced.

Another artifact from this display was noticed, which may or may not have
an affect on future design issues. It was observed by several of the subjects that
when the augmented display was used with either pointing device, a disorienting
illusion occurred. If the person moved their head at the same speed and in the
same direction as the cursor, they would think that the cursor was moving
and therefore they must be moving the manipulation device. But if the head
movement suddenly stopped, it was revealed that the cursor had not moved
on the screen at all. This illusion seemed to occur when a static image was
viewed on the augmented HMD and when the real world image, seen through
the HMD, was moving in the same direction as the user wanted to move the
cursor. The author cannot explain why this happens but suspects these events
trick the brain into thinking that the hand is moving the pointing device, even

though the hand is not moving.

The results from the fifth experiment show that there is no difference in

the augmented and immersive monocular HMDs tested. Again, this was unex-

4.10. CHAPTER SUMMARY 97

pected: in the fourth experiment the augmented display showed a decrease in
the amount of overrun required to perform a similar task, but this advantage
is lost when the display is over one eye only. The accuracies with the monocu-
lar devices are almost identical even though the augmented HMD has a lower
perceivable resolution. This suggests that either the type of display does not af-
fect the performance or that the augmented display performs better for a given
resolution.

The fourth and fifth experiments indicate that the resolution of the head-
mounted displays do not have a significant effect on the speed or accuracy of
the system. The fourth experiment shows that there is an a reduction in the
amount of overrun when using an augmented HMD. This reduction in overrun
would allow a user to either operate a novel input device such as the Twiddler
for a longer period of time, or to operate the device for the same period of time
with a reduction in fatigue.

The slow performance and crude pointing device of the Twiddler, highlighted
in this research, do not make it a good solution for a text/input device. Unfor-
tunately due to the lack of any other commercially alternative mobile interface

device the use of the Twiddler is persisted with.

4.10.1 Guidelines

From the work in this chapter the author has drawn up a set of guidelines for

the various interaction devices.

e The first experiment indicates that if a small amount of text needs to
be entered, then the Twiddler device will be adequate even though it is
significantly slower than a QWERTY keyboard.

e The results from the second and third experiment indicate that the use of
small check boxes and radio buttons should be discouraged as the precision

obtained with the Twiddler is not sufficient to accurately select these types

98CHAPTER 4. ASTUDY OF SOME WEARABLE INTERACTION DEVICES

of widgets. The results suggest that a target size of between 20-30 pixels

provides a good trade off between screen real-estate and selection accuracy.

e The results from the fourth experiment show that the use of a stereo
augmented HMD may reduce the amount of fatigue a user experiences
with the Twiddler. Also an augmented HMD has the advantage of being
able to overlay the images with the real world rather than obscuring the

users vision totally.

e The difference between an augmented and immersive monoscopic HMD
has little impact on performance. The results in experiment five show
that the type of HMD does not significantly affect the ability to control
the Twiddler or manipulate the widgets on the screen. Because of this the
author suggests the use of an augmented monocular HMD as it will allow

a person to focus on the real world when they are required to.

Chapter 5

Sulawesi, A Contextual User

Interface Framework

5.1 Why was Sulawesi designed?

The goal of this research is to investigate user interfaces for wearable/mobile
computing. As the previous chapter shows, some of the current interaction
devices that have been tested and being used in the real world for user interface
manipulation are not ideal for a mobile user interface. While the HMD systems
tested appear not to significantly affect the speed and accuracy of graphical
manipulations, it is clear that the speed and accuracy of the Twiddler is many
times slower than a normal QWERTY keyboard and mouse. While current user
interface systems can be modified and designed to allow for these differences in
the interface devices, the ability to adapt these to include alternative forms of
interaction is still a problem. Here the author has attempted to fuse together
the knowledge gained from the user trails in chapter 4 with a system which can
provide contextual and agent-based functionality.

The use of contextual and agent-based systems have been proposed by many
people [31, 42| as a potential solution to some of the problems with interaction

in a mobile environment, but there have been few attempts at tackling the user

99

100CHAPTER 5. SULAWESI, A CONTEXTUAL USER INTERFACE FRAMEWORK

interface issues involved with wearables, let alone designing and constructing a
single framework which can encompass multimodal, agent-based and contextual
systems. Due to the lack of a system to enable research into contextual wear-
able systems, the author has chosen to look at the general architectural and
user interface issues involved in the design and implementation of a wearable
software framework. The goal is to provide a platform which will allow others to
research and develop contextual user interfaces for alternative situations such as
ubiquitous, contextual and mobile environments. In these situations it is fairly
obvious that the use of any input devices is fairly restricted, but the use of voice

commands is appealing to explore.

There have been a number of different input/output modalities developed
by different research groups all over the world. The idea behind the Sulawesi
framework is to provide a “common” integration platform which will be flexible
enough to encompass a wide variety of input devices, separating the applica-
tion development from the input mechanism. The framework provides a set of
communication primitives to provide diversity for a wide range of applications
and devices. It also provides mechanisms to allow applications to communicate

with each other via a broadcasting messaging system.

The system allows applications to query an input channel to determine the
current interpretation of the environment. An example of this would be a lo-
cation application which periodically asks a GPS channel "where am 17”. The
location application would not need to know what device it is asking for the
information, so it could just as easily ask an infra-red beacon device or a vision
based positioning system . This method of abstraction can be used to compare
the accuracy of one device against another, or to gain an enhanced state of

knowledge about the environment.

Another example is for a user to point at somebody while saying “tell me
who that is”. This is clearly a complex task which can be split into a few

discrete parts. The first is to determine what the user has said at what point in

5.2. THE SULAWESI ARCHITECTURE AND CONCEPTS 101

time (because the sentence would only be relevant for a certain period in time),
finding out who the user is looking at that time (via a visual input device such
as a camera), attempting to recognise the person in the image, and to generate

a spoken output of the person’s name.

5.2 The Sulawesi architecture and concepts

The Sulawesi architecture can be seen here in figure 5.1. In this chapter the

system is documented using the UML [49] notation (except for figure 5.1).

Natural
language
\ processor /
Renderer B
| Sensor Subsystem \ Management I Contextual =

Renderer

: Subsystem \
/ /1N

Applications

Figure 5.1: Sulawesi architecture.

Sulawesi has been designed to allow individual subsystems to be developed
independently of each other. A well defined interface for each subsystem and

its implementation is discussed in detail within this chapter.

As with any system under development, these interfaces were altered slightly
as the design matured; even so the same underlying definition of what each
subsystem should do and how it should communicate with other subsystems
has been unchanged throughout the development.

Note: Although the Natural Language Processor was originally thought of as
a separate subsystem, it has been incorporated into the Management Subsystem

and is discussed in the following section.

102CHAPTER 5. SULAWESI, A CONTEXTUAL USER INTERFACE FRAMEWORK
5.2.1 Information abstraction layers

The separation of the input modalities from the services provides some problems
in resource discovery and integration. If an input resource suddenly disappears,
any services that are dependent on the resource may behave unpredictably. In
order to try and solve this problem an intermediate service has been defined.
This intermediate layer receives raw data from the sensor and translates it into
an abstract form which an application can receive. Various tasks such as logging
the position of the user or how often they walked about can be determined, but
the raw data itself may be of limited use. A service can have access to the raw
sensor data if needed, but an abstract form of the data may be more useful to
the application depending upon the situation.

The use of the Information abstraction layer (I.A.L.) shown in figure 5.2 en-

ables data sources to appear and disappear without an applications knowledge.

Application

A ‘

Y | IAL service

1] | Input Manager

Java Wrapper

Native Device Driver

Figure 5.2: The information abstraction layer (I.A.L).

The I.A.L. can also be used to provided a mechanism whereby data from the
users environment can be fed back, altering Sulawesi’s decisions and reactions.
For example, if a user is driving it would not be advisable to display informa-
tion on a head-mounted display or a portable screen as this would distract the
user. Using movement sensor, video camera, GPS receivers, etc, it is possible
for a movement I.A.L. to directly effect Sulawesi by requesting that all visual
outputs are to be redirected to a speech rendition where possible. When the

user has stopped travelling, the movement I.A.L. can cancel the visual—aural

5.2. THE SULAWESI ARCHITECTURE AND CONCEPTS 103

redirection. Another example is of a speech I.A.L. which listens to an audio
input stream from a microphone; the detection of somebody speaking triggers
the speech I.A.L. which then requests that the renderer subsystem should pause

all speech renditions until the has user stopped speaking.

5.2.2 Semi-natural language decoding

When humans recognise speech they do not understand every word in a sentence,
sometimes words are mis-heard or a distraction prevents the whole sentence
from being detected. Even so, a human can infer what has been said from
the other words in a sentence. While this is not always successful, in most
cases it is satisfactory for the understanding of a conversation. This type of
sentence decoding has been termed semi-natural language processing and has
been implemented using a rule-based system.

The core of the user interface is based around a string matching algorithm,
this converts a understandable sentence into a command stream from which two
pieces of information are extracted: the service to invoke; and how the output
should be rendered.

The example below explains how the Sulawesi system converts human un-
derstandable sentences into commands:

COULD YOU SHOW ME WHAT THE TIME IS

I WOULD LIKE YOU TO TELL ME THE TIME

It can be argued that in practice these sentences result in similar information
being relayed to a user. The request is for the interpretation of the time to
be sent to an appropriate output channel, the result is the user receiving the
knowledge of what the time is through that channel. Closer inspection reveals
that almost all the data in the sentences can be thrown away and the request
can still be inferred from the following verb and object.

SHOW TIME

TELL TIME

104CHAPTER 5. SULAWESI, A CONTEXTUAL USER INTERFACE FRAMEWORK

In the example above there has been a reduction in the number of words in
the sentences. The author argues that very little of the information content has
been lost from the sentence, and that it is still possible to infer the meaning of
the sentence. If no verb is specified for the display of information, such as “what
is the time”, the system falls back to a default rendition of the time.

Sulawesi has been designed to allow sentences to be processed and inter-
preted in this way. The semi-natural language processing is achieved through
an autonomously generated look-up table of service names and a language trans-
formation table. The unique service names provide a simple mechanism with

which to look-up a service such as “/sme” within a sentence.

Conmand: "show ne the tine"

Ti me W10, aEn | Vi sual
Servi ce % Qut put
Render er

Subsystem
Post ur e / .| Aural
I AL sitting Qut put
down

a) Conmand processed as nornal

Conmand: "show ne the tine"

Ti e " Vi sual

Service % .1 Qutput
Renderer [

Subsyst em
Posture / Aur al
I AL wal ki ng Qut put

b) Command being redirected

Figure 5.3: Commands being processed.

5.2.3 Renderer redirection

For any system to produce a response there must be some form of output which
can be understood by a user. As mentioned in the previous section there are
certain situations when it may be desirable to redirect one type of renderer to
a different type. The Renderer Subsystem is invoked by a service requesting

the rendition of a piece of information via a certain output channel. When the

5.3. THE ARCHITECTURE OF THE SULAWESI FRAMEWORK 105

Renderer Subsystem is initialised it opens the renderer look-up table (a file on
the disk) and loads it into an internal hash table. This hash table can then be
queried and manipulated by an [.A.L to redirect a rendition.

For example: if the user has asked to be shown a piece of information,
implying a visual output, Sulawesi can use a posture I.A.L. (described in section
6.6) to determine whether the requested rendition is suitable for the current
context of the user.

As can be seen in figure 5.3, if the posture I.A.L. decides that the requested
renderer is suitable then the request is passed through to the requested ren-
derer. But if the posture I.A.L indicates that the requested rendition type is
inappropriate for the context of the user, then it asks the renderer subsystem

to redirect the output to an alternative rendition type.

5.3 The architecture of the Sulawesi framework

In order to create a system where sensors, applications (services) and renderers
can be implemented separately there needs to be a uniform interface between
each of the components. A top down view of how these subsystems function
and communicate with the rest of the system are broken down in this section.
This provides a detailed description of the design using the UML [49] notation,

and allows an expandable interface to be determined and documented.

5.3.1 The sensor subsystem

The foundation of any contextual system lies in the use of sensors to gather
information from an environment. In a multi-sensor architecture it would be
impractical to hard code all possible sensors into an application.

From a software engineering point of view, a generic sensor broker is used
to communicate information from the sensors to the rest of the system and this

has been called the Sensor Subsystem (seen in figure 5.1). The sensors commu-

106CHAPTER 5. SULAWESI, A CONTEXTUAL USER INTERFACE FRAMEWORK

nicate information through well defined interfaces, and the Sensor Subsystem is
responsible for providing a common point for an application to establish uni- or

bi-directional communication with multiple sensors.

Load New Sensors

o>
Sensor N
Subsystem Send Message

Figure 5.4: The sensor subsystem.

Create Sensors

The Sensor Subsystem is responsible for initialising the sensors when the
system is first started. When the sensors are initialised they register themselves
with the Sensor Subsystem. This provides the subsystem with knowledge of
which sensors are available. Also, provisions have been made to dynamically
load new sensors into Sulawesi as and when they become available.

The types of sensors that can be realised are generally classified into two
types. The first gathers asynchronous information by a triggering event in the
environment, such as a door switch. The second type of sensor gathers periodic
information at certain time intervals, such as a temperature sensor gathering
data every second. The architecture allows both types of sensors to transmit
their information to other parts of the system via a message-passing system.

Provisions have also been made to allow a sensor to be queried for its current
perception by an application, or the framework itself. This allows asynchronous
sensors to be polled by an application if it is necessary.

From this information we can create a UML Use Case Diagram for the Sensor
Subsystem which can be seen in figure 5.4. As can be seen there are four Use
Cases with the UML Actor in this figure representing the Sensor Subsystem.

The modular nature of the system means that, at startup, Sulawesi has no

5.3. THE ARCHITECTURE OF THE SULAWESI FRAMEWORK 107

i Sensor_SubsystemQI :Sensor_Subsystem |

Management Get_Sensors()
Subsystem
| Sensor
a:Sensor
I
: Sensor() :I b:Sensor
: <_R_eg_is_te_r(g)_ _
| | Register(b)_ _ _i__ __ _
I
I
|

Figure 5.5: The sensor subsystem at start-up.

knowledge of any sensors, it has no knowledge of how many there are, or what
they are called. The only way to dynamically load these sensors is to know
where they are (which directory), to walk this directory and to load each sensor

in turn.

Create sensors

When the system is first started the Sensor Subsystem is constructed by the
Management Subsystem (see section 5.3.3). It then identifies which sensors
are available by calling the Get_Sensors() method and constructs the sensors.
On construction the sensors acknowledge that they are available by registering
their presence with the Sensor Subsystem. The UML sequence diagram for the

creation of the sensors can be seen in figure 5.5.

Load new sensors

As mentioned in the introduction of this section, in certain situations it is de-
sirable to load dynamically new sensors when they become available. This is
controlled by the Management Subsystem which sends a message to the Sensor
Subsystem. The Get_Sensors() method kicks off the sensor detection stage
(seen in figure 5.6). The re-detection of sensors works by comparing the list of

currently registered sensors with the ones that are available on the file-system.

108CHAPTER 5. SULAWESI, A CONTEXTUAL USER INTERFACE FRAMEWORK

If a new sensor has been detected it is constructed and it then registers with

the Sensor Subsystem.

Get_Sensors() 1

:Sensor_Subsystem

Management
Subsystem

Sensor()’

c.Sensor

o« Register(c) _ _

Figure 5.6: The sensor subsystem when re-detecting sensors.

Query sensor

The architecture allows an application to communicate directly with a sensor if

so desired. This is achieved by asking for a connection to a particular sensor,

the Sensor Subsystem then returns an object reference to the sensor. The ap-

plication then communicates directly with the sensor through the Management

Subsystem. The sequence diagram in figure 5.7 illustrates this concept.

:Sensor_Subsystem obj:Sensor

: : Get_Sensor (X)

Management
Su b;system

| .
- — Eetu rn (Ob_j)

Query (obj)

Query_Registered_Sedsors X)

|
|
|
|
: Return (data)
|

|

Figure 5.7: Querying a sensor.

o

5.3. THE ARCHITECTURE OF THE SULAWESI FRAMEWORK 109

Send message

In order to allow the sensors to send data to the Sensor Subsystem (and on to
the Management Subsystem) a mechanism for passing data was needed. The
nature of the system meant that almost all message needed to be copied to
several objects, rather than to a single object. A traditional WIMP event-loop
could have been used, and each object that wished to receive messages could
subscribe to an event stream. Unfortunately, the WIMP event-loop has several
drawbacks. If an object or piece of code hangs, it could be possible to receive
all the messages without pushing them back onto the message stream. This
has the effect of hanging the entire system as no messages are passed to any
other objects. Also, the throughput achievable with the WIMP event-loop is
not as high as a system based around a shared memory messaging pool, but this
high throughput system is generally only needed where bottlenecks need to be

reduced and performance needs to be increased.

