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Abstract

The capture of three dimensional structure from two dimensional images has received considerable
attention in computer vision. Existing work has concentrated on use of stereo camera systems and
the reconstruction of small objects. Recently, single cameras in motion have been used to capture
sections of scenery which are subsequently reconstructed by skilled technicians with a selection of
computer vision and graphical modelling tools. However, large-scale, automated, reconstruction of
scenery is limited by the “where to look next” problem. A number of imaging systems have been
proposed to solve this problem but none have been realiPedscopic Stereds a novel concept

which implements stereo imaging using a single camera. A rotating mirror scans the horizon while a
fixed relative geometry is maintained between the virtual stereo cameras.

This dissertation presents, for the first time, a practical design for a periscopic stereo head and
investigates the computer vision tools necessary for 3D reconstruction from periscopic image data.
It identifies two possibilities for processing periscopic image data. “Corrected”, where a two dimen-
sional rotation is applied to the image plane prior to standard stereo processing, or, “uncorrected”
which ignores the “tumbling” effect inherent in periscopic image data until the final stage of re-
construction, where the “late” correction circumvents the problem, apparent in many existing stereo
algorithms, of resolving disparity measurement in imaged scene structure which is parallel with cor-
responding epipolar lines.

Many of the existing stereo processing tools used in the course of this research require little mod-
ification, but have all revealed issues requiring resolution not immediately apparent in previous treat-
ments. This investigation stops short of the actual construction of 3D models but presents a method of
generating the sets of depth data required for large-scale scene reconstruction. Feature extraction, im-
age data correspondence, camera calibration and the generation of depth information from periscopic
image data are all covered in the context of this dissertation. In particular a new method of combin-
ing existing camera calibration techniques, termed “calibration in a box”, is presented together with
conclusions regarding the tools and techniques employed.

While periscopic stereo is still in development, it is the only imaging system, reported to date,
which is likely to be capable of large-scale, autonomous, 3D scene reconstruction, with particular

application to remote operation in hazardous environments.
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x - 2D image vector in normal Euclidean coordinates.
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dps - Degrees per second.

fps - Frames per second.

rpm - Revolutions per minute.

AR - Augmented Reality.

CofG - Centre of Gravity, given by the ‘first moment’ of a region.

NMS - Non-Maximum Suppression, method to determining the single, most accurate element for an
edge response.

SUSAN - Smallest Univalue Segment Assimilating Nucleus.
VE - Virtual Environment.

VR - Virtual Reality.

Affine transformation - a transformation that preserves parallel lines. Algebraically this is any in-
vertible linear transformation.

Canonical configuration - stereo system with coplanar image planes where corresponding raster
lines are collinear.

Collinear - lie on the same line.
Collineation - linear transformation in projective space, also referred to dmarography
Coplanar - lie on the same plane.

Correspondence - attempting to match two image points that correspond to the same point in the
scene.

Disparity - the horizontal and/or vertical displacement of corresponding elements.
Edgels - short hand terminology for Edge Elements.
Epipolar geometry - the geometry between two cameras that image the same scene.

Essential Matrix - mathematical representation of the epipolar geometry of two calibrated cameras
viewing the same scene.

Euclid - Greek mathematician c. 300 B. C., author of BElementswhich introduced many of the
foundations of geometry, and of ti@ptics which considers the projection of rays of light and
the seeds for the idea of thranishing point



Euclidean geometry - ordinary, flat or real space, geometry with all measures of curvature equal to
zero.

Focal length - distance from the centre of projection to the image plane.

Fronto-parallel - a plane, or scene, in front of the image plane which is coplanar and has the same
alignment or frame of reference.

Fundamental Matrix - mathematical representation of the epipolar geometry of two uncalibrated
cameras viewing the same scene.

Homogeneous Coordinates system of coordinates wittr + 1) components in which any scalar
multiple of a point, or a line, is the same point, or line.

Homogeneous Region contains the same elements - is uniform.
Isotropic filter - has an equal response in all directions.

Near real-time - action from a system within a perceived acceptable limit, but not necessarily within
a fixed time frame specified by some physical, real-world requirement.

Outliers - data that are in gross disagreement with the postulated model.

Photogrammetry - the use of photographs, or imaginary, for the measurement of distances or di-
mensions.