:Sensor_Subsystem obj:Sensor

Management
Sublsystem

1 Send_Message (data)

-«

|

|
Send_Message (data) rl
n

|

|

|

|

|

Figure 5.8: Sensor sending a message.

Because of the potential complexity of the system and the relatively small
number of objects that may be interested in the sensor data, a simple delega-
tion message-passing interface was used to broadcast messages to the relevant
objects. This makes sure that a reasonable throughput of messages is achieved
without the possibility of system hangs due to a mis-configured or mis-coded

Sensor.

110CHAPTER 5. SULAWESI, A CONTEXTUAL USER INTERFACE FRAMEWORK

When a sensor needs to send some data, it contacts the Sensor Subsystem
and asks that a message is sent (see figure 5.8). The Sensor Subsystem is then
responsible for transmitting this message to the Management Subsystem, which

in turn distributes the message to the other objects in the architecture.

5.3.2 The contextual rendering subsystem

Alternative forms of output such as speech may be more appropriate depending
on the situation or context of the user, and this has already been discussed in
section 5.3. With this in mind the Conteztual Rendering Subsystem has been

designed. It is responsible for the creation and management of output renderers

within the architecture.
Render Information

Create Renderers
Redirect Renderer

Figure 5.9: The rendering subsystem.

Rendering
Subsystem

An application can request, via the Management Subsystem, that the Con-
textual Renderer should output information in a particular way. The Contezrtual
Renderer makes decisions based on the state of the render redirection hash ta-
bles (discussed in section 5.4.2). Based on this information the correct renderer

is chosen and the request from the application is passed to the renderer.

Again, the use of a standard software interface allows each renderer to com-
municate with the Contextual Rendering Subsystem. Also, the renderers are
loaded at run time and register their presence with the Conteztual Rendering

Subsystem. The Use Case for this can be seen in figure 5.9.

5.3. THE ARCHITECTURE OF THE SULAWESI FRAMEWORK 111

Create renderers

When the system is first started the Contertual Rendering Subsystem is con-
structed by the Management Subsystem. It then identifies which renderers are
available and constructs them by instantiating the objects. On construction,
the renderers acknowledge that they are available by registering with the Con-
textual Rendering Subsystem. The sequence diagram for this case can be seen
in figure 5.10 and shows the initialisation of two renderers. In a running system
there may be any number of renderers and once a renderer has been constructed
it sets up any internal configurations that are needed; this is discussed in more

detail in section 5.4.7.

i Rendering_Subsystem() > :Rendering_Subsystem
>

Management Get_Renderers()
Subsystem
‘ 1 Render() a:Render
Render() =l b:Render

Figure 5.10: Initialisation of the rendering subsystem.

Redirect renderers

The redirection of renderers is manipulated by dedicated I.A.L services within
the system. These services observe the environment through the Sensor Sub-
system and if certain criteria are met they request that a renderer is redirected,
the sequence of which can be seen in figure 5.11. The actual re-directions are
performed by the Conteztual Rendering Subsystem which keeps track of which

re-directions are enabled.

112CHAPTER 5. SULAWESI, A CONTEXTUAL USER INTERFACE FRAMEWORK

:Rendering Subsystem

I
Management :
Subsystem) I
I Redirect (*a","b") ,.-'_ Modify_Translation
: Lookup_Table ()
| l—
|
|
|
:<_____Aek_(9;t1)_ ______ |
|

Figure 5.11: A render redirection message.

Render information

When an application needs to convey some information to a user, it sends a
message to the Contextual Rendering Subsystem requesting the rendition of the
information. For example, if the application asks to produce a visual response, it
checks to see if any rendering re-directions have been configured. If there are no
re-directions enabled then the request from the application is passed through to
the relevant renderer; this can be seen in figure 5.12. If a rendering redirection
has been enabled then the request from the application is passed to the renderer
specified in the rendering redirection hash tables; this situation can be seen in

figure 5.13.

5.3. THE ARCHITECTURE OF THE SULAWESI FRAMEWORK 113

:Rendering_Subsystem a:Render

I

Management :
Subsystem |
Render (data,"a") I

I
|
|
|
> Translation_Lookup{)
|
|
|

Render(data)

o - Ack(data)_ _ _

Figure 5.12: A render request with no re-directions.

i :Rendering_Subsystem a:Render b:Render
1

1
Management :
|
|

Subsystem
Render (data,"a")

1
I
I
I
Translation_Lookup [) |
I
I
I

Render (data)

I,
I
\ I
| I
I ! .
']l
I
| Akl |
I
I
I
' :

Figure 5.13: A render request with redirection from “a” to “b”.

5.3.3 The management subsystem

The heart of the system allows the Sensor Subsystem, the Conteztual Rendering
Subsystem and the applications to communicate with each other. The subsystem
which handles this is called the Management Subsystem and is used as a central
point for all communications within the system. The Management subsystem
has three main responsibilities, which can be seen in figure 5.14. The first
is to construct applications at the appropriate time, the second is to provide a
generic interface to allow the other subsystems and applications to communicate,

and the third is to receive commands from a user, decode them and pass the

114CHAPTER 5. SULAWESI, A CONTEXTUAL USER INTERFACE FRAMEWORK

command on to the relevant application.

Create Applications
i TX/RX Messages
Management

> bsyStem

Figure 5.14: The Management Subsystem.

Create Applications

The two classes of application defined by [17] in section 2.4, namely the Re-
actionary and Decisionary applications, have been accommodated within the
system. A Reactionary application simply receives a command and executes
it. The Management Subsystem does not need to load all of the Reactionary
applications when the system is initialised as they are instantiated only when

they are needed.

Management_Subsystem() |
=| :Management_Subsystem |

Initalisation Get_Decisionary_Apps()
|

1 | T
Decisionar L.
1 Y0 a:Decisionary

Decisionary()

|

|

|

|

| .

,I . Register(a)
|

|

|

|

Figure 5.15: Construction of a Decisionary application.

The Decisionary applications make decisions based on the current perception
of the environment and are analogous to the agents in [36]. These applications
constantly monitor the environment through the Sensor Subsystem, therefore
they need to be instantiated when the system is first started (initialised) and

remain active until the system is shut down. These two classes of application

5.3. THE ARCHITECTURE OF THE SULAWESI FRAMEWORK 115

contribute to the different application creation sequence diagrams seen in figures

5.15 and 5.16.

f :Management_Subsystem |
T

Command |
| |

Command()

>
>

Decode_Command()

]

Reactionary(command))
- b:Reactlonary

<< Destroy >> \/

|
|
|
|
|
|
|
|
|
|
|
|

Figure 5.16: Construction of a Reactionary application.

| :Management_Subsystem | | a:Decisionary | | b:Decisionary |
T T T

Sensor : : :
SUbS}’Stem Message (data) > l Message (data) - : :
| Message (data) - !
|
i DA U
! .- - - - - SR R ‘
! \
! I
! I
! I

Figure 5.17: Message-passing from the Sensor Subsystem to the Decisionary
applications.

Transmit /receive messages

The Management Subsystem is responsible for all the message-passing within
the Sulawesi architecture. This is handled via a broadcasting mechanism which
enables all Decisionary applications to receive information from the Sensor Sub-
system and other applications. The sequence diagram in figure 5.17 shows the
Sensor Subsystem as a UML actor, but this could be substituted by an applica-
tion/service sending a message. The Reactionary applications do not receive any

messages as it is not known when the application will be constructed, therefore

116CHAPTER 5. SULAWESI, A CONTEXTUAL USER INTERFACE FRAMEWORK

the messages cannot be guaranteed to reach this type of application.

Process commands

It is interesting to note that figure 5.16 also shows the sequence diagram for the
Reactionary application command processing: the command is decoded and
the corresponding application is constructed. The Reactionary application is
passed the command on construction and then proceeds to process it. The
application signals back to the Management Subsystem when the command has
been completed, at which point the application is destroyed. A Decisionary
application, on the other hand, will be sent a message containing the command
for it to process. When a Decisionary application has finished it signals back
to the Management Subsystem that it has completed the command. figure 5.18
shows the sequence diagram for this, note that the Decisionary application is

not destroyed in this case.

i :Management_Subsystem a:Decisionary
I I

|
Corrllmand Command() !

|
|
Decode_Command() |
|
|
|

Process
Command() »— Command()

|
|
|
|
|
|
|
|
|
|
|
|

Figure 5.18: A Decisionary application processing a command.

5.4 Sulawesi implementation

The realisation of the Sulawesi system and the class structure of the implemented
system can be seen in figure 5.19. It is written using the Java 1.1.x programming

language, and this section provides a detailed description of the internal subsys-

5.4. SULAWESI IMPLEMENTATION 117

tems. It can be clearly seen that the two types of applications, Reactionary and
Decisionary, have their own separate interfaces, and in some cases are treated
differently depending on the circumstances. This chapter concentrates on the
main Sulawesi components, while the next chapter details the sensors, renderers

and applications that have been constructed using this architecture.

Sensor |1 1] Management |1 1] Renderer
Subsystem Subsystem Subsystem
1 1 1 1
Sulawesi
* * x *
<<Interface>>| |<<Interface>>| |<<Interface>>| |<<|nterface>>
Sensor Decisionary Reactionary Renderer
A Application Application A
- T _ -3~ __T__
1 | 1 1
1 1 1 1
' — . ! Third
Decisionary Reactionary
Sensor Application Application Renderer Fégé%

Figure 5.19: Class structure for the Sulawesi system.

5.4.1 Sentence structure

The use of look-up tables for natural language processing (described in section
5.2.2) inherently restricts the kind of sentences that can be used, but in a mobile
environment where the user is concentrating on another task it is unlikely that
the machine will be required to enter any lengthy dialogues with the user. It
has been speculated by the author that in the mobile environment the types of
functions that will be performed will require a terse set of commands. This phi-
losophy has been used to design sentences that can be used within the Sulawesi
architecture. In order to create a sentence which can be understood by Sulawesi
the following rule needs to be adhered to:

[RENDER TYPE| [SERVICE NAME| [SERVICE ARGUMENTS]|

In practice the [SERVICE ARGUMENTS| are all the words that follow the

[SERVICE NAME]|. If no render type is specified then a default render type is

118CHAPTER 5. SULAWESI, A CONTEXTUAL USER INTERFACE FRAMEWORK

used.

For example: assuming an email service is available and a user needed to
send an email to Adrian, the following sentence would not work because the
arguments to the email service are be "about tomorrows meeting on agents”:

SEND ADRIAN AN EMAIL ABOUT TOMORROWS MEETING ON AGENTS

The email service will fail because it is not be able to determine who to
send the email to! With only a few minor modifications the sentence can be
rearranged so Sulawesi can interpret it:

SEND AN EMAIL TO ADRIAN ABOUT TOMORROWS MEETING ON AGENTS

In this case the arguments to the email service are "to adrian about tomor-
rows meeting on agents”. The adaptation of the sentence is still understandable
to a human, but it now allows the email service to determine to whom the email
should be sent, and the subject of the email.

The point which needs to be emphasised here is the ability to infer a meaning
from a relatively natural sentence rather than the user having to adapt to the

machine and remember complex commands.

5.4.2 Renderer look-up table

It is not practical to hard code all possible language transformations into a piece
of software. Apart from taking a long time, such a system would not be easily
adaptable to alternative situations.

The use of look-up tables provides an efficient way to enable a user to con-
figure the system with their own personal sentence preferences without having
to re-program or re-compile the sentence understanding code. Sulawesi knows
what the words “show” and “tell” mean by referring to the renderer look-up
table. The table is similar to the list shown below and is used to determine
which output channel a result should be sent to.

|1|SAY|SPEAK|

|2| TELL|SPEAK]|

5.4. SULAWESI IMPLEMENTATION 119

|3|READ|SPEAK]|

|4|SHOW|TEXT]

|5|DISPLAY | TEXT|

The first entry in the look-up table specifies that the first time the word
"say" is encountered in a sentence, the results of the service should be sent to

the "speak" output renderer.

5.4.3 Command buffer

Once a sentence has been decoded, the relevant information is entered into a
command buffer. This buffer, referred to as a “Batch” in the Sulawesi source
code, is constructed by the Management Subsystem and is passed between the
services and the renderers during the lifetime of the command. The command
buffer consists of a five element string array which contains the command, the
contents of which can be seen below.

Batch[0] contains the process ID, assigned by the servicemanager.

Batch[1] contains the service to invoke.

Batch[2] contains the arguments to the service.

Batch([3] contains the type of renderer to use.

Batch[4] contains the renderer arguments.

When a command enters the system, the command buffer is constructed
and passed to the relevant service. The service processes the command, on
completion the buffer is passed with the service results, via the Management
Subsystem, to the Rendering Subsystem. At this point the command buffer is

used to determine how to render the results from the service.

5.4.4 Command execution

In order to see the how a command is passed through the Sulawesi system, figures
5.20 and 5.21 provide flow charts showing the various stages in the lifetime of

a command. Observations of the chain of events provide an insight into the

120CHAPTER 5. SULAWESI, A CONTEXTUAL USER INTERFACE FRAMEWORK

system as the commands “could you tell me the news, the sports pages please”

and “could you show me my current location” are processed.

Speech
——Frecognition
st age
User "could you tell me the news,
the sports pages please"
Command
decoder
batch[0] = <int>
batch[1] = "news"
batch[2] = "sports pages"
batch[3] = "tell"
batch[4] = "null"
Create
. Servi ce Does
rghms. = No service
gi ster exi st 2
Yes
Start Processi ng
News:
process
command
Cet Cet
specified 9 r;$213;269 Yes >redirected
renderer ’ renderer
Render : Render
sports sports
news news

News:
renove
regi stration

Dest r oy

service

Figure 5.20: A Reactionary command being processed.

5.4. SULAWESI IMPLEMENTATION 121

Handwri ti ng
> recogni tion
st age

A\/

User " C
could you show ne ny | ocation

Command
decoder
batch[0] = <int>
batch[1] = "l ocation"
batch[2] = "nul "
batch[3] = "show'
batch[4] = "nul "
Send command
to service
sendMessage
Locati on:
process
nessage

Render

Get Cet
e L Render er .
specified - NO | odirect ed? > redirected
render er r ender er
Render : Render :
current current
| ocation | ocation

Figure 5.21: A Decisionary command being processed.

5.4.5 Management Subsystem

The Management Subsystem is responsible for the communication between the
sensor subsystem, the rendering subsystem, and the construction of the services
within the Sulawesi. Section 5.3.3 describes two types of application that can
be implemented within the framework. These two application types contribute

toward the different software interfaces defined within the architecture, namely

122CHAPTER 5. SULAWESI, A CONTEXTUAL USER INTERFACE FRAMEWORK

the Decisionary and the Reactionary interfaces.

The Reactionary interface

The Reactionary interface is very simple and provides only one method which
needs to be implemented, the startProcessing method. The instantiation and
registration of a Reactionary service results in the startProcessing method
being called by the Management Subsystem. The startProcessing method
provides a way for the Management Subsystem to signal to an application that
it can start processing a command. When the request has been completed the
application’s results are returned to the Management Subsystem which passes

the results on to the Renderer Subsystem.

«React i onary»
servicereaction.java
+servi ceType: String = servicereaction

+start Processi ng() L

Figure 5.22: The Reactionary interface.

An application which implements the Reactionary interface needs to include
some additional code within the constructor. As can be seen in the listing in
appendix B.1, the constructor needs to accept an object reference and an integer
priority level (line 13). Registration is then carried out and the name of this
application, the object reference, the type of service and an empty command
buffer are passed back to the Management Subsystem (line 18). The command
buffer is used by the Management Subsystem to pass a command to a application
upon registration. The final stage in the constructor is to set the application’s
thread priority (line 21).

After registration, the command buffer is filled out by the Management Sub-
system, which then calls the application’s startProcessing method, enabling
the application to process the command.

On completion of the command, the application needs to ask the Manage-

ment Subsystem to render the results (line 13). Finally, the application requests

5.4. SULAWESI IMPLEMENTATION 123

that its registration is removed from the system (line 47), and the Management

Subsystem then destroys the application.

The Decisionary interface

The construction and registration process in the Decisionary interface is similar
to the Reactionary interface and this can be seen in the listing in appendix B.2,
lines 13-19. The Decisionary interface also defines some other methods to allow
asynchronous communication between the application and Sulawesi.

When a Decisionary application is constructed (line 13) it registers itself
(line 19). If Sulawesi needs to send the application a command, there needs to
be a way of allowing it to be sent to the service. The getBatch method provides
a software call-back which allows the Management Subsystem to retrieve the
command buffer and place a request in it.

The recieveMessage method (line 33) allows the Management Subsystem
to pass messages generated from the Sensor and Renderer Subsystems into the
Decisionary application. If need be, the service processes these messages and
makes decisions based on the information received. The last method which needs
to be implemented is the className method (line 28) which simply returns the
textual name of the application. This is needed by the Management Subsystem

when trying locate and communicate with a specific application.

«Deci si onary»

- - - — servicedecision.java
+serviceType: String = servicedecision

+Cl assName(): String
+getBatch(): String[]
+r eci eveMessage(obj : Obj ect, Message: Stri ng)

Figure 5.23: The Decisionary interface.

Apart from the various methods which need to be implemented, a Deci-
sionary service needs to include a method called writeObject(line 45). This is
called by the Java Virtual Machine when the Management Subsystem serialises

the application when Sulawesi is closed down.

124CHAPTER 5. SULAWESI, A CONTEXTUAL USER INTERFACE FRAMEWORK

The ThreadManager class

The Threadmanager is responsible for maintaining a list of which applications
are present in the system, the application names, the object references and
the applications thread priority. Methods for adding and removing threads to
and from the hash-tables are provided via the addThread and removeThread
methods. The addThread method queries the application to find out its priority
level, and then the application is placed in the application hash-table. The
removeThread method, in contrast, removes a particular application from the
hash-table. In order for the Management Subsystem to find and send messages
to particular applications, the findObjects method is used to retrieve object

references from the internal hash-tables.

ThreadManager

+addThread(obj : Cbject): String threadmanager.iava
+r enoveThr ead(obj : Obj ect): String ger.)

+f i ndObj ect (cl assName: String): Object
+sendMessage(obj : Cbj ect, message: String, priority:int)
+pause(priority:int)

+unpause(priority:int)

Figure 5.24: The ThreadManager class.

In order to call the pause method in every Decisionary application, the
pause method is used to pause all applications in a certain priority group. To
complement this function the unpause method is used to resume previously
paused Decisionary applications. The sendMessage method is used to send a
message to every service in a certain priority level. The object reference of the
message sender is included in each message to allow the recipient to determine

where the message has come from.

If the Management Subsystem needs to shut down any running applications,
the serializeObjects method provides a mechanism to serialize all running
decisionary services to files on the disk. This is used to store any persistent

data that might have been present within the Decisionary applications.

5.4. SULAWESI IMPLEMENTATION 125
The ServiceManager class

The ServiceManager is the central point of communication for the Sensor and
Renderer Subsystems. The ServiceManager decides which messages are to be
sent and to where, it provides mechanisms for decoding the natural language
input streams and it is also responsible for the initialisation and destruction of

the applications within the architecture.

Message Process
i queue I queue

a) Command decoded and entered into the
message queue, application is started.

Message Process
l queue ! queue

b) Command retrieved by application and
moved to process queue.

Message Process
queue queue

c) Application finishes, command is moved
to the done queue.

Done
queue

Command

Done
queue

Figure 5.25: The message queue transitions.

The ServiceManager is initially constructed by the Sensor Subsystem, and
after construction all the applications found are written to an internal configura-
tion table. The ServiceManager’s constructor argument is the object reference
of the Sensor Subsystem which is stored to allow bi-directional communications.

In order to pass natural language commands to the system, the ServiceM-

anager contains a DataIn method. The ServiceManager decodes the command

126CHAPTER 5. SULAWESI, A CONTEXTUAL USER INTERFACE FRAMEWORK

(as described in section 5.2.2), decides which application is being requested and
finally puts the command into the message queue file (see figure 5.25).

If the requested is for a Reactionary application then it is constructed and
passed the command. If, on the other hand, the request is for a Decisionary
application then a message containing the command is sent to that applica-
tion. At this point the Decisionary application retrieves the command from the
message queue. A Reactionary application will be given the command when it
calls the register method, passing its object reference to the ThreadManager.
A Decisionary application calls the getProcessBatch method to retrieve the
command.

In both of these situations after the command has been sent to the applica-
tion, the ServiceManager moves the data from the message queue to the process
queue file (see figure 5.25). When the application has finished processing the
command and the appropriate response has been created, the service calls the
remove method which initiates the moving of the command from the process to
the done queue file (see figure 5.25c). If the application is a Reactionary one,
the application’s object reference is removed from the ThreadManager’s hash

tables and the application is destroyed.

ServiceManager

+get Sul awesi Location(): String

+pause()

+sendMessage(sender: Cbj ect, nessage: String): bool ean

+r egi st er (nane: String, obj: Gbj ect, coomandBuffer: String[], serviceType: String):

% servicemanager.java

Figure 5.26: The ServiceManager class.

The use of message queues on the disk means that if the system suddenly
loses power, the state of the system can be determined by looking at the mes-
sages queues. A basic form of recovery can then be performed when the sys-
tem is restarted by analysing the message queues and performing simple string

searches. As messages only traverse the queues in one direction it is possible to

5.4. SULAWESI IMPLEMENTATION 127

determine whether the message is corrupt and whether to restart a particular
service. (although this functionality has not been implemented).

The pause method is used as a central point to pause and unpause all
applications within the architecture. It calls the pause and unpause methods
in the ThreadManager for each priority level.

The getSulawesiLocation method is used by the Sensor and Renderer
Subsystems to determine where the framework resides in the file-system, and
is also used to determine the location of the input and output directories for
native device drivers.

In order to close down the system nicely the shutdown method is used to save
the state of the services. When called, the Decisionary applications are paused
and serialised to disk. When the system is next started, any services which had
been previously stopped are un-serialized and allowed to resume their processing.
This mechanism provides a basic form of persistence processing between power
cycles.

The last, and probably the most crucial, method in the whole framework
is the sendMessage method. When any sensor or application needs to send a
broadcast message, they call this method supplying their object reference and a
string containing the message. The ServiceManager then sends the message to
all applications within the framework, with the exception of the sender of the

message.

5.4.6 Sensor Subsystem

The Sensor Subsystem is implemented as a two separate components. The first
component is the SENSORBASE interface (or INPUTBASE in the source code).
This provides a generic interface for third party sensors to implement and allows
enhancements to be made to the system without having to rewrite any of the
architecture. The interface provides a generic way for a sensor to be loaded and

controlled by Sulawesi. The interface, as seen in figure 5.27, defines a single

128CHAPTER 5. SULAWESI, A CONTEXTUAL USER INTERFACE FRAMEWORK

method called Query which allows the Sensor Subsystem to request data from

«l nput base»
Inputbase,java
+Query(): Object |—|:|

Figure 5.27: The SENSORBASE interface.

the sensor.

Although only one method is defined in the SENSORBASE interface, in prac-
tice a sensor which implements the interface needs to provide an additional
function. The following refers to the example sensor code in appendix B.3. The
constructor of each sensor has to accept a single object as an argument (see line
9). This argument allows the Sensor Subsystem to pass in its object reference.
The reference needs to be stored (line 11) as it allows the sensor to register (line
12) and to communicate asynchronously with the Sensor Subsystem. With-
out this code the sensor will not be automatically integrated into the Sulawesi
system.

The Sensor Subsystem (or Input Subsystem in the source code) provides a
centralised point for constructing all the sensors. On initialisation, the Sensor
Subsystem is constructed by the Management Subsystem which passes in it’s
object reference via the passInTheManagerPointer method. This allows the

two subsystems to communicate with each other.

Input | .
- I nput Hash[*]: | nput base nputjava
+Dat al n(Dat a: Stri ng)
+get | nput s()

+r egi st er (Nane: Stri ng, Obj Poi nter: | nput base)
+Pass| nTheManager Poi nt er (ser vi ceManager : Cbj ect)

Figure 5.28: The Sensor Subsystem.

When the Sensor Subsystem is initialised, the Management Subsystem re-
quests that the sensors should be loaded via the getInputs method. A list of
available sensors is then kept by the Sensor Subsystem in the SensorHash table.

After being loaded the sensors register themselves via the register method

and their object references are placed in the SensorHash table for later use.

5.4. SULAWESI IMPLEMENTATION 129

The Sensor Subsystem contains a DataIn method which allows a sensor to send
data or commands into the system. The Sensor Subsystem does not process the
data in any way, and all commands or data that are received by this method

are passed straight through to the Management Subsystem.

5.4.7 Renderer Subsystem

The Renderer Subsystem is implemented as two separate components similar to
the Sensor Subsystem. The RENDERBASE interface (seen in figure 5.29) is called
OUTPUTBASE in the source code, and provides a generic interface which allows
third party renderers to implement and enhance the system. The RENDERBASE
interface provides methods which allow a renderer to be loaded and controlled

by Sulawesi, and three methods exist which a renderer must implement.

«Qut put base»
Outputbase.java
+Render (Dat a: Stri ng) |—|—|
+Pause()
+Unpause()

Figure 5.29: The RENDERBASE interface.

The Render method is used to request that a certain piece of information
be output in some form. The pause method is used to pause the rendition
of a certain piece of information and the unpause method is used to resume
a previously paused rendition. All of these methods are called directly by the
Renderer Subsystem to control the rendition of information and not by the
applications directly.

As with the SENSORBASE interface, each renderer allows the constructor to
accept a single object as an argument (as can be seen in appendix B.4 line
9). The object passed in is the reference to the Renderer Subsystem. The
renderer stores this reference (line 11) and then registers itself with the Renderer
Subsystem (line 12).

The main part of the Renderer Subsystem, seen in figure 5.30, provides the

mechanisms for constructing the renderers. The Renderer Subsystem is also

130CHAPTER 5. SULAWESI, A CONTEXTUAL USER INTERFACE FRAMEWORK

responsible for the management of the available renderers. When a renderer
registers (via the Register method) the Renderer Subsystem stores the reg-
istering objects reference in the RenderHash table. This hash table is used to
determine which renderer is responsible for rendering which type of information.
The renderoutput method is used by the Management Subsystem to request
the rendition of a piece of information. When this happens the Renderer Sub-
system checks the RenderHash table to find the requested renderer, and then

the information is sent to that renderer to be rendered.

Output

- Qut put Hash[*]: Qut put base

+regi st er (Name: Stri ng, Obj Poi nt er: Qut put base)

+Render Qut put (Dat a: String, Batch: String[])

+get Qut put s()

+pauseRender s()

+r edi rect Render er (current Renderer: String, newRenderer: String)

: : Output.java

Figure 5.30: The Renderer Subsystem.

When the Management Subsystem needs to pause a rendition it calls the
pauserenders method. This results in calling the pause method of each renderer
in the RenderHash table. A subsequent call to the pauserenders method results
in the unpause method of each renderer in the RenderHash table being called.
This enables applications to be able to pause the rendition of information until
a more appropriate time.

The Renderer Subsystem also provides a mechanism to allow applications to
redirect a renderer via the redirectRenderer method. This enables renderer

redirections, explained in section 5.2.3, to be performed.

5.5. CHAPTER SUMMARY 131

5.5 Chapter summary

This chapter describes in detail the software architecture involved in implement-
ing what the author believes to be key functional requirements for a contextually-

aware mobile user interface system.

The Sulawesi architecture has been designed to explore the design and im-
plementation of a software framework for a contextually-aware user interface
system. To focus on individual components of Sulawesi, the design is split into
individual subsystems which can be developed independently of other compo-
nents, and by defining the format of data passed between these subsystems, the
message-passing system provides a consistent communication interface which
allows other subsystems and agents to receive and process information easily.
These systems have been split into three distinct groups, namely the Sensor,

Management and Contextual Rendition subsystems.

The Sensor subsystem is responsible for the initial registration and commu-
nication conduit for the external sensing devices. The Management subsystem
is the central conduit for message-passing between the Sensor and Contextual
Rendition subsystems. It is also responsible for the management of the agents
within the framework. Two types of agents paradigms have been accommo-
dated within the framework, namely the Reactionary and Decisionary agents
[17]. This allows one type to react to commands when instructed, while the
other makes decisions based on information from the Sensors and other agents

within the system, producing results when triggering criteria are met.

The presentation of information, or rending, is controlled by the Contex-
tual Rendition subsystem. This allows Decisionary agents to influence output

rendition type depending upon the agents perception of the environment.

Because this system has been has been targeted at mobile/wearable systems,
the author feels that the use of speech recognition and natural language is

important. The system allows rule-based sentences to command the agents

132CHAPTER 5. SULAWESI, A CONTEXTUAL USER INTERFACE FRAMEWORK

within the system. The sentences contain information about which agent should
be controlled, commands for that agent, and how the results from that agents
should be presented to the user. The author believes that these sentences are
easier to remember and dictate when in a mobile situation than the manipulation

of a complex user interface.

Chapter 6

Applications built on Sulawesi

6.1 Introduction

The Sulawesi framework allows applications to be constructed which explore
alternative user interfaces for mobile and contextually aware applications. To
test the viability and functionality of Sulawesi, two prototype applications have
been constructed with various sensors and rendition mechanisms. This has
enabled the author to start exploring alternative interaction mechanisms and
applications for mobile users.

The Sulawesi system described in the previous chapter only provides a frame-
work in which to develop alternative applications and interaction mechanisms.
This chapter details the applications, sensors and renderers that have been de-

veloped to demonstrate the capabilities and features of the Sulawesi framework.

6.2 Sensors

The gathering of some contextual information can be relatively simple, while
other contexts can be much more difficult to obtain. In order to provide the sys-
tem with information about the persons environment, three sensors have been
integrated with Sulawesi. These sensors provide raw data from which other

contexts can be determined. The simplest which has been explored by many

133

134 CHAPTER 6. APPLICATIONS BUILT ON SULAWESI

other people is the context of location, and two sensors which provide loca-
tion information are used. The third sensor is an accelerometer which provides
the system with acceleration information about the user. These sensors were
chosen because they were already available off-the-shelf, and this reduced the

development time.

6.2.1 Global positioning system

One of the location devices that has been used is a GPS receiver. The device
(a 12 channel Canadian Marconi Company Allstar receiver) provides an out-
door accuracy of approximately ten metres and communicates via a standard
RS232 serial port. A dedicated device driver' is responsible for the low level
initialisation of the board, and the data received are converted into Longitude,
Latitude and Altitude (LLA) coordinates. The LLA data are generated by the
driver once every second and a GPS sensor component broadcasts the data into

Sulawesi (see figure 6.1).

2

WEARABLE
+
< SULAWESI

lGPS:?ensor‘ lSensor_S‘ubsystem‘ lManagemer:t_Subsystenﬁ
| | |
_ | GetlLA 3 3
SendMessage(LLA) ' |
SendMessage(LLA) !

Send Message

‘ to all services

_ JcetlLag ‘ ‘

Figure 6.1: GPS generating LLA signal and being broadcast into Sulawesi.

!The Linux driver was written by David J. Johnson of the University of Essex.

6.2. SENSORS 135

This sensor allows the system to know where a person is on the surface of
the planet (with a few exceptions like the polar regions!). Unfortunately, GPS
only works outdoors, so when the receiver enters a building of any substantial
size the GPS signal is severely attenuated by the walls. In this situation the
positional information is lost.

The GPS receiver will still produce location messages based on its last known
position, but the positional errors introduced are roughly proportional to the
size of the building. For example; if a person walks in one end of a building and
out the other, the GPS error at the far end (before the user leaves the structure)

will be the roughly equal to the length of the building.

6.2.2 Infra-red

In order to overcome the indoor deficiencies of the GPS receiver, a second loca-
tion device provides location information inside a building with a small amount
of infrastructure [8, 70]. The Infra-red (IR) transceivers? are based on the MIT

locust with modifications to allow bi-directional data transmission.

Tl WEARABLE
) [
: e— SULAWESI
IR Transmitter IR reciever
| IR:Sensor | |Sensor_Subsystem| |Management_Subsysten’1
|

SendMessage(ID)

:l getiD() E E

E SendMessage(ID)

. I:IZI Send Message
. to all services
|

g GetlID()

Figure 6.2: Infra-red transceiver broadcasting an ID.

The device consists of a PIC microcontroller which encodes and decodes the

raw IR signal, and a MAX232 transceiver which allows the device to commu-

*Built by Panagiotis Ritsos of the University of Essex.

136 CHAPTER 6. APPLICATIONS BUILT ON SULAWESI

nicate with an external processor via an RS232 serial port. Each of the IR
transmitters are programmed to broadcast a unique identification number ev-
ery few seconds, and a physical location can be tagged (as defined by [55]) by
placing a transmitter at that location.

The transmitters are placed inside various rooms around the university. The
identification number is used as a form of location information, and with a simple
translation table it is possible to determine the rough location of the user from
the IR signal.

The IR receiver is connected to the wearable computer and transfers any
signal from the device to Sulawesi via a dedicated device driver. The identifica-
tion number is received from the IR device by a dedicated driver, and a Sulawesi

sensor broadcasts this information into the Sulawesi system.

6.2.3 Accelerometer

The use of a simple 2-axis accelerometer enables the system to gather informa-
tion about the user’s posture and is similar to the work of [18]. The physical
device is an Analog Devices adx1202. The author has placed this sensor on the
upper part of a persons leg, seen in figure 6.3, and when the user moves about
the sensor detects the acceleration values of the leg. The device connects to a
RS232 serial port and a device driver gathers the X/Y acceleration values once
a second and transmits this information into the Sulawesi framework. By posi-
tioning the accelerometer at the top of the leg it is possible to determine simple
contexts such as whether a person is standing up, sitting down or walking. This

is discussed further in section 6.6.