Perspective projection - sometimes calle@dentral projection spatial transformation of 3D to 2D
performed by an imaging device.

Rectification - process of re-sampling the image data from a stereo system in order to return the
camera geometry to its canonical configuration.

Silhouette frame - the frame induced into the image data by a rotational correction about the optical
axis.

Spline - edge string that is modelled by a piece-wise polynomial.
Stereopsis - two view, or stereo, imaging.

Vanishing point - point at projective infinity, to which all parallel 3D lines viewed in the image plane
converge.
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Chapter 1

Introduction

Considerable attention has been given, in recent years, to improving the techniques required to recover
sufficiently accurate three dimensional data from two-dimensional images, in order to reconstruct a
model of an imaged scene, or recognize objects within it. Finding solutions to problems of this kind
has been a central goal in computer vision for many years. However, the various image processing and
data analysis techniques required to realize functional systems are only now maturing. The complexity
of elements such as calibration, feature extraction, correspondence and registration will continue to
ensure that the design and development of robust systems capable of delivering the desired results
will remain a considerable challenge. The aims of projects in this area of computer vision research,
often referred to athree dimensional3D) computer vision, have been varied but generally fall into
two main groups, reconstruction and recognition. Historically they were considered the same. The
research presented in this dissertation deals exclusively with techniques related to scene reconstruction
and no attempt is made to deal with any of the issues concerning the recognition of specific objects.
The number of applications for 3D reconstruction from imagery have been steadily increasing and

Tablel.1gives a broad overview of the main areas with a few examples which are used to introduce



or support concepts discussed herein. The type of system and the level of constraints which can be

applied to simplify the problem are given together with type of reconstructed model and its accuracy.

Application Area

Type of System and
Level of Constraint

Model Requirement

Model Accuracy

Example
Applications
and Projects

satellite survey

few constraints used

recently surface 2.5D
models

medium to high

industrial laser stripping or initially none, more none or high numerou$>
inspection precision stereo cameras, recently merged with

highly constrained environment CAD tools
aerial or precision stereo cameras, initially none, more none or crop yield,

terrain modeling

some constraint possible

(local vicinity)

application

medical laser/MRI scanning, surface 2.5D of very high clinical diagnosis,
imaging stereo cameras deformable objects surgical planning,
highly constrained environment (tissue) and full 3D such as
models (tumors, bones “Visible Human®
virtual hand-held video camera photo-realistic surface | low since virtual tour guides,
reality minimal constraints models (scenery) appearance is interior design,
some 3D models more important | such as
(objects in local ‘VANGUARD’ ¢
vicinity)
augmented stereo or single cameras with | photo-realistic very high due to | telepresence tour
reality markers, known motion TV full 3D models the need for guides
video cameras, registration of “Virtual Studio’”
highly constrained the model with
the real world
mobile laser stripping, stereo cameras, surface 2.5D (scenery) | medium to high | robot navigation and
robotics alternative stereo imaging, and full 3D models depending on mission planning,

such as ‘Pionee}!
telepresence with
environment
interaction such as
‘NARVAL °

Table 1.1: Application areas for 3D reconstruction from imagery.

Tablel.1lis intended as a guide, not a definitive breakdown for areas of application.

http://mww.ipb.uni-bonn.de/ipb/projects/projects.html

2http:/ivww.ndt.net/article/vO5n05/saxenal/saxena.htm

Shttp://www.terarecon.com/recon

*http://www.aca-net.com/

Shttp://www.crd.ge.com/esl/cgsp/projects/medical/

Shttp:/iwww.robots.ox.ac.uk/"vanguard/

"http://www.bbc.co.uk/rd/projects/virtual/

_ind.shtml

8http://robotics.jpl.nasa.gov/tasks/pioneer/homepage.html

Shttp://www.ist.ist.utl.pt/vislab/projects.html




Initially, most reconstruction projects were concerned with the inspection of manufactured parts
or objects on the ground, imaged by aerial photography or satellites. In general the aim was just the
recovery of accurate measurement of these objects. The use of imagery, traditionally photographs, for
the precise measurement of distances or dimensions is knowho&sgrammetry This definition,
together with many others that appear herein, is given in the glossary in the preliminary section of this
dissertation. More recently the reconstruction techniques have merged with Computer Aided Design
(CAD) tools for re-engineering application$ip8, Pra0q.