6.3. RENDERERS 137

ADXL202-Sensor Sensor_?ubsystem ‘Managemer]t_Subsystem
getID()

SendMessage(ID)

. SendMessage(ID) |
/I_,J _ 1 Send Message
! to all services

_ Jcetin)

/ ADXL202 accelerometer

Figure 6.3: The accelerometer worn on the leg.

6.3 Renderers

The renderers that have been developed convert the output from a service into
a format suitable for presentation to the user. The current services produce tex-
tual responses which can be easily converted into a visual or audible rendition.
The author has focused on the simple visual and audible translations in this

section.

6.3.1 Gili: A prototype wearable user interface

A prototype monocular Primary Task Interface has been constructed using the
observations of the head-mounted displays mentioned in chapter 4. A Virtual
I0? augmented HMD is used to project the user interface over the user’s physical

environment and one of the display panels on the head mount was removed to

31-O Display Systems LLC http://www.i-glasses.com/

138 CHAPTER 6. APPLICATIONS BUILT ON SULAWESI

make the system monocular.

As can be seen in figure 6.4 the user interface is coloured black and white.
It is analogous to the console-based systems in use by many wearable users and
the high contrast between black and white aids the visibility of the interface in
various lighting conditions. This enables a user to see through the interface with
as little of their vision obscured as possible. There are some questions about
whether using white text on a black background is the best way to proceed.
I believe that in a mobile situation the best option is to obscure they users
eye with as little light as possible, this means to provide a black background.
However, I do accept that this assumption has no scientific proof in a mobile

situation, and this question will have to be answered by others in due course.

Main Menu

App Menu

Main
Menu

Command Entry—l gase show me the time Hide Main Display

Figure 6.4: Gili user interface (Linux + Java).

While Gili shares some features with the console-based systems, the interface
is designed to allow multiple applications to share a work-space and to select
them easily using the current input devices. Although devised and developed
independently, Gili shares some characteristics with the GUI on EPOC devices
such as the Psion 5 with an independent application area and menu driven

commands.

The user interface has been designed for a lower than desktop graphical

resolution and colour depth. The interface uses 320 x 240 pixels (1/4 VGA)

6.3. RENDERERS 139

and allows grey scale displays such as the M1 to provide good contrast between

the black background and the white features.

Within the Gili interface the main graphical controls have been placed in
the users peripheral field of view; this enables a user to see through the main

panel of the display while performing other tasks.

A command entry box is positioned at the bottom left of the user interface
and a row of interactive menu selection buttons are positioned on the right hand
side of the interface. The four graphical buttons can be selected via dedicated
single key presses on the Twiddler. They have also been made as large as possible
to try and overcome the deficiencies in using the Twiddler to select small targets
(as described in section 4.10) should this be required. The menu buttons also
provide early confirmation (as termed by McGlasham et al. in section 2.3) via
visual feedback, flashing in “reverse video” for a short period of time when they

are selected.

| Hidden Applications |
App 3 ‘ the tirme ; Main Menu
App 2 |
App 1
App Menu
Visable Application

12 the time Hide Main Dis

Figure 6.5: Stacked applications.

The main panel allows multiple applications to inhabit the user’s foveal
field of view. This mechanism allows applications to be stacked with only the
application at the top of the stack being visible (see figure 6.5). The menu
buttons provide a mechanism to raise and lower applications on the stack. The

menu in figure 6.5 shows a Next button which is used to rotate the applications

140 CHAPTER 6. APPLICATIONS BUILT ON SULAWESI

on the stack. This results in a previously hidden application becoming visible.
The menu also shows a Main Menu button which does not change. Pressing
this button will return to this initial menu.

The menu selection mechanism is designed to be out of the user’s foveal view
and is accomplished by placing the menu to one side of the Gili interface. When
an application is at the top of the stack it can override the bottom three menu
buttons. The overridden buttons are activated by pressing the App Menu

button and results in the application menu becoming visible (see figure 6.6).

Main Mehu

Figure 6.6: Notes application menu (Windows + Java).

The last part of the graphical display is perhaps the most valuable for a
mobile user interface. The Hide Main Display button enables the main panel
to be turned on and off. This provides a mechanism which allows a user to
free up the main panel of the interface and it also provides software hooks
which allow a Sulawesi application to blank the main panel if it decides that the
situation calls for it. This is achieved by calling the pause method in the Gili
Interface code.

The Gili user interface provides an API to allow applications to integrate
with the buttons and main panel of the Gili interface. Figure 6.7 shows the
software interface. The setup function is called when the application is first
instantiated. The application then contacts the ServiceManager, retrieves the
Gili object reference and registers with Gili. Once this has been achieved, Gili

can then interface with the application. When the application is in focus (i.e.,

6.3. RENDERERS 141

at the top of the stack) Gili invokes the focused method of the application.
Here the application can override the names of the buttons by defining them
in the userButtonXname methods (where X=1,2,3). When a button is selected,
Gili passes the event onto the userButtonXpushed method and the application

processes this event.

Others have commented that the use of textual buttons may not be the
easiest solution in a mobile environment as the time taken to read and identify
which button to press may be longer than the identification and selection of a
graphical icon. Again, the author recognises that the use of graphical icons may
indeed be a better solution, but has no scientific proof to suggest this would
be the case in a mobile situation. Further work would need to be performed to

confirm this assumption.

<<gui base>>

+set up()
+f ocused(bl: Button, b2: Button, b3: Butt on) guibase.java
+userButtonlnane(): String ’
+user Button2nane(): String

+userButton3nane(): String

+user But t onlpushed(b: But t on)
+user But t on2pushed(b: But t on)
+user But t on3pushed(b: But t on)

Figure 6.7: Gili application interface.

This mechanism allows several application to inhabit the same physical area,
but only the application in focus can be controlled by the user through Gili. It
is possible to control applications by other means such as speech and this is

discussed further in section 6.7.3.

The Gili graphical interface, while simple in it’s construction fulfils some
of the outlined requirements for a mobile graphical interface defined in chapter
2. Namely, the simplicity of the interface to reduce clutter, the use of a sim-
ple menuing system to overcome pointing and selection tasks, the use of high
contrasting colours (although black text on a white background may be easier

to read, a dedicated application area, and a user interface which is controllable

142 CHAPTER 6. APPLICATIONS BUILT ON SULAWESI

via point & click operations as well as speech and direct manipulation through
dedicated keys. Unfortunately, due to time constraints, the interface has not un-
dergone an empirical study to confirm the acceptability of this layout. However
a simple task involving four people was undertaken. Each participant was asked
to navigate along a series of corridors with the monocular immersive HMD first
displaying the a graphical desktop interface (standard Windows 98 desktop with
no applications open), and then the Gili graphical interface. At the end of these
simple trials each person said it was far easier to navigate and perform their
walking task with the Gili interface. While no actual manipulations of either
interfaces were performed, the indication is that the Gili interface is a easier to

view when performing other tasks.

6.3.2 Text renderer

The simplest output renderer which has been created is one that displays basic
ASCII text. As all of the services that have been developed within the Sulawesi
framework produced a textual result this seemed appropriate. A visual text ren-
derer has been developed and integrated within Gili (see figure 6.8), and allows
any Sulawesi service to display a textual response via the Gili user interface.
The figure shows the user asking to be shown the time, and the response being

displayed in the text renderer inside the Gili interface.

6.3.3 Speech generation

The textual results produced by the Sulawesi services can also converted into
speech using various text-to-speech methods and off the shelf software has been
used to speed up the development time.

The simplest method for speech synthesis simply passes the text string to the
Rsynth* program and, although fairly crude in its rendition, Rsynth produces

a quick and understandable response.

*http://wwwtios.cs.utwente.nl/say/index.html

6.3. RENDERERS 143

App Menu

¢ tre the time Hide Main Dis

Natural
language Renderer A
\ processor /
; Renderer B
@ = Sensor Subsystem \ I Contextual —

Management Renderer

/ Subsystem \

(oloo)

Applications

Figure 6.8: Gili and Sulawesi.

The next method uses IBM’s ViaVoice® software and the Java Speech API®
to produce a spoken output. Although the rendition is clearer than the Rsynth
program, the ViaVoice implementation available for Linux (the authors devel-

opment platform) was unstable at the time of development.

The last speech renderer uses the Festival [1] software from the University of
Edinburgh. While this method produces the best sounding speech in comparison
to Rsynth and ViaVoice, the software is more processor intensive than the other
two systems and this resulted in a much slower response on the (rather slow)

wearable computer used for this work.

*http://www-4.ibm.com/software/speech/index.html
®http://www.alphaworks.ibm.com/tech/speech
http://java.sun.com/products/java-media/speech/index.html

144 CHAPTER 6. APPLICATIONS BUILT ON SULAWESI

6.4 Commanding the machine

As described in section 5.2.2, Sulawesi can accept commands in the form of well
crafted sentences. There are currently two ways of entering these sentences.
The first is via the Gili interface. Using some form of keyboard it is possible
to enter a command via the GUI, but in practise the keyboard input is mainly
used for demonstration and testing purposes because it is much slower trying

to type a sentence with the Twiddler in the real world.

The second way to enter a command is via a speech recognition system. A
Sulawesi speech recognition sensor has been implemented and allows sentences
to be transferred into the system. The speech recognition sensor uses IBM’s
ViaVoice software and the Java Speech API to translate the spoken words and

sentences into commands that Sulawesi can understand.

Once the sentence has been entered into the system, Sulawesi processes the
command and an agent produces a response. If the results are sent to the text
renderer, they are displayed in the main panel of the Gili interface. This can be
seen in figure 6.8, where the sentence “please show me the time” produces “the
time is 2:36” via the text renderer in the Gili main panel. The code in appendix
C.1 describes the reactionary time agent. The basic code is similar to the
example code give in section 5.4.5, with the construction and registration of the
application defined in lines 19-28. The main processing part of the application
is specified in lines 32-59 inclusively, here the application retrieves the time
from the system (line 34), formats the time for the correct timezone (lines
36-41), strips off the trailing seconds (lines 47-50). Once this past this stage
the representation of the time is in a sufficient format for rendering, here the
application requests the rendition of the time (line 54) and finally removes the

registration from the ServiceManager (line 58).

6.5. LOCATION I.A.L 145

6.5 Location I.A.L

The task of producing the location context for an application is explored here.
The raw longitude, latitude and altitude (LLA) coordinates from the GPS re-
ceiver can be stored by any application receiving messages from Sulawesi, such
as a note taking application. In this example when a note is saved it stores
the position of the user. Recalling the note would reveal the location that the
note was first stored, this may be useful in triggering the users memory into
remembering the situation when the note was saved. This is similar in concept

to the work of [37].

Appl i cation

Locati on
Message

Location |.A. L

Raw
Dat a

GPS | R ot her

Figure 6.9: Location [.A.L.

It may be almost impossible for a user to remember where on the planet a
particular LLA position corresponds to. If the LLA information is abstracted
into a user definable place name it is easier for the user to understand and
relate to. For example, if the note application revealed that a note was stored
at Unigversity of Essex this may be a bit easier to understood rather than if the
note was stored at LLA point 52.5°,0.34°, 3.4°

The location I.A.L. is responsible for providing seamless location messages
to applications. Inside a building the IR sensors are used to locate the user, and

outdoors the GPS sensor is used for positional information. The location I.A L.

146 CHAPTER 6. APPLICATIONS BUILT ON SULAWESI

can accommodate as many location sensors as are needed. This can increase
the accuracy of the positional information available, but it will also increase the

complexity of the internal logic used in determining where the user is.

Location:Decisionary :Management_subsystem

|
Sensor |

getLocation(data)

I

|

I

»> I
recieveMessage(data) I
I
|
|

sendMessage(Locati on)

| gi=

send message to
all services

Figure 6.10: Location I.A.L. sequence diagram.

The location I.A.L. transparently decides which signal should be translated.
If the user is inside a building, the GPS signal is lost and the sensor stops
producing coordinate data. When this happens, and messages are received
from the IR sensor, the location I.A.L. uses the IR data to generate the desired
location messages. These messages are then broadcast to all the applications
within Sulawesi. The converse is true when the IR signal disappears and the
GPS signal is received: the location I.A.L. generates location messages based
on the GPS signal.

Once the location I.A.L. has received data messages from a sensor, it trans-
forms that data into an abstracted location name via the use of a look-up table.
In this implementation each sensor has a separate look-up table and once the
translations have occurred the Location I.A.L sends a location message to the
Sulawesi system. The location messages contain a simple string. The name of
the I.A.L is included to enable an application to identify where the message

came from. A example message from the Location I.A.L would contain the

6.5. LOCATION I.A.L 147

string “Location: University of Essex”. Here, the colon is used to delimit the
name of the application that sent the message from the physical location.

In this case it is clear that the decision logic to determine which sensor
is producing correct location messages is fairly trivial as the two sensors are
effectively mutually exclusive. More advanced sensors and complex decisions
can be made if the errors from each sensor are available.

This mechanism of choosing the right sensor at the right time enables devices
to appear and disappear without any disruption in the location messages as far
as the applications are concerned. Also, the design and implementation of the
[LA.L. allows other forms of positional information such as pico-cellular devices
[67], RF id tags, mobile phone cells, or even a visual identification marking

system such as fiducals [74] to be easily incorporated into the system.

6.5.1 GPS location translation

Each of the sensors send raw coordinate data to the location I.A.L. If the data
are from the GPS receiver, a translation table is used to convert the LLA point
to a more meaningful place name. The translation table contains the names
of known locations which have been stored beforehand along with their LLA
positions. The distances to the various places are calculated and if the location
of the user is within the defined radius of a particular location then it is flagged as
the location of the user. The name for the location is then used as the abstract
place name. A graphical representation of these translations can be seen in
figure 6.11. The translation table is stored in an easily configurable text file.
An entry from the file consists of an identifying number, the LLA coordinates,

the place name and the cell radius (kilometres) from the LLA point (degrees).

148 CHAPTER 6. APPLICATIONS BUILT ON SULAWESI

B ll' |
_. - i —— The Shops
% _~ University of Essex

ID| LLA (degrees) | Name Radius (km)
110.9451.879.73 | University| 7

of Essex
2 0.23 52.74 9.73 | The Shops 05
311.5349.839.73 Home 0.1

Figure 6.11: Map showing locations and cell radii.

6.5.2 Infra-Red Location Translation

When the user enters a location with a IR beacon, a handshake transfers the
unique identification number to the receiver. This ID is then looked up in a
similar table used for the GPS translations. As can be seen below, an entry
in the file consists of an identifying number (for internal indexing), the unique

location ID and the abstract place name.

|1]55|Vase Lab]|

Once the location has been translated, the location I.A.L. broadcasts a location
message containing the place name to the applications within the Sulawesi sys-
tem. By using simple text files for the translation tables, the user can modify

and allocate different place names to the locations.

6.6 Posture I.A.L

The posture I.A.L. works in a similar way to the location I.A.L. in that it ab-

stracts the contexts of walking, sitting down and standing up from accelerometer

6.6. POSTURE LA.L 149

data. The contexts are determined by analysing and recognising various pat-
terns in the accelerometer data. As mentioned in section 6.2.3, the sensor is
placed on the upper part of the leg (see figure 6.3) and produces X and Y data
streams with patterns that vary depending on the user’s posture. The sequence

diagram for the Posture I.A.L can be seen in figure 6.12.

Posture:Decisionary :Management_subsystem

|
Sensor |

I

|

! |
> arse(data !

recieveMessage(data) ﬁ () |

|

|

|

sendMessage(Post ur e)

i T=

send message to
all services

Figure 6.12: Posture [.A.L. sequence diagram.

As can be seen in figure 6.13, the X and Y traces in the top image are
produced when the user is sitting down. When the user stands up the traces go
through a transitional period and settle with the X and Y traces in the opposite
position when compared to the seated trace. The orientation of the sensor is
used to determine whether the user is standing up or sitting down, but one more

important piece of information is inferred when the user is standing up.

The standing up context is further analysed by taking the Fourier transform
of the data. If the user is standing up, the amplitude of the Fourier transform
reveals a relatively small amount of power in the signal. But if the user starts to
walk, the amount of power present in the signal increases. The X and Y traces
in the bottom image of figure 6.13 show the variation in the signal as the user

walks about.

The difference in power between the standing up signal and walking signal

150 CHAPTER 6. APPLICATIONS BUILT ON SULAWESI

is quite large and a simple threshold is used to determine whether the user is
standing up or walking. This calculation is performed once a second and the
[.A.L. sends posture messages containing the context to all services within the
Sulawesi framework.

The posture messages contain a simple string. The name of the I.A.L is
included to enable an application to identify where the message came from.
A example message from the Posture I.A.L would contain the string “Posture:
standing up”. Here, the colon is used to delimit the name of the application
that sent the message from the user’s posture.