The medical profession has also made effective use of reconstruction techniques for diagnosis and
surgical planning. In such applications the requirement is to produce highly accurate models with
shortest possible delay. This has generally involved highly constrained environments, applying scan
imaging techniques, and relatively small (in the physical volume sense) models.

The latest area of applications has been interested in the recovery of structure to create realistic
3D models for use in Augmented Reality (AR) or Virtual Reality (VR) systems, such as those found
in architectural planning and interior design. There have been considerable advances made in the
appearance and level of accuracy of the models for these applications. However, as with the previous
examples, the processing of the imagery and the reconstruction the 3D model data is carried out “off-
line”, prior to the intended use.

There are a number of examples with successful implementation for the applications in the first
three rows of Tablé.1, some more constrained than others. However, there are only a few operational
examples of the applications in the lower three rows. The reasons for this will be explained in Chap-
ter2. Periscopic stereo is presented in this dissertation as a possible solution for applications in these
last three areas. As will be demonstrated throughout this dissertation its unique imaging geometry
offers many advantages which simplify the processing of the image data and the recovery of the depth

and structure required to reconstruct a model of the scene. However, periscopic stereo is not expected
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to be able to address applications in the first three areas identified in Taldance its unique ge-
ometry also introduces limitations which makes it unsuitable for those areas. Again, this will become
apparent later.

The motivation for the research presented in this dissertation stems from a desire to be able to
interact with a virtual representation of the real world, where direct interaction is either impossible or
impractical. The intention is therefore to extend the boundaries of existing systems by exploring the
possibility of producing 3D models of the imaged scene “onlineféarreal-time. Applications for
this project could be found in both VR and AR areas but are more in tune with the requirements of
remote exploration where the inspection and mapping of hazardous environments, such as collapsed
buildings, mines or deep water trenches and caves, is conducted by mobile robots, often in a fully
autonomous mode. An example of this is ‘NARVAL which is an Esprit-LTR project studying the
performance and use of ‘fully’ autonomous mobile rob&&T0].

Apart from the external benefits gained from such data, improving robotic perception by providing
a form of “visual map” of the robot’s environment would greatly aid robotic task planning and mission
analysis. The concept of a visual map also provides a human “view-able” record of the robot’s iteration
within the environment and thus aids the design and development of robust, fault tolerant systems.

The concept of large-scale models of the real world raises questions concerning the scale and
efficiency of reconstruction. This is directly relevant to robotic applications and remote exploration.
The definition of small- and large-scale models could be open to debate, so for the purpose of the

ideas and discussion presented in this dissertation the following distinction is made.

Small-scale reconstruction applies to specific objects or parts of a scene where the imag-
ing system pans around the periphery. This is the imaging system is imagined to be on

the outside looking in.



Large-scale reconstruction applies to large areas of the surrounding scenery where the

imaging system can be imagined as being on the inside looking out.

In some applications this distinction is obvious and in others it is more subtle. The first three
application areas in Table.1 can be categorized as small-scale, even though the models are often
large and complex. Conversely the lower three application areas can be regarded, in general, as large-
scale. However, few of the examples in these areas could claim to perform successful large-scale
reconstruction of the surrounding scene. The reasons for this will be explained in detail in Chapter
However, the next few paragraphs will briefly expand on this.

The more information that can be derived about the robot’s surrounding environment the greater
its ability to operate effectively within it. However, the generation of large amounts of data about
that environment has distinct implications for processing efficiency and data storage. Apart from
robotic systems, the problem of the scale is found in other applications. Recent advances in VR
techniques have allowed the television and film industry to create ‘Virtual Studidi$97 where
actors are filmed performing in a large empty studio and the background scenery is added afterward
during editing and post production. Unlike the traditionadma-keytechnique of replacing the blue
background of the real studio with some other scene, where the camera must remain fixed, the virtual
studio system allows for free movement of the camera and interaction between the actor and the
virtual environment. This is only possible because the position of the camera and the actors within a
full 3D VR model of the film set, or scenery, are known at all times. This technique requires detailed,
large-scale scenery models which are constructed manually over many hours by skilled technicians
using CAD modeling or computer graphics tools. The concept of a mobile robotic system which
could survey the local environment in order to reconstruct an accurate, photo-realistic, 3D model of

the scene, or film set, would probably be an attractive alternative. As yet, there is no evidence of a



system capable of producing such large-scale 3D models of the imaged environment autonomously.

In all of the applications mentioned here, fast access to the reconstructed model has often been
desirable but has rarely been possible. Many of the systems that have been developed to date have pro-
duced impressive results. However, in general, these have involved the application of strict constraints
and been computationally intensive. These constraints range from static scenes with fixed illumina-
tion to known motion and/or fixed camera geometry. While the application of constraints in this area
of research is almost mandatory their use should be minimal and always viewed in the context of the
target application. Moreover, in the case of applications, such as robotic exploration, the requirement
for large-scale models of the surrounding environment suggests the need for a system which can deal
with totally unconstrained, dynamic scenes.

The two historic methods of image data acquisition for reconstruction have been laser scanning
and stereo imaging. Both these have been successful since they provide the highest possible accuracy
of any system to date. However, they have been accompanied by their own set of limitations. Laser
scanning systems are expensive, require calibration and a degree of expert use in order to gain good
overall coverage. As such, they are more suitable for scanning static objects than large-scale scenes.
Active vision systems, employing an actuated stereo head, introduce known camera geometry which
simplifies many of the problems. These system are much better for reconstructing scenes but still
suffer from the problem of “where to look next”; that is how to synchronize the camera motion for
efficient capture of the scene for reconstruction. Hence such these systems require complex control
algorithms and/or give poor coverage.

Recent advances in camera calibratidaf94 and the analysis dfomographyPZ98 ST9g have
allowed for the relaxation of many of the constraints and a solution to the inherent cyclic problem of
feature correspondence versus camera calibration; the solution of one greatly aids the other. This

has lead to the introduction of systems which employ only a single, hand-held, video camera. These
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systems offer a major break through, since they allow for arbitrary motion of the camera and avoid the
need for the initial calibration of the camera using precision calibration objects which are placed in the
scene. However, even a simple, hand-held video camera requires some expertise in order to capture
the whole scene. There is also the question of the considerable amount of image data produced by a
video camera and how much of that data is useful for reconstruction. If the camera motion between
subsequent frames is small then the stereo effect is minimal and the frames can not be used for scene
reconstruction. This suggests a large amount of redundant image data will always be present in such
systems. Furthermore, autonomous reconstruction from such image sequences would require some
measure of minimum disparity, which, without known motion of the camera, is scene dependent.
Consequently, robotic applications for such systems are unlikely.

The introduction of the single camera reconstruction systems has given rise to the concept of
the “uncalibrated” approach and is often thought to be in competition with the traditional calibrated
approach. This is extremely misleading since the approach does include a method of calibration,
but without the need for an object in the scene. It also has an inherent limitation in that it can only
recover accurate scale of measurement, not absolute measurement. This approach can therefore only
be used to reconstruct, at best, a scaled model of the scene. The reason for this will be covered
later in Chapter® and6. A limited but more immediate support for the above statements can be
gained for reference to TabRl Reconstructions from single, hand-held, cameras in free motion are
therefore only effective for VR applications where the accuracy of measurement is less important than
the visual appearance or the ease with which the scene can be captured. For most other applications,
the necessity for accurate measurement requires the “calibrated” approach. Again this is explained
in considerably more detail in Chapte2sand 6 with numerous supporting references. The terms
“calibrated” and “uncalibrated approaches” will not be used in the rest of this dissertation for the

reasons stated here.



The obvious alternative to these imaging systems, that solves some of the conflicting issues, has

been the idea of simulating the stereo effect with single camerartéahtanicallyscans the horizon.