As can be seen from appendix C.2, the class definition on line 7 states that
this is a decisionary application. The constructor (lines 24-32) handles the
registration of the service with the ServiceManager. After this, the application
waits until a message is received via the recieveMessage method (line 50). If the
message starts with the string “ADXL” (meaning it is from the accelerometer
code, see line 52) the message is parsed (line 56) and the correct posture is
broadcast around the Sulawesi system (line 59). Also at this stage, if the posture
message is a standing up message, then the posture I.A.L. diverts any textual
responses to a spoken renderer (see line 63). If the recieveMessage message does
not start with the “ADXL” string, then the current posture perception is output
(see lines 70-89).

6.6. POSTURE LA.L 151

ar real-tie data scroller by Neill Newman {njnewm@e ssexac.uk}

ADXL202-EB

Transmon from
sitting to standing

’R

Figure 6.13: Diagram of accelerometer data when sitting, standing and walking.

6.6.1 Contextual rendering based on posture

The simple accelerometer that gathers information about the user’s posture may
be interesting from an academic point of view, but it is not very useful for the
end user to be told whether they are standing up or sitting down! However,
the information about the user’s posture can be used by the Sulawesi system to

determine how best to render information to the user. If the simple assumption

152 CHAPTER 6. APPLICATIONS BUILT ON SULAWESI

that when a user is walking 1t would be a bad idea to produce any visual distrac-
tions is taken into consideration, the system can be set up to divert any visual
responses to an audible rendition automatically.

The system implemented means that, when the user is standing up or walk-
ing, the posture [.A.L. contacts the contextual renderer and requests that any
visual responses are to be redirected to an audible rendition. It also contacts
the Gili interface and requests that the main panel should be hidden.

In practice this results in the following functionality: if a user is sitting down
and asks to be shown the sports news, the framework renders the information
as text via the Gili interface as expected. Conversely, if the user is walking and
asks to be shown the sports news, (see section 6.7.1) the contextual renderer will
divert the visual response to an audible rendition. This way Sulawesi appears

to try not to distract the user from their primary task.

6.7 Applications

6.7.1 News

The News service demonstrates Sulawesi’s sentence processing and output redi-
rection mechanisms. The service is a reactionary agent and only responds when
it receives a command such as “could you show me the news, the slashdot head-
lines please”. The command is parsed by Sulawesi which extracts the rendition
type “show” and the service to invoke “news”. The rest of the sentence after the
“news” keyword is then placed in the service arguments section of the command
buffer. The news service retrieves it’s arguments from the command buffer and,
in this example, gathers the headlines from the slashdot (an technology based
Internet portal) news feed. The headlines are then parsed and the results are
sent to the contextual renderer.

The News service uses a configuration file called news.cfg to define the lo-

cation of the news feed file. An example of an entry from news.cfg can be seen

6.7. APPLICATIONS 153

below:

|slashdot|http://www.slashdot.org/slashdot.rdf]

The URL in the configuration file refers to an XML based RDF7 file, and a
sample file from the slashdot feed can be seen in appendix C.3.

As seen in the class definition on line 8 in appendix C.4, the News application
is a reactionary service. The application is constructed and registers itself on
lines 28-37. Once registered, the ServiceManager calls the startProcessing
method on line 41. This method reads in the configuration file (line 44), this calls
the createNewsArray (lines 111-154) method that creates an array containing
the name/URL pairs found in the news.cfg file. Next the array is checked to
see if the arguments to this service (held in batch[2] on line 56) match the
name section of the array. If a match is found then the URL is stored as the
particular news feed (line 57) to be downloaded. The site is then searched by
calling the SearchNewsSite method on line 62. The retrieval and rendition
request is handled in the SearchNewsSite method (lines 68-107), where the
RDF file is retrieved (line 80) and parsed (line 90). The results are then sent to
the ServiceManager to be rendered (line 106).

At the time of writing this type of file is used by thousands of Internet sites
for publishing news headlines. When the news service is invoked, the relevant
information is retrieved from the Internet. The information is parsed and the
current headlines are sent to the contextual renderer. This results in the correct
information being relayed to the user in an appropriate format depending on

what the user is doing.

6.7.2 Spatial reminders

The chronological schedulers found in nearly all electronic diaries and PDAs

provide reminders which are triggered by the date and time. This is particularly

"http://www.w3.org/RDF/index .html

154 CHAPTER 6. APPLICATIONS BUILT ON SULAWESI

useful in that the machine volunteers information when it detects a triggering
event. In a similar way, the Spatial Reminder is designed to provide location-
specific reminders which are triggered by the spatial position of the user. This
requires that the application constantly monitors the user’s location and makes
decisions based on its perception of the user’s position. For this reason the
Spatial Reminder is implemented as a decisionary application to allow it to

constantly monitor the user’s location.

and milk

App Menu

.:- I:I rl.l E- tl r- E- .a Ij m

Hide Main Displaw

Figure 6.14: Spatial reminder after being triggered by a location.

The Spatial Reminders can be used for many different tasks, but the author
originally wrote the software with an autonomous shopping list reminder in
mind. A Spatial Reminder is set using a simple phrase such as When I go
to the shops could you remind me to get some bread and milk. The location
I.LA.L. provides the abstract place name and when the user enters the area of
the shops the Spatial Reminder sends the reminder to the contextual rendering

stage, resulting in the information being relayed to the user (see figure 6.14).

The Spatial Reminder code, found in appendix C.5, is a decisionary ap-
plication (as seen in the class definition on line 8). The application is con-
structed and registers itself on lines 32-44. On construction the application
calls the setupReminder method (line 43) which initialises an array of abstract

place names and absolute locations (lines 164-223). Once this has happened the

6.7. APPLICATIONS 155

Spatial Reminder waits until a message is passed into the application via the
recieveMessage method on lines 54-78. If the message is a command from the
user, such as remind me to get some bread from the shops, the startProcessing
method is called from line 76. This method stores the reminder and location
name into a hash table (lines 88 - 115). The other message which the Spa-
tial Reminder responds to are generated by the Location I.A.L. and when these
messages are received, the reminders are checked by calling the checkReminders
method on line 72. This checks the location specified by the Location I.A.L.
messages with the hash tables, if a match is found (line 141) then a response is
generated (line 144) and it is sent to the ServiceManager to be rendered (line

163).

6.7.3 Notes application

The notes application provides a user with the ability to compose, save and
restore previous notes. The functionality required by the notes application is
more complex than the other applications so far described, and has therefore
been integrated with the Gili API. This has given the author an idea as to what
application support is needed to control the application via alternative methods
such as speech. The source code for the Notes application can be seen below.
The graphical control of the Notes application is manipulated through the
Gili interface, and this is why the source code is considerably longer than the
previous source code listings. The application code (found in appendix C.6)
overrides three buttons when the APP MENU is selected on the Gili interface.
These three buttons are defined on lines 220 — 231 inclusively. The application
implements the userButtonXpushed interfaces starting on lines 236, 269 and
315. This allows the events from the interface to be passed through to the
application. In the notes application these buttons refer to the SAVE, QUERY,
and LIST buttons seen in figure 6.6. The SAVE method stores the currently

entered note to a file on the disk, and the LIST method lists the stored notes.

156 CHAPTER 6. APPLICATIONS BUILT ON SULAWESI

The Notes application has also been integrated with the Remembrance Agent
[13] and when a note is stored it is indexed by the RA, this can be seen on lines
254 and 338. The QUERY method (lines 266 — 308 and 376 — 405) allows the
previously saved notes to be searched by querying the RA, with the results being

sent to the relevant rendition mechanism (see lines 306 and 405).

The Notes application also provides a speech controlled interface. Through
the Sulawesi system, the application can receive a message containing a com-
mand. This command is processed in the recieveMessage/parseMessage meth-
ods on lines 69 and 76. The keywords save, query and list are searched for, and
the save, query and list methods on lines 330, 357 and 374 are invoked. When
these methods have completed they return their results to the service manager

for rendering, rather than directly to the Gili interface.

6.8 Chapter summary

The use of an adaptable software framework has assisted in reducing the devel-
opment time associated with creating an alternative contextual user interface
and applications, and it also ensures consistency, essential in a user interface
system. While the original development of Sulawesi took many months, the
applications and sensors discussed in this chapter each took less than a week to

develop.

The use of multiple sensors and the I.A.L. allows a hybrid sensor to be devel-
oped independently of any other systems and forces the developer to focus their
concentration on the single component, message passing and documentation
of the sensor. The Location I.A.L. demonstrates a seamless indoors/outdoors
hybrid sensor providing the context of location and, although crude in its im-
plementation, the example highlights the benefits of a system which can make

decisions based on several different physical sensors.

The use of an accelerometer allows the author to investigate the potential

6.8. CHAPTER SUMMARY 157

uses of a mobile contextual user interface. Although evidence is not included
here, initial observations suggest that giving the machine a basic understanding
about what the user is doing can have an effect on how the user perceives the
user interface. If the wearable computer is to become ubiquitous in everyday
life it must be able to adapt to the users situations. For example, if a mobile
phone had enough “intelligence” to know when a user is talking to somebody, it
may be seen as “more intelligent” if it muted the annoying beeps and vibrated
instead, diverted the call to an answer phone service, or even answered the call
and said “Fred is talking to somebody, can you either leave a message or phone
back in 5 minutes”. This type of intelligent user interface can be developed
easily using the Sulawesi architecture as in the previous example where the GUI
is automatically muted, all visual requests are diverted to an audible response
when the user starts walking. The benefit here is that when the user is walking,
the display is “muted” so as to not distract them. The author believes that this
is a crucial part of any mobile user interface: it should assume that the users

primary task is mot controlling the machine.

The Gili user interface has been designed around the limited cursor control
available with the Twiddler, and the menu buttons have been made as large as
possible without taking up too much screen real estate. The main panel of the
Gili interface allows applications to take control of this area, but they are still
under the control of Gili and, if an I.A.L decides the visual display should not
be viewable, the main panel can be visually muted. This allows the user to see

through the main panel and focus on their primary task.

The notes application provides an insight into how an application can be
integrated with the Gili interface, and also how a third-party application, such
as the Remembrance Agent, can be incorporated into the Sulawesi architecture.
It also demonstrates how a simple application within Sulawesi can tie into other
information sources, such as location, to gather addition information about

where the note was stored.

158 CHAPTER 6. APPLICATIONS BUILT ON SULAWESI

The last application is the Spatial Reminder application which can alert the
user when a certain location is entered or exited. The system also demonstrates
the use of agents providing information to the user autonomously. While no
quantitative claims are made, the feedback from people who have seen Sulawesi
in action has been sufficient to convince the author to speculate that this ap-
proach has much promise.

This chapter also demonstrates how some of the applications are controlled
by the careful construction of seemingly natural language sentences. It is spec-
ulated that this type of command may be easier for the user to remember. The
author also feels that a coherent well-documented system will aid in the research

and development of applications/user interfaces for alternative platforms.

Chapter 7

Conclusions & Further Work

7.1 A critical appraisal of Sulawesi

The aim of this research was to explore context-aware and multi-modal issues,
because of this the individual components of the system are fairly simple in
their implementation. The interfaces and applications provided by Sulawesi are
by no means fully developed, and the author believes that a significant amount
of work is still needed in the area of contextual interfaces for mobiles devices.
Also, the author feels that, while the design of the Sulawesi architecture includes
enough features to demonstrate simple prototypes and the internal architecture
is fairly solid, it is clear that there are features of the system that had been

overlooked in the implementation.

7.1.1 The overall architecture

The basic premise that messages within the architecture would propagate with-
out delay and in the correct order may limit the ability to scale the system to a
large number of sensors/renderers. This may be resolved by placing time-stamps
within the messages, in a similar way to sequence numbers on Internet Protocol
(IP) packets. This would increase the complexity of the management subsystem

as the message buffer will need to store up message requests, sort them based

159

160 CHAPTER 7. CONCLUSIONS & FURTHER WORK

on time stamps, and periodically send them in the correct order.

Another problem with the message passing system is due to the use of strings
as messages. This means that the system is not as efficient as it could be. The
author acknowledges that this problem will also affect the ability to scale the
system, and proposes that a more efficient form of message passing, perhaps
using binary representations, should be explored in any further work.

The semi-natural language processing capabilities also leave a lot to be de-
sired. If any speech processing or natural language experts read this document
I am sure they will cringe at the way in which Sulawesi decodes the sentences.
There are obvious limitations with the way applications can be controlled us-
ing these types of single-sentence commands. For example if a note was to be
stored via the speech input mechanism, a single sentence might not be sufficient
to distinguish between the note to save and the command to save it. The au-
thor proposes that there would need to be a specific word/command to switch
between dictation and command modes in order to save the dictation.

These common speech recognition and dialogue processing questions are
not currently addressed or implemented in this work, although these issues are
currently being looked at by various research groups.

The method of passing commands in the batch array could be improved by
providing a method interface to the data. It is also believed that the method

interface would increase the legibility of the source code.

7.1.2 Input

The Speech input component of Sulawesi is less than satisfactory. At the time of
writing the speech input code, the IBM speech recognition software available for
Linux was a little difficult to get working reliably. The work in getting reliable
speech recognition code was postponed due to too much time being taken in
trying to get speech recognition working reliably. In the two or so years since

the code was written, the processing power available and the maturity of the

7.1. A CRITICAL APPRAISAL OF SULAWESI 161

speech recognition software leads the author to believe that there are now more
robust systems and APIs available for the speech recognition development, and
the speech input component of Sulawesi may be out of date and clumsy in its

implementation.

While the author speculates that in most circumstances the use of speech is
preferable, there are some situations where using the Twiddler may be advan-

tageous such as typing a command when in a library.

7.1.3 Renderers

Context switching depending on the user’s circumstances opens up a whole
plethora of questions. Which contexts would be suitable for a particular ren-
dition type is open to debate: the author believes that different people will
use different renditions in different circumstances, and therefore a predefined

collection of context types and situations may not be achievable.

However, the author considers that there are certain situations where a par-
ticular type of rendition is not acceptable. The thesis commonly refers to a
visual rendition being unacceptable when a person is driving a car. Perhaps in-
stead of defining which rendition types are suitable for situations, the converse

should be explored.

There will be certain application rendition types which will be impossible to
redirect to an alternative rendition type, such as a visual map being redirected

to a speech rendition.

The author is unsure how to handle some of these eventualities, should
the map display be paused until a later time, or should a crude and possibly
inaccurate conversion to an alternative rendition type be applied to give the

user the information at the right time?

162 CHAPTER 7. CONCLUSIONS & FURTHER WORK

7.1.4 Applications

The design of applications currently uses one form of input modality at a time,
i.e., if one starts to use a visual input stream to control the application, then one
must continue to use that input stream until the application has completed the
task it was asked to do. But the core of the Sulawesi architecture uses several
streams of information to determine how the information should be presented
to the user, such as the posture IAL (in section 6.6) altering the rendering

subsystem.

Ideally the application should be controllable from several different streams
and should be able to switch from a spoken input stream to a visual one on the
fly. Although this sounds complex, the author believes that it is not a difficult
task if the decision and tracking logic involved for the application are determined

beforehand.

The spatial reminder currently reads the location.gps file to determine place
names. This should really ask the Location I.A.L for these names, and an API
for exporting the names should have been coded. At the moment it works, but

it is not as extendible as it could be.

7.1.5 User interface

While the Gili interface provides some basic forms of feedback, such as providing
visual feedback for a spoken input. The author believes that although this basic
feedback works, it is by no means the best solution. A better solution may
be to repeat the command, and ask for confirmation from the user to proceed
with the command. The author feels that a lot more work, including user trials

would be required to make this system usable.

7.2. CONCLUSIONS 163

7.2 Conclusions

Van Dam provides an overview of the generations of human computer interface
design over the last fifty years [6], concluding that Human-Computer Interac-
tion (HCI) research stands still for long periods of time and is interrupted by
rapid changes. He also predicts that we are now approaching the “post-wimp”
phase in which speech recognition, natural language processing, smart agents,
machine vision and multi-modal systems will be the next major advance in the
human computer interaction systems. This work has investigated some of these
issues and has lead to the implementation of a multimodal framework systems of
the Sulawesi system. The system attempts to address the lack of any predefined
software framework and promotes the use of re-usable code through a well de-
fined object hierarchy. While the system does not explicitly investigate natural
language, machine vision or speech recognition, several examples are outlined
which provide an insight into how proactive contextual aware information agents

can be designed and used.

Unfortunately there are only a few people who are actively looking into al-
ternative user interfaces for mobile systems, and this leads to a lack of any
clearly defined development framework in which to experiment. The author has
identified this as being a major deficiency in the field, and the Sulawesi system
has focused on providing an architecture which may be used to investigate alter-
native application and user interface systems, from contextually aware mobile

applications to intelligent agents that respond to a mobile user’s requests.

The software has been released on the Internet for the past year or so, and
already the author has received over 200 download requests, with people using
the software to experiment with things that the author had never imagined. The
most bizarre, yet at the same time very interesting, use was by a researcher in
Florida who said he was going to use Sulawesi with a special sensor to detect and

decode the clicks generated by a dolphin! A simple application would then be

164 CHAPTER 7. CONCLUSIONS & FURTHER WORK

controlled by the animal and a response generated through an underwater sonic
rendition device. This single piece of work, while only described in an email,
has lead the author to feel that the goal of Sulawesi, to provide an adaptable
software framework for alternative applications, has succeeded.

At the start of the tests on the various wearable user interface devices, it
was clear that these devices were slower and more difficult in controlling any
kind of user interface. But until now there have been no formal evaluations
of the Twiddler in combination with a head-mounted display device. In the
analysis of the results the author has observed the possibility of binocular rivalry,
which has also been observed by [15]. This will have an effect on how the
future wearable/portable head-mounted displays will interact with future user
interfaces.

The author has also determined that the amount of control available with
the Twiddler device is not adequate for controlling a desktop user interface.
The design and integration of the trackpoint [71] in the Twiddler2 suggests that
HandyKey has identified that the liquid sensor within the device was inadequate.
The research by IBM! leads the author to speculate that the trackpoint will

increase the usability of this device.

7.3 Future work

Investigations into how a user interface should interact with the user in a mobile
environment needs much more exploration. The author has applied his own set
of guidelines and instincts as to how he would like the user interface to perform
and has applied these to the Sulawesi framework, but these may not be the same
issues striven for by others.

The author also believes that the wearable computer will have a transi-
tory existence: they will soon evolve into something different, such as a next-

generation mobile phone, or a super-PDA. However, the physical constraints

"http://www.almaden.ibm.com/cs/user/tp/tp.html

7.3. FUTURE WORK 165

and modes of use of these devices mean that the conventional desktop user in-
terfaces are inappropriate due to the amount of control needed to manipulate a
graphical selection device and manipulate graphical objects. Multimodal user
interfaces may be the best long term solution and by adapting the interface
through knowledge of the environment and the users context may give further
improvements. The issues involving speech recognition and natural language
processing are being actively researched today. But the unresolved issues sur-
rounding the understanding and grouping of contexts to certain situations, the
development of applications that can be manipulated by several different in-
terface devices and switched transparently, and the testing of such systems,

involves a huge amount of work which is not currently being looked into.

166 CHAPTER 7. CONCLUSIONS & FURTHER WORK

Bibliography

1]

2]

3]

[4]

[5]

(6]

7]

A. Black and P. Taylor. The architecture of the Festival speech synthesis
system. In The Third ESCA Workshop in Speech Synthesis, pages 147-151,
1998.

A. C. Downton, G. Leedham, P. Barnard, P. Johnson, H. Johnson, P. Jones,
S. Jones, B. Anderson, P. Boucherat, and G. Ashworth. FEngineering the

human-computer interface. McGraw-Hill, 1992.

A. Cheyer and L. Julia. Multimodal maps: an agent based approach. In
International conference on cooperative multimodal communication, May

1995.

A. Dey and G. Abowd. The Context Toolkit: aiding the development of
context-aware applications. In 22nd International Conference on Software

Engineering, 6 June 2000.

A. Smailagic and D.P. Siewiorek. The CMU mobile computers: a new
generation of computing systems. In International computer conference,

pages 467-473. IEEE, 4 March 1994.

A. Van Dam. Post-wimp user interfaces: the human connection. In Com-

munications of the ACM, volume 40,2, pages 63—67. ACM, February 1997.

A. Vardy, J. Robinson, and L-T. Cheng. The wristcam as input device. In

International symposium on wearable computers. IEEE, October 2000.

167

168

8]

9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

BIBLIOGRAPHY

Albrecht Schmidt and Hans-W. Gellersen. Enabling implicit human com-
puter interaction: a wearable RFID-tag reader. In 4th international sym-

posium on wearable computers. IEEE, October 2000.

A.R. Revels, L.L. Quil, D.E. Kancler, and B.L. Masquelier. Human in-
teraction with wearable computer systems: a look at glasses-mounted dis-
plays. In Conference on cockpit displays V: Displays for defense applica-
tions. SPIE, April 1998.

B. Crabtree and B. Rhodes. Wearable computing and the remembrance

agent. BT Technology Journal Vol: 16 No:8, July 1998.

B. Smith, L. Bass, and J. Siegel. On site maintenance using a wearable

computer system. ACM, CHI, pages 119-120, 1997.

B. Thomas, S. Tyerman, and K. Grimmer. Evaluation of three input mech-
anisms for wearable computers. Proceedings of the First International Sym-

posium on Wearable Computers, 1997.

B.J Rhodes. The wearable remembrance agent: a system for augumented
memory. In Personal technologies journal special issue on wearable com-

puting, volume 1, page 218:224. Personal Technologies, 1997.

B.J. Rhodes. Wimp interface considered fatal. In Virtual reality annual

international symposium. IEEE, 15 March 1998.

C. Baber, D. Haniff, L. Cooper, J. Knight, and B. Mellor. Preliminary
investigations into the human-factors of wearable computers. In Hillary

Johnson, Laurence Nigay, and Chris Roast, editors, People and computers

XIII: Proceedings of HCI’98. Springer-Verlag, 1998.

C. Esposito. Wearable Computers: Field-Test Results and System Design

Guidelines. In Interact, July 1997.

BIBLIOGRAPHY 169

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

C. Faure and L. Julia. An agent-based architecture for a multimodal inter-
face. In Proceedings of the twelfth national conference on artificial intelli-

gence. American association for artifical inteligence, August 1994.

Cliff Randell and Henk Muller. Context awareness by analyzing accelerom-
eter data. In 4th international symposium on wearable computers. IEEE,

October 2000.

D. Roy and A. Pentland. Multimodal adaptive interfaces. In 1st workshop

on perceptual user interfaces. ACM, October 1997.

D.B.Moran, A.J.Cheyer, L.E.Julia, D.L.Martin, and S.Park. Multimodal
user interfaces in the open agent architecture. In International conference

on intelligent user interfaces, pages 61-68. ACM, January 1997.

D.J. Johnston. Augmented Reality for Archaelogical Reconstruction. PhD

thesis, Vase lab, University of Essex, 2002.

D.R. McGee, P.R. Cohen, and S. Oviatt. Confirmation in multimodal sys-
tems. In International joint conference of the association for computational

linguistics and the international committee on computational linguistics.

ACL, 1998.

D.R.Benyon. Accommodating individual differences through an adaptive
user interface. In M. Schneider-Hufschmidt, T. Kuhme, and U. Malinowski,
editors, Adaptive user interfaces: principles and practice, pages 149-166.

North-holland, Amsterdam, 1993.

D.Salber, A.K.Dey, and G.D.Abowd. A context-based infrastructure for
smart environments. In Ist International Workshop on Managing Interac-

tions in Smart Environments, 1 December 1999.

170

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

BIBLIOGRAPHY

E.C. Crowe and N.H.Narayanan. Comparing interfaces based on what users

watch and do. In Eye tracking research & applications symposium, pages

29-36, November 2000.

F. Masaaki and T. Yoshinobu. Body coupled fingering: Wireless wear-
able keyboard. In Computer human interaction. Association for computer

machinery, SIGCHI, 26 March 1997.

G. Kortuem. Software architecture and wearable computing. Technical

report, University of Oregon, December 1996.

G. Kortuem, M. Bauer, T. Heiber, and Z. Segall. Netman: The Design of a
Collaborative Wearable Computer System. In Journal on Mobile Networks

and Applications, volume 4. ACM /Baltzer, 1999.

G. Kortuem, S. Fickas, and Z. Segall. Architectural issues in supporting
ad-hoc collaboration with wearable computers. In Workshop on software
engineering for wearable € pervasive computing. The 22nd international

conference on software engineering, 6 June 2000.

G.A. Thomas, J. Jin T. Niblett, and C. Urquhart. A versatile camera
position measurement system for virtual reality TV production. In Inter-

national broadcasting convention, pages 284-289, September 1997.

G.D.Abowd, C.G.Atkeson, J.Hong, S.Long, R.Kooper, and
M.Pinkerton. Cyberguide: A mobile context-aware tour guide.
In 2nd ACM International conference on Mobile Computing, 1996.

http://www.cc.gatech.edu/fce/cyberguide/index.html.

G.L. Calhoun and G.R. McMillan. Hands-free input devices for wearable
computers. In 4th symposium on human interaction with complex systems,

25 March 1998.

BIBLIOGRAPHY 171

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

H.W. Beadle, B. Harper, G.Q. Maquire Jr, and J. Judge. Location aware
mobile computing. In International conference on telecommunications.

IEEE/IEE, February 1997.

[LE. Sutherland. A head-mounted three-dimensional display. In American
federation of information processing societies, volume 33, pages 757-764,

January 1968.

J. Farringdon, V. Oni, C.M. Kan, and L. Poll. Co-modal browser: an
interface for wearable computers. In The 3rd International Symposium on

Wearable Computers, pages 45-51. IEEE computer society, October 1999.

J. Pascoe. Adding generic contextual capabilities to wearable computers.
In The 2nd international symposium on wearable computers, pages 92—99.

IEEE computer society, October 1998.

J. Pascoe, N.S. Ryan, and D.R. Morse. Human computer giraffe interaction:
HCI in the field. In C.Johnson, editor, Workshop on Human Computer

Interaction with Mobile Devices, May 1998.

J.A. Landay and T.R. Kaufmann. User interface issues in mobile comput-

ing. In 4th workshop on workstation operating systems, October 1993.

J.F. Knight and C. Baber. Wearable computers and the possible devel-
opment of musculoskeletal disorders. In /th international symposium on

wearable computers, October 2000.

K. Hartung, S. Munch, L. Schomaker, T. Guiard-Marigny, B.L. Goff, R.
MacLaverty, J. Nijtmans, A. Camurri, I. Defee, and C. Benoit. Di3: devel-
opment of a system architecture for the acquisition, integration and repre-
sentation of multimodal information. Technical report, Nijmegen institute

for cognition & information, March 1996.

172

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

BIBLIOGRAPHY

K. Nagao and J. Rekimoto. Ubiquitous talker: spoken language interaction
with real world objects. In 14th international joint conference on artificial

intelligence, pages 1284-1290, 1995.

Gerd Kortuem, Zary Segal, and Martin Bauer. Context-aware, adaptive
wearable computers as remote interfaces to ’intelligent’ environments. In
IEE, Second International Symposium on Wearable Computers. University

of Oregon, Oct 1998.

L. Bass, C. Kasabach, R. Martin, D. Siewiork, A. Smailagic, and J. Stivoric.
The design of a wearable computer. ACM CHI, pages 139-146, 1997.

L. J. Najjar, J. J. Ockerman, and J. C. Thompson. Using a Wearable
Computer for Mobile Training and Performance Support. In Educational

Multimedia/Hypermedia and Telecommunications, page 1461, 1997.

L.J. Najjar, J.J. Ockerman, and J.C. Thompson. User interface design
guidelines for wearable computer speech recognition applications. In Virtual

reality annual international symposium. IEEE, 15 March 1998.

M. Bauer, T. Heiber, G. Kortuem, and Z. Segall. A collaborative wearable
system with remote sensing. In 2nd international symposium on wearable

computers. IEEE, October 1998.

M. Goldstein, R. Brook, G. Alsio, and S. Tessa. Ubiquitous input for
wearable computing: qwerty keyboard without a board. In Chris Johnson,

editor, Ist workshop on human computer interaction with mobile devices,

May 1998.

M. Weiser. Some computer science issues in ubiquitous computing. In

Communications of the ACM, July 1993.

Mark Priestley and Elizabeth Robinson, editors. Practical object-oriented
design with UML. McGraw-Hill, 2000.

BIBLIOGRAPHY 173

[50]

[51]

[52]

[53]

[54]

[53]

[56]

[57]

[58]

M.B. Spitzer, N.M. Rensing, R. McClelland, and P. Aquilino. Eyeglass-
based systems for wearable computing. In st international symposium on

wearable computers, pages 48-51. IEEE, October 1997.

M.D.Wilson, D.Sedlock, J-L. Binot, and P. Falzon. An architecture for
multimodal dialogue. In 2nd VENACO workshop on the structure of mul-

timodal dialogue, 1991.

Douglas B. Moran and Adam J. Cheyer. Intelligent agent-based user
interfaces. In International workshop on Human Interface Technology,

http://www.ai.sri.com/ moran, 1995. paper copy.

P. Davidsson, E. Astor, and B. Ekdahl. A framework for autonomous
agents based on the concept of anticipatory systems. In R. Trappl, editor,

cybernetics and systems, pages 1427-1434. world scientific, 1994.

P.J. Brown. Some lessons for location-aware applications. In Human com-

puter interactions for mobile devices, May 1998.

P.J. Brown. Triggering information by context. In Personal technologies,

volume 2. Springer-verlag, September 1998.

P.J. Brown and G.J.F. Jones. Context-aware retrieval: exploring a new
environment for information retrieval and information filtering. Personal

and Ubiquitous Computing, 5(4):253-263, 2001.

P.J. Wyard and G.E. Churcher. All channels open: multimodal hu-
man/computer interfaces. In Technology Journal, volume 18. British

Telecommunications, January 2000.

P.M. Fitts. The information capacity of the human motor system in con-
trolling the amplitude of movement. In Journal of experimental psychology,

volume 47, pages 381-391. American psychological association, 1954.

174

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

BIBLIOGRAPHY

R. Bolt. The Human Interface: Where People and Computers Meet. Life-

time learning publications, 1984.

Randy Pausch, M. Anne Shackelford, and Dennis Proffitt. A user study
comparing head-mounted and stationary displays. In Symposium on re-

search frontiers in virtual reality, pages 41-45. IEEE, 1993.

Deb Roy, Nitin Sawhney, Chris Schmandt, and Alex Pentland. Wearable
audio computing: A survey of interaction techniques. Technical report,

MIT Media Lab, 1997.

S. Feiner, B. MacIntyre, T. Hollerer, and T. Webster. A touring machine:
Prototyping 3D mobile augmented reality systems for exploring the urban

environment. In First Int. Symp. on Wearable Computers, 13 October 1997.

S. Mann. ‘Smart clothing’: wearable multimedia computing and ‘personal
imaging’ to restore the technological balance between people and their en-

vironments. In Multimedia. ACM, 1996.

S. Mann. An historical account of the wearcomp project. In Ist interna-

tional symposium on wearable computers. IEEE, October 1997.

S. Mann. Wearable computing as a means for personal
empowerment. Technical report, University of Toronto,

http://www.wearcomp.org/wearcompdef .html, 1998.

S. McGlashan. Towards multimodal dialogue management. In 12th twente

workshop on language technology, September 1996.

S. Narayanaswamy, S. Seshan, E. Brewer, R. Brodersen, F. Burghardt, A.
Burstein, Y. Chang, A. Fox, J.M. Gilbert, R. Han, R.H. Katz, A.C. Long,
D.G. Messerschmitt, and J. Rabaey. Application and network support for
Infopad. IEEE Personal Communications, March 1996.

BIBLIOGRAPHY 175

[68]

[69]

[70]

[71]

[72]

73]

[74]

[75]

S. Oviatt. Multimodal interfaces for dynamic interactive maps. In Human

factors in computing systems: CHI’96, pages 95-102. ACM, 1996.

T. Starner, B. Schiele, and A. Pentland. Visual contextual awareness in

wearable computing. In 2nd international symposium of wearable comput-

ers. IEEE, October 1998.

T. Starner, D. Kirsh, and S. Assefa. The locust swarm: An
environmentally-powered, networkless location and messaging system. In

1st international symposium on wearable computing. IEEE, October 1997.

Ted Selker and Joe Rutledge. Trackpoint II: the in-keyboard pointing de-

vice. IBM personal systems technical solutions, January 1993.
Thomas A. Bass. The eudaemonic pie. Vintage books, 1985.

W. Mayol, E. Rodriguez, L.AF Hernandez,
and V.T. Rangel. The WearClam. textt-

thttp://www.robots.ox.ac.uk/ wmayol/WearClam /index.html.

W.A. Hoff, K. Nguyen, and T. Lyon. Computer vision-based registration
techniques for augmented reality. In Intelligent Robots and Computer Vi-
ston XV, volume 2904, pages 538-548. SPIE, November 1996.

Z. Segall and M. Curry. Wearable computing research summary. Technical

report, University of Oregon, January 1996.

176 BIBLIOGRAPHY

Appendix A

User Test Paragraphs

A.1 Paragraph One

The BBC will die if it does not get funding to expand in the digital age bosses
have warned. Director of television Alan Yentob said the corporation must
develop new services which already include continuous news Internet sites and
an education channel to cater for digital viewers new ways of watching. Put
the BBC in a box and that box will soon become a coffin and the BBC will
wither and die he told the Royal Television Society conference in Cambridge.
An independent panel led by economist Gavyn Davies has proposed that there

should be an annual tax to fund the BBCs fledgling digital TV service.