These will be discussed in detail later in Chaptend3. Several such systems have been proposed

but all of them have relied on either complicated mechanics, specialized mirrors and prisms or em-
ployed proprietary software and none, to date, have successfully demonstrated 3D reconstruction on
either scale. However, the imaging system, termeleaiscopic Stereby its inventors, has a unique
imaging geometry which allows for the use of many of the latest methods applicable to standard stereo
imaging. This is achieved by creating multiple instances of a conventional stereo vision system by
using a single camera with a rotating, flat, mirror and processing sets of image sequences to recover
the true, Euclidean models of large-scale scenes via incremental estimation of the observed 3D geom-
etry. Although the imaging geometry of periscopic stereo has a number of advantages its “cross-eyed”
configuration means that it can not be used witfimecamera models to recover structure which has

a small depth compared to its size. That is periscopic stereo is effectively long sighted and can not be
used in applications requiring high accuracy of small structure.

The research presented in this dissertation draws together a number of algorithms and techniques
reported in the literature on 3D reconstruction and applies, suitably modified versions, to the image
data captured by a periscopic stereo system. While these modifications, taken as a whole, could be
regarded as the development of proprietary software, the author would argue that individually their

origin in standard, proven, stereo techniques does not justify the label of “specialized software”.



1.1 Research Objectives and Structure of this Thesis

The aims of this research are twofold. The first is to demonstrate that periscopic stereo is more than
just a concept but is a realizable imaging system. In order to achieve this each of the individual
processes in the system that implements 3D reconstruction are reviewed. In each case the image
processing and computer vision techniques normally used in stereo imaging systems are assessed
for their compatibility with the peculiarities of periscopic stereo image data. The second aim of this
research is to demonstrate that periscopic stereo has many inherent advantages which make it uniquely
capable of producing large-scale scene reconstructions.

This thesis begins with a short review of 3D reconstruction from imagery, identifying some of
the recent influential research in this area and sources of useful information. Specific advances in
individual topics will be identified in the relevant chapters, each of which will begin with its own brief
introduction. A comment on the choice of software framework for research into image processing and
computer vision techniques is included since many of those reviewed are from established methods
contained therein.

Chapter3 reviews the concept gieriscopic stere@nd reworks the original analysis to yield a
practically realizable imaging system. The design and construction of a periscopic stereo head are
presented together with advice on operational requirements and use. The inherent nature of rotating
image data is recognized and the two possible methods of correction are identified. These competing
methods become a continuing thread throughout this dissertation. To date a functional system which
produces complete large-scale scene reconstruction is still in development. Consequently, many ad-
vantages expected from periscopic are yet to be realized. All the experimentation presented in this
dissertation has been conducted on image data captured from a “simulated” periscopic stereo head

using a suspended camera and a mirror on a turn table. A description of this system and the capture



of the image data is included.

3D reconstruction relies on accurate, sub-pixel, localization of image features. Established, derivative-
based, methods of feature extraction suffer from an inherent weakness which has particular implica-
tions for reconstruction. That being the inherent use of filtering in derivative based methods induces
localization errors in the derived features. While this is arguably small, any induced error in the
initial stages of processing will undoubtedly be propagated and should therefore be avoided where
possible. Chapte# briefly reviews the requirements of the feature extraction process for recon-
struction, together with the SUSAN algorithrBB97 which is reportedly designed to address the
limitations of standard methods. Modifications to the implementation and operation of both one- and
two-dimensional, SUSAN, feature detectors are included.

Matching image features that correspond to the same feature in the world is essential for the recov-
ery of depth information. This has been a topic of considerable interest to the computer vision research
community. Chapteb reviews the standard approach to the correspondence problem, identifying the
constraints that are often employed in the solution. An algorithm, applicable to a stereo imaging sys-
tem with small, known, relative motion between the views, is presented. This algorithm, based on
existing techniques, incorporates a practical compromise which simslagescorrelation [TM94]
with image patches warped according to the specific relative camera geometry imposed by periscopic
stereo.

All practical 3D reconstruction systems require some form of camera calibration. The ability to
calibrate an imaging system and to maintain some measure of its continued accuracy is fundamental
to its validation and acceptance. The research presented in this dissertation therefore pays particular
attention to the calibration of periscopic stereo, specifically for the purpose of large-scale reconstruc-
tion. Chaptel6 reviews the most widely referenced techniques for camera calibration and introduces

a new technique, essentially applicable to periscopic stereo but valid for standard stereo camera sys-
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tems. This method, termedCalibration in a BoxX, combines the epipolar calibration of a stereo
system with standard grid calibration in a novel method that accommodates autonomous calibration
prior to, and re-calibration during, operational use. Chaptessind6 contain the results of a number

of experiments with the individual techniques.