A.2 Paragraph Two

Four Russian referees are facing the most severe measures after they were barred
from officiating a Uefa Cup match because they were too drunk. Sergei Khu-
sainov, Sergei Martynov, Pavel Ginzburg and Feizudin Erzimanov were allegedly
drinking heavily before Thursday evenings encounter between Hapoel Haifa Is-
rael and FC Brugge Belgium. According to the director of the Russian Soccer
Union, Alexander Tukmanov local football officials told the referees they would

not be allowed to take control of the match which the Israelis won.

177

178 APPENDIX A. USER TEST PARAGRAPHS

Appendix B

Interface Code

B.1 Example reactionary interface code

Listing B.1: Example Reactionary Interface Code

1 package sulawesi.services;

3 public class time extends Thread implements servicereaction{

5 // a reference back to the service manager

6 private servicemanager Manager = null;

7 private Integer threadPriority = null;

8

9 // create an empty buffer for the service manager to fill
10 private String[] batch = new String[5];

11

12 // Constructor registers itself with the service manager
13 public time (Object creator, Integer priority){

14 Manager = (servicemanager)creator;

15 threadPriority = priority;

16

17 // Register with the service manager.

18 Manager.register ("time",this, batch, serviceType);

179

180 APPENDIX B. INTERFACE CODE

20 // Set the Priority that the service manager gives us.
21 this.setPriority (priority.intValue ());

22

23 }

24

25 // The startProcessing method is called by the

Servicemanager .

26 public void startProcessing () {

27

28 // Create a date object and set the time zone to GMT.
29 Date date = new Date();

30 DateFormat dateFmt = DateFormat.getTimeInstance ();

31 TimeZone zone = TimeZone.getDefault ();

32 zone .setID ("GMT");

33

34 dateFmt.setTimeZone (zone) ;

35 zone = dateFmt.getTimeZone ();

36

37 // Gets the formatted time.

38 String out = dateFmt.format (date);

39

40 // Just send the time to the output renderer

41 // the command array is sent as well so the

42 // render type can be determined.

43 Manager.out.renderOutput ("the time is " + out , batch);
44

45 // When processing has finished.. remove registration.
46 // Remove the class from the servicemanager, batch[0] = ID
47 Manager .remove (batch[0], this);

48 }

49 }

B.2. EXAMPLE DECISIONARY INTERFACE CODE 181

B.2 Example decisionary interface code

Listing B.2: Example Decisionary Interface Code

1

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

package sulawesi.services;

public class wibble extends Thread implements servicedecision

, Serializable{

private servicemanager Manager = null;

private int threadPriority;

// create an empty buffer for the service manager to fill

private String[] batch = new Stringl[5];

// Constructor registers itself with the service manager
public location(Object creator, Integer priority){
Manager = (servicemanager)creator;

threadPriority = priority.intValue();

// Set the thread priority and register
this.setPriority (priority.intValue ());

Manager .register (ClassName (), this, batch, serviceType);

// returns the buffer for this service
public String[] getBatch (){

return batch;

// definition of className from servicedecision interface
public String ClassName (){

return "wibble";

// process messages here

182 APPENDIX B. INTERFACE CODE

32 public void recieveMessage (Object 0Obj, String Message){
33 }

34

35 // the startProcessing method is called by the

Servicemanager

36 public void startProcessing () {

37 }

38

39 // when Sulawesi is shutdown you MUST include this code
40 // to de-reference the Manager object.

41 private void writeObject (ObjectOutputStream out) throws

I0Exception {

42

43 // sets the servicemanager object pointer to null
44 Manager = null;

45

46 // calls the default write on this object

a7 out.defaultWriteObject ();

48 }

49 }

B.3. EXAMPLE SENSOR CODE 183

B.3 Example sensor code

Listing B.3: Example Sensor Code

1 package sulawesi.input;

2 import sulawesi.decision.input;

4 public class foo implements sulawesi.base.misc.inputbaseq

6 private input ip;

7

8 // Constructor for the foo object.

9 public foo(Object creator){

10 // register back with the input subsystem.
11 ip = (input)creator;

12 ip.register ("foo",this);

13

14 this.start ();

15 }

16

17 // Implementation of the inputbase interface.
18 public Object Query(0Object in){

19 return anObject;

20 }

21

22

23 // Send data to the input subsystem
24 public void run (){

25 ip.DataIn(ConformingCommand) ;
26 }

27

28}

184 APPENDIX B. INTERFACE CODE

B.4 Example renderer code

Listing B.4: Example Renderer Code

1 package sulawesi.output;

2 import sulawesi.decision.output;

4 public class foo implements sulawesi.base.misc.outputbase{

6 private output op;

7

8 // Constructor for the foo object

9 public foo(Object creator){

10 // register with the Renderer subsystem.
11 op = (output)creator;

12 op.register ("foo",this);

13 }

14

15 // Implementation of the outputbase interface.
16 public void Pause (){

17 // pause this renderer here

18 }

19

20 // Implementation of the outputbase interface.
21 public void unPause (){

22 // unpause this renderer here

23 }

24

25 public void render(String in){

26 // render the string here

27 ¥

28}

Appendix C

Application Code

C.1 Time agent code

Listing C.1: Time Agent Code

10

11

12

13

14

15

16

17

18

19

package sulawesi.services;

import java.util.*;
import java.text.DateFormat;

import sulawesi.decision.servicemanager;

// This service will send the ascii string for the time

// to the ouptut rendering stage

public class time extends Thread implements servicereaction({

// a reference back to the service manager

private servicemanager Manager = null;

private Integer threadPriority = null;

// create an empty buffer for the service manager to fill

private String[] batch = new String[5];

// Constructor registers itself with the service manager

public time (Object creator, Integer priority){

185

186 APPENDIX C. APPLICATION CODE

20 Manager = (servicemanager)creator;

21 threadPriority = priority;

22

23 // register with the service manager

24 Manager .register ("time",this, batch, this.serviceType);
25

26 // set the Priority that the service manager gives us
27 this.setPriority (priority.intValue ());

28 }

29

30

31 // this method is called by the service manager

32 public void startProcessing () {

33 // create a date object and set the time zone to GMT...
34 Date date = new Date ();

35

36 DateFormat dateFmt = DateFormat.getTimeInstance ();

37 TimeZone zone = TimeZone.getDefault ();

38 zone .setID ("GMT");

39

40 dateFmt.setTimeZone (zone);

41 zone = dateFmt.getTimeZone ();

42

43 // gets the formatted time

44 String out = dateFmt.format (date);

45

46 // remove the seconds

47 int index = 0;

48 index = out.index0f(":");

49 index = out.index0f(":", index+1);

50 out = out.substring (0, index);

51

52 // just output the time to the output object

53 // the batch array is sent to determine the renderer
54 Manager.out.renderQutput ("the time is " + out , batch);
55

56 // when processing has finished, remove registration.

57 // batch[0] = ID

C.1.

58

59

60

TIME AGENT CODE

Manager .remove (batch[0],

this, this.serviceType);

187

188 APPENDIX C. APPLICATION CODE

C.2 Posture I.A.L code

Listing C.2: Posture [.A.L. Code

1 package sulawesi.services;

3 import sulawesi.base.misc.x*;
4 1import sulawesi.decision.servicemanager;

5 1import java.io.*;

7 public class posture extends Thread implements servicedecision

, Serializable{

9 // a reference back to the service manager

10 private servicemanager Manager = null;

11 private int threadPriority;

12

13 // create a buffer for the servicemanager to fill
14 private String[] batch = new String[5];

15

16 // stores the status of the user

17 private String Status = null;

18

19 // wether to start processing the data

20 private boolean Go = false;

21

22

23 // Constructor registers itself with the service manager
24 public posture(Object creator, Integer priority){
25 Manager = (servicemanager)creator;

26 threadPriority = priority.intValue();

27

28 // set the thread priority

29 this.setPriority (priority.intValue ());

30

31 // register with the service manager

C.2. POSTURE ILA.L CODE 189

32 Manager .register (ClassName (), this, batch,serviceType);
33 }

34

35

36 // used to return the batch for this object

37 public String[] getBatch (){

38 return batch;

39 }

40

41

42 // interface from servicedecision, does nothing here

43 public void startProcessing () {

44

45 }

46

47

48 // When the adxl input module recieves some data it

49 // broadcasts it, this object recieves the messages here.
50 public void recieveMessage (Object 0Obj, String Message){
51

52 if (Message.startsWith ("ADXL:")){

53

54 // parse the message and

55 // figure out what to do!!!....

56 parse (Message) ;

57

58 // send the posture to other services

59 Manager .sendMessage (this, "Posture: " + Status);

60

61 // redirect output renders if standing up

62 if (Status.index0f ("standing up") > 0){

63 Manager .out.redirectRenderer ("text","speakoutloud");
64 }

65 elsef{

66 Manager.out.redirectRenderer ("text","text");

67 }

68

69 }

190 APPENDIX C. APPLICATION CODE

70 else if ((Message.index0f ("posture") > 0)

71 || (Message.index0f ("am i doing") > 0)

72 Il (Message.index0f ("i am doing") > 0)){

73

74 // ok get an ID for this service request

75 String Batch = Manager.getProcessBatch (ClassName ());
76

77 // ok we have a request, so create a batch

78 // array for this object

79 batch = Manager.search.getBatchFromNoID (batch, Batch);
80

81 // just output the posture to the output object

82 // the batch array is sent as well so the renderer
83 // can be determined

84 Manager.out.renderOutput ("you are " + Status , batch);
85

86 // release the batch when done...

87 Manager .releaseBatch (Batch);

88 }

89 }

90

91

92 // the run method does some processing the processing

93 private void parse(String data) {

94

95 // parse the ’ADXL: sitting’ into ’sitting’

96 int index = data.indexO0f(":");

97

98 // set the status

929 Status = data.substring(index);

100 }

101

102

103 //definition of className from servicedecision interface
104 public String ClassName (){

105 return "posture";

106 }

107

C.2. POSTURE ILA.L CODE 191

108

110

111

112

113

114

115

116

117

118

//get rid of the servicemanager pointer when serialized
private void writeObject (ObjectOutputStream out) throws

I0Exception {

// sets the servicemanager object pointer to null

Manager = null;

// calls the default write on this object

out.defaultWriteObject ();

192 APPENDIX C. APPLICATION CODE

C.3 Slashdot RDF news feed

Listing C.3: Slashdot RDF news feed file

1 <?xml version="1.0" encoding="IS0-8859-1"7>
2 <rdf:RDF

3 xmlns:rdf="http://www.w3.0rg/1999/02/22-rdf -syntax-ns#"

4 xmlns="http://my.netscape.com/rdf/simple/0.9/">
5

6 <channel>

7 <title>

8 Slashdot: News for nerds, stuff that matters
9 </title>

10 <link>

11 http://slashdot.org

12 </1link>

13 <description>

14 News for nerds, stuff that matters

15 </description>

16 </channel>

17

18 

29

30 <item>

31 <title>

32 Kick Your Input Device

C.3. SLASHDOT RDF NEWS FEED

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

</title>

<link>
http://slashdot.org/article.pl?sid=01/07/26/1740257

</link>

</item>

<item>
<title>
Mundie Speech @ 0SCON - Blogged In Real Time
</title>
<link>
http://slashdot.org/article.pl?sid=01/07/26/1823233
</1link>

</item>

<item>
<title>
Business Wants a New, Profitable Internet
</title>
<link>
http://slashdot.org/article.pl?sid=01/07/26/1553257
</1link>

</item>

</rdf :RDF>

193

194

APPENDIX C. APPLICATION CODE

C.4 News agent code

Listing C.4: News Agent Code

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

package sulawesi.services;

import java.io.*;

import java.util.*;

import sulawesi.base.x*;

import sulawesi.decision.x*;

public class news extends Thread implements servicereactionf{

// a reference back to the service manager

private

private

servicemanager Manager = null;

Integer threadPriority null;

// create an empty buffer for the service manager to fill

private
private
private
private
private
private

private

String[] batch = new String[5];

String NewsConfigFile = "config/news.cfg";
searcher find = new searcher();
String delimiter = "|[";

String[] servicesArray = new String[100];
int servicesArraylLength;

Hashtable servicesHash = new Hashtable ();

// priavte variable to hold the HTML page

private

String RSSdata;

// Constructor registers itself with the service manager

public news (Object creator, Integer priority){

Manager = (servicemanager)creator;

threadPriority = priority;

// register with the service manager

C.4. NEWS AGENT CODE 195

33 Manager .register ("news",this, batch, this.serviceType);
34

35 // set the thread priority

36 this.setPriority (priority.intValue ());

37 }

38

39

40 // this is called by the servicemanager

41 public void startProcessing (){

42

43 // create the inital hash from the news.cfg file

44 boolean ok = createNewsArray (NewsConfigFile);

45

46 String Location = "none";

47

48 // find if any arguments to the service have been given,
49 // if so, try and find a matching URL

50 for(int i = 0; i < servicesArraylLength; i++){

51

52 String name = servicesArray[il;

53

54 // if the service arguments contain a word which is in
55 // the news.cfg file, retrieve RDF file from the URL
56 if (batch[2]. index0f (name) >= 0){

57 Location = servicesHash.get(servicesArray[i]);

58 }

59 }

60

61 // get the headlines from this site...

62 SearchNewsSite (defaultLocation);

63 }

64

65

66 // contacts the server, gets back the page, strips the

67 // HTML out and then sends the output text to the renderer
68 private void SearchNewsSite (String HostAndPage) {

69

70 // new class handle

196

71
72
73
74
75
76
e
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103

104

106
107

108

APPENDIX C. APPLICATION CODE

http httpHandle = new http ();

// results string declaration
StringBuffer results = null;
String links = new String();
String RDF = new String("error");

String PageName = new String();

// gets the whole HTML page

RDF = new String(httpHandle.getHTTP (HostAndPage));

// work on a copy of the data

String RDFcopy = RDF.toUpperCase ();
// if the server does not respond within the retry limit,
// then write an error.

if (!RDF.equals ("error") || !'RDF.equals("")){

// get the headlines from the rss feed...

results = new StringBuffer (getHeadlines (RDFcopy));

// add a nice little message ;)

results.append ("This is the end of the news.");
1
elseq{
// could not retrieve the page for whatever reason
results.append ("Headlines currently unavailable");
X

// just send the results to the output object the batch
// array is sent so the render type can be determined

Manager.out.renderOutput (results.toString (), batch);

// when processing has finished.. remove registration
// remove the class from servicemanager, batch[0] = ID

Manager .remove (batch[0], this, this.serviceType);

C.4. NEWS AGENT CODE 197

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

136

137

138

140

141

142

143

144

145

146

//create the array of url’s from the news.cfg file

private boolean createNewsArray (String File){

// read in the services file and create an array.

String Entries = Manager.file.ReadFromFile (File);

if (Entries.length () > 0){

// ok seperate words in the Entries string.

int ArrayIndex = 0;

int start = O0;
int next = Entries.index0f (delimiter, start+1);
String word = Entries.substring(start+1l, next);

String nextWord;

// while the end of the file is not reached

while (!word.equals ("EOF")){

// move the pointers

start = next+1;
next = Entries.index0f (delimiter, start+1);
nextWord = Entries.substring(start, next);

// ok add entries into translation hash
servicesHash .put (word, nextWord);
servicesArray [ArrayIndex] = word;

ArrayIndex ++;

start = next+1;
next = Entries.index0f (delimiter, start+1);
word = Entries.substring(start+1, next);

// take a copy of the number of services ;-)

198

147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163

164

166
167

168

170
171

172

174
175

176

178
179
180
181
182
183

184

APPENDIX C. APPLICATION CODE

servicesArrayLength =

return true;

// the fileEntries was too short

return false;

ArrayIndex;

ie didn’t exist

// This method removes the tags out of the document.

public String getHeadlines (String data){

// local variables
int Index = 0;
int endIndex ;

StringBuffer returnBuffer =

new StringBuffer ();

// puts the HTML page into the HTMLdata string

RSSdata = data;

String itemString = "<ITEM>";
String titleString = "<TITLE>";
String titleEndString = "</TITLE>";
String linkString = "<LINK>";
String linkEndString = "</LINK>";

while(true){

// get the start of the item element

Index =

// end of the file
if (Index

break;

// get the start of the title element from the

// element

RSSdata.index0f (itemString,

Index);

item

C.4. NEWS AGENT CODE 199

185

187

188

189

190

191

192

193

194

195

197

198

199

201

Index = RSSdata.index0f (titleString, Index);

// get the end of the element

endIndex = RSSdata.index0f (titleEndString, Index);

// get the headline
returnBuffer .append (RSSdata.substring (Index +

titleString.length (), endIndex) + ".\n");

// set the begin pointer to the end of the current
// element

Index = endIndex;

// return the headlines

return returnBuffer.toString();

200

APPENDIX C. APPLICATION CODE

C.5 Spatial reminder agent code

Listing C.5: Spatial Reminder Agent Code

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

package sulawesi.services;

import
import
import

import

public

sulawesi.decision.servicemanager;
sulawesi.base.misc.x*;
java.util.*;

java.io.*;

class remind extends Thread implements servicedecision

, Serializable{

// a reference back to the service manager

private servicemanager Man = null;

private Integer threadPriority = null;

// create a buffer for the service manager to fill

private String[] batch = new String[5];

// private variable to keep the messages in

private String newData = null;

// vector array to store location names in

private Vector locationVec;

// vector array to store reminder messages in..

private Vector reminderVec;

// current location

private String Location;

// Constructor registers itself with the

// ServiceManager

C.5. SPATIAL REMINDER AGENT CODE 201

32 public remind(Object creator, Integer priority){
33 Man = (servicemanager)creator;

34 threadPriority = priority;

35

36 // set the thread priority

37 this.setPriority (priority.intValue ());

38

39 // register with the service manager

40 Man.register ("remind",this, batch, this.serviceType);
41

42 // setup the reminder..

43 this.setupReminder ();

44 }

45

46

47 // used to return the batch for this object

48 public String[] getBatch (){

49 return batch;

50 }

51

52

53 // interface to recieve messages

54 public void recieveMessage (Object Obj, String theMessage){
55

56 // copy the messge

57 Dat = theMessage;

58

59 int number = 0;

60 int index = 0;

61 number = Dat.index0f (this.ClassName ());

62

63 if (Dat.startsWith ("Location:")){

64

65 // get the location from the message...

66 index = Dat.index0f(" ", 1);

67 String temp = Dat.substring(index+1, Dat.length());
68 Location = temp.toLowerCase ();

69

202 APPENDIX C. APPLICATION CODE

70 // check to see if we want reminding about

71 // anything from this location ;-)

72 checkReminders () ;

73 }

74 else if (number > 0){

75 // ok so we got a command, start processing
76 startProcessing () ;

7 }

78 }

79

80

81 // the run method does some processing

82 public void startProcessing () {

83

84 String Rem;

85 int index = 0;

86 index = newData.index0f ("status");

87

88 if (index > 0){

89 // does the message contain a location

90 // which is in the locationVec array

91 Enumeration vEnum = reminderVec.elements ();
92 int i = 0;

93 while (vEnum.hasMoreElements ()){

94

95 // increment reminder number

96 i++;

97

98 // location name in vector

929 Rem = (String)vEnum.nextElement ();

100

101 // create a nice message

102 String res = new String("Reminder" + i + ":" + Rem);
103

104 // ok get an ID for this service request
105 String Bat = Man.getProcessBatch (ClassName ());
106

107 // ok we have a status request, so create

C.5. SPATIAL REMINDER AGENT CODE

108

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

131

132

133

134

135

136

137

139

140

141

142

143

144

145

// the batch array for this object

// (no ID exists because this is a query)

batch = Man.search.getBatchFromNoID (batch, Bat);

// send a message to the output manager to
// render. The batch array is sent as well
// so the render type can be determined

Man.out.renderOutput (res, batch);

}

}

elseq{
// puts the reminder into the reminder vector
reminderVec .addElement (newData) ;

}

// when a location message is recieved check to see
// if the location is in any of the messages.. if so
// then print them out

public void checkReminders (){

String Rem;

int index = 0;

// does the message contain a location which is
// in the locationVec array
Enumeration vEnum = reminderVec.elements ();
while (vEnum.hasMoreElements ()){

// location name in vector

Rem = (String)vEnum.nextElement ();

index = Rem.index0f (Location);

if (index > 0){

// create a nice message

String result = new String("Reminder: " + Rem);

203

204

146
147
148
149
150
151
152
153
154
155
156
157
158

159

161
162
163
164
165
166

167

169
170
171
172
173
174

175

176
177
178
179
180
181

182

APPENDIX C. APPLICATION CODE

// ok get an ID for this service request

String Bat = Man.getProcessBatch (ClassName ());

// create the batch array for this object
// (no ID exists because this is a reminder)

batch = Man.search.getBatchFromNoID (batch, Bat);

// just send the message to the output
// manager to render. the batch array is
// sent as well so the render type can
// be determined

Man.out.renderOutput (result, batch);

// set up the reminder object

public void setupReminder (){

// initalise the location vector object

locationVec = new Vector();

// initalise the reminder vector object

reminderVec = new Vector();

// get the location from the config file

// read in location.gps file do a look up on the

// coordinates

String LocationsFile = Man.Sulawesilocation + "config" +
Man.f.separator + "location.gps";

String Lookup = Man.file.ReadFromFile (LocationsFile);

// parse the file and store data
// get location of first ’|’
String seperator = "|[|";

// reset the start value

int start = 0;

C.5. SPATIAL REMINDER AGENT CODE 205

183

184

185

186

187

188

189

190

191

192

193

194

195

196

198

199

200

201

202

203

204

206

207

208

210

211

212

213

214

215

216

217

218

219

220

int end = 0;

String LocationName = "";

// while not at the end of the file, read in data
while (!LocationName .equalsIgnoreCase ("EOF")){

// get location of 1st and 2nd seperator string

start = Lookup.index0f (seperator, end);
end = Lookup.index0f (seperator, start+1);
LocationName = Lookup.substring(start+1l, end);

// if the index is the end of file marker,
// then break out of this while loop
if (LocationName .equalsIgnoreCase ("EQOF")){

break;

// location of 2nd and 3rd seperator

start = end;
end = Lookup.index0f (seperator, start+1);
LocationName = Lookup.substring(start+1, end);

// location of 3rd and 4th seperator

start = end;
end = Lookup.index0f (seperator, start+1);
LocationName = Lookup.substring(start+1l, end);

// add the location name into the vector array
LocationName = LocationName .toLowerCase ();

locationVec .addElement (LocationName) ;

// location of 4th and 5th seperator

start = end;
end = Lookup.index0f (seperator, start+1);
LocationName = Lookup.substring(start+1, end);

// location of 5th and 6th seperator
start = end;

end = Lookup.index0f (seperator, start+1);

206

221
222
223
224
225
226
227
228
229
230
231
232
233

234

237
238
239
240
241

242

APPENDIX C. APPLICATION CODE

LocationName = Lookup.substring(start+1, end);

// definition of className from servicedecision
// interface
public String ClassName (){

return "remind";

// get rid of the servicemanager pointer when
// serialized.
private void writeObject (ObjectOutputStream out) throws
I0Exception {
// sets the servicemanager object pointer to null

Man = null;

// calls the default write on this object

out .defaultWriteObject ();

C.6. NOTES AGENT CODE 207

C.6 Notes agent code

Listing C.6: Notes Agent Code

1 package sulawesi.services;

3 import java.util.*;

4 import java.text.*;

5 1import java.awt.*;

6 1import java.io.*;

7 import sulawesi.base.misc.*;
8§ 1import sulawesi.decision.*;
9 1import sulawesi.output.text;
10

11

12 public class note extends Thread implements servicedecision,

guibase {
13
14 // a reference back to the service manager
15 private servicemanager Manager = null;
16 private Integer threadPriority = null;
17
18 // create an empty buffer for the service manager to fill
19 private String[] batch = new Stringl[5];
20 private String FilesLocation;
21 private String RAdatalLocation;
22 private File F;
23 private String RAindex;
24 private String RAretrieve;
25 public TextArea notePanel;
26 private String noteConfigFile = "note.cfg";
27
28 // a runtime object which is accessed by this class
29 private Runtime r;
30

31

208 APPENDIX C. APPLICATION CODE

32 // Constructor registers itself with the service manager
33 public note(Object creator, Integer priority){

34

35 Manager = (servicemanager)creator;

36 threadPriority = priority;

37

38 // register with the service manager

39 Manager .register (ClassName (), this, batch, serviceType);
40

41 // set the thread priority

42 this.setPriority (priority.intValue ());

43

44 // setup the notes app

45 setup () ;

46 }

47

48

49 // used to return the batch for this object

50 public String[]l getBatch (){

51 return batch;

52 }

53

54

55 // definition of className from servicedecision interface
56 public String ClassName (){

57 return '"note'";

58 }

59

60

61 // Interface to recieve messages

62 public void recieveMessage (Object Obj, String theMessage){
63 this .parseMessage (theMessage);

64 }

65

66

67 // parses the message to determine which it is, either
68 // a list, a query or a save note request

69 private void parseMessage (String theMessage){

C.6. NOTES AGENT CODE

70

71

72

73

74

75

76

7

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

101

102

103

104

105

106

107

int save = 0;
int query = 0;

int list = 0;

save = theMessage.index0f ("save");
query = theMessage.index0f ("query");

list = theMessage.index0f ("list");

/* test to see if the words exist */
if (save == -1 && query == -1 && list == -1){
// mno show, words are not in the sentence so ignore
}
else if(save != -1 && query == -1 && list == -1){
// ok save is only present in the string
// call save function
this.save (theMessage);
}
else if(save == -1 && query !'= -1 && list == -1){
// ok query is only present in the string
// call the query function
this.query(theMessage);
}
else if(save == -1 && query == -1 && list !'= -1){
// ok list is only present in the string
// call the list function
this.list (theMessage);
}
else if(save == -1 && query !'= -1 && list !'= -1){
// ok list and query are present in the string,
// find which is first and call the relevant
// function
if (query < list){
this.query(theMessage);
}
elseq{

this.list (theMessage);

209

210 APPENDIX C. APPLICATION CODE

108 }

109 else if(save !'= -1 && query == -1 && list !'= -1){
110 // ok save and list are present in the string
111 // find which is first and call correct function
112 if (save < list){

113 this.save (theMessage);

114 }

115 elseq{

116 this.list (theMessage);

117 }

118 }

119 else if(save !'= -1 && query !'= -1 && list == -1){
120 // ok save and query are present in the string
121 // find which is first and call correct function
122 if (save < query){

123 this.save (theMessage);

124 }

125 else{

126 this.query (theMessage);

127 }

128 }

129 else if(save != -1 && query !'= -1 && list !'= -1){
130 // ok all words are present in the string

131 // find which is first and call correct function
132 if ((query < 1list) && (query < save)){

133 this.query(theMessage);

134 }

135 else if ((list < query) && (list < save)){

136 this.list (theMessage);

137 }

138 else if ((save < query) && (save < list)){

139 this.save (theMessage);

140 }

141 }

142 }

143

144

145 // the run method does all the processing

C.6. NOTES AGENT CODE 211

146

147

148

149

150

151

152

153

154

155

156

157

158

159

161

162

163

164

165

166

167

169

170

171

172

173

174

175

177

178

179

181

182

183

public void startProcessing (){

// implementation of the guibase interface

public void setup (){
// get sulawesi location from the servicemanager
FilesLocation = Manager.getSulawesilLocation () + "data"

+ F.separator + this.ClassName ();

// create a new file object for this location

F = new File(FilesLocation);

// check that the <sulawesi>/data/note directory exists
// if not create if

File dataDirectory = new File(FilesLocation);

if (!dataDirectory.exists ()){

dataDirectory .mkdir ();

// get sulawesi location from the servicemanager
RAdatalocation = Manager.getSulawesilocation () + "data"

+ F.separator + "RA";

// check that the <sulawesi>/data/RA directory exists
// if not create it

File RAdirectory = new File (RAdatalocation);

if (!RAdirectory.exists ()){

RAdirectory .mkdir ();

// load the configuration file and get the values of
// RA-index and RA-retrieve
String config = Manager.getSulawesilocation () + "config"

+ F.separator + noteConfigFile;

RAindex = new String(Manager.search.GetNextData (

212

184

186
187
188
189
190
191
192

193

194

196
197

198

200
201

202

204

206
207

208

210
211
212
213
214
215
216
217
218

219

APPENDIX C. APPLICATION CODE

Manager .file.ReadFromFile (config),"RA-index"));
RAretrieve = new String(Manager.search.GetNextData (

Manager .file.ReadFromFile (config),"RA-retrieve"));

// instantiate the runtime object

r = Runtime.getRuntime ();

// register with gili, get the text object from the
// output renderer manager

text textOutput = (text)Manager.out.getOutputObject ("text"

)

/* create a note panel */

notePanel = new TextArea("",8,60,
TextArea.SCROLLBARS_VERTICAL_ONLY);

notePanel .setEditable (true);

notePanel .setBackground (Color.black);

notePanel .setForeground (Color.white);

// register with the gili text renderer
textOutput .register ((Component)notePanel, ClassName (),

this);

// set button names and panel to the front

public void focused(Button bl, Button b2, Button b3){
bl.setlLabel (this.userButtonliname ());
b2.setlLabel (this.userButton2name ());

b3.setLabel (this.userButton3name ());

// The three buttons need names
public String userButtonlname (){

return "Save'";

C.6. NOTES AGENT CODE

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

239

240

241

242

243

244

245

246

247

248

249

251

252

253

254

255

256

257

public String userButton2name (){

return "Query(RA)";

public String userButton3name (){

return "List ";

// Implementation of the guibase interface
public void userButtonlpushed (Button b){

// this is the SAVE button, so should save the note

// get the text from the edit buffer

String writeData = notePanel.getText ();

// check that there is more than 1 character in

// the edit buffer before writing.

if (writeData.length () >= 1){
// construct the filename from the date & time
Date date = new Date();
String file = FilesLocation + F.separator

+ date.toString ();

// write file

Manager .file.OverWriteFile (file, writeData);

// remove text from the display to show that
// it has been written ok

notePanel .setText ("");

// now index the file with the remberance agent
try{
// need to add ’file’ in order for the RA to index

// filenames with spaces in !!

213

214

258

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

277

278

279

281

282

283

284

285

286

287

289

290

291

292

293

294

295

APPENDIX C. APPLICATION CODE

Process p = r.exec(RAindex + " " + RAdatalocation
+ " " 4+ FilesLocation);

}catch(Exception e){}

// implementation of the guibase interface

public void userButton2pushed (Button b){

// this is the QUERY button, query the current text in

// the buffer with files in the notes data directory

BufferedReader inStream = null;
PrintWriter outStream = null;

String RAdata;

// get the text from the edit buffer
String queryData = notePanel.getText ();
tryq{
// call the RA retrieve program with the data location

Process p = r.exec(RAretrieve + " " + RAdatalLocation);

// connect up the streams to the process
inStream = new BufferedReader (
new InputStreamReader (p.getInputStream()));

outStream = new PrintWriter (p.getOutputStream());

BufferedReader errStream = new BufferedReader (

new InputStreamReader (p.getErrorStream()));
// now send commands to RA and parse the response
// for now only get two matches

outStream.println("query 2\n");

// send retrieve command

outStream.println("retrieve\n");

// send query text + ctrl-D

C.6. NOTES AGENT CODE

296

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

outStream.println(queryData + "\n");
outStream.println("~D");

outStream.flush();

// read the results
while (!inStream.ready()){

RAdata = inStream.readLine ();

// display the results
notePanel .setText (RAdata) ;

}catch(Exception e){}

// implementation of the guibase interface

public void userButton3pushed (Button b){

// this is the LIST button, so list the notes in the

// <sulawesi>/data/notes directory
int i = 0;

String[] dirList = F.list ();

// print out the director listing

while (i < dirList.length){

notePanel .append(i + ": " + dirList[i] + "\n");

i++;

// this handles saving the note

private void save(String theMessage){

if (theMessage.length() >= 1){
// construct the filename from the date & time
Date date = new Date();
String file = FilesLocation + F.separator

+ date.toString ();

215

216

334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350

351

353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370

371

APPENDIX C. APPLICATION CODE

// write file

Manager .file.OverWriteFile (file, theMessage);

// now index the file with the remberance agent
try{
// need to add ’file’ in order for the RA to index
// filenames with spaces in !!
Process p = r.exec(RAindex + " " + RAdatalocation
+ " " + FilesLocation);

}catch(Exception e){}

// just output the result to the output object

Manager.out.renderOutput ("saved the note", batch);

// this handles lisiting the notes
private void list(String theMessage){
int i = 0;
String[] dirList = F.list();

StringBuffer temp;

// print out the director listing
while (i < dirList.length){
temp.append(i + ": " + dirList[i] + "\n");

i++;

// just output the result to the output object

Manager.out.renderOutput (temp, batch);

// this handles quering the note
private void query(String theMessage){

BufferedReader inStream = null;

C.6. NOTES AGENT CODE 217

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

407

408

PrintWriter outStream = null;

String RAdata;

tryq{

// call the RA retrieve program with the data location

Process p = r.exec (RAretrieve + " " + RAdatalocation);

// connect up the streams to the process
inStream = new BufferedReader (
new InputStreamReader (p.getInputStream()));

outStream = new PrintWriter (p.getOutputStream());

BufferedReader errStream = new BufferedReader (

new InputStreamReader (p.getErrorStream()));

// now send commands to RA and parse the response
// for now only get two matches

outStream.println("query 2\n");

// send retrieve command

outStream.println("retrieve\n");

// send query text + ctrl-D
outStream.println(theMessage + "\n");
outStream.println("~D");

outStream.flush();

// read the results
while (!inStream.ready()){

RAdata = inStream.readLine ();

// just output the result to the output object

Manager.out.renderOutput (RAdata, batch);

}catch(Exception e){}