Chapter7 completes the process of generating 3D structure from images with a brief review of re-
construction of multiple depth images. The generation of large-scale models of the scene is discussed
and the advantages of delaying the correction for the rotating image data, inherent in periscopic stereo,
is presented. Chapt8rsummarizes the major points presented in this dissertation and concludes that
periscopic stereo is a viable imaging system for large-scale 3D scene reconstruction. A discussion of
the future direction of research into large-scale reconstruction is also given together with recommen-

dations for the implementation of the reviewed software techniques.
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Chapter 2

Review of Relevant Work and

Background Information

A person’s ability to estimate depth stems from the simple fact that they have two eyes. However,
humans also use secondary cues from the imaged scene to estimate structure. Artists have used depth
in pictures to convey the concept of structure in two dimensional (2D) representations of three dimen-
sional (3D) objects for centuries. Getting a machine to estimate 3D information from 2D images in
order to discover something about the structure of the imaged world, is not exactly a new concept ei-
ther. Marr Mar82 proposed various ideas about 3D, scene reconstruction in the late 1970’s and early
1980’s which are still referenced today. A paper by Tenenbaum proposing scene modelling using var-
ious “shape from X” techniques appearednmage Modelingedited by Rosenfeld in 1980 FB8Q.

The background to research in this area is therefore considerable. To carry out an exhaustive review
of all the work in this area would be excessively time consuming and not particularly productive,
since much has been superseded by later work. Most of the following review will therefore be con-

strained to the last decade or so. However, a good collection of general papers covering the major
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achievements in computer vision between the late 1970s and mid 1980s can be fR@adlings in
Computer VisiofFF87. Included there is the noted paper by Brooks\6sual Map Making for a
Mobile Robotwhich has been an inspiration of many projects, including this one.

This chapter begins with a brief overview of 3D scene reconstruction and continues with the basic
concepts that are encountered within this dissertation. Some of the influential research connected with
3D reconstruction projects in recent years are also identified. An introduction to 3D reconstruction
and the associated computer vision techniques can be obtained from a number of comprehensive text
books on computer, and/or machine, visi@a{/97, JKS95 SHB99. More specialized texts which
give an excellent review of 3D Computer Vision are by Klette, 8okland KorscharkK[SK98] and
FaugerasHau93. Another excellent text, by Hartley and Zisserm&tZpQ], has just been published.

The book includes an extensive review of many techniques, particularly from the viewpoint of imaging
geometry, and extends their earlier wokkZ92] which provided a thorough examination of the classic
mathematical treatment of projective geometry by Semple and Kneelsi&[ In addition to

these publications, an excellent resource for computer vision research is the collection of on-line
tutorials and references maintained by the Computer Vision Laboratory of the Department of Artificial

Intelligence at Edinburgh University.

2.1 Overview of Scene Reconstruction

The process of image formation in a camera, as in the human eye, can be explained with the use of
pinholecamera model. Rays of light reflected from the scene pass though a single point, called the
centre of projectionand project on to a flat plane some distance behind. This spatial transformation

of light from 3D objects onto a 2D image plane is knowrpasspectiveor central projection. This

1The CVonline website can be found attp://www.dai.ed.ac.uk/CVonline/
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geometrical relationship between the camera and objects in the scene can be modelled in terms of
their respectiveoordinatesystems. The basic theory of perspective projection via the transformation
across these coordinate frames is provided in AppeAdix

In reality, the image on the plane at the rear of a camera is inverted. However, by moving the centre
of projection back behind the image plane a geometrically equivalent model is produced without the
inversion. In this configuration the various concepts of projection are easier to visualize. This model
will, therefore, be used throughout this dissertation. Although some estimation of depth is possible
with a single image, it requires a number of related cues within the image data and is often, only a
rough approximation. The obvious method of recovering depth is to employ two views of the same
scene and estimate depth from the disparity between corresponding features in the two images. The
geometry of two cameras, referred togg@polargeometry, is also covered in Appendix

From an overall “systems” viewpoint 3D reconstruction can be divided into three distinct process-

ing stages;

1. Image Pre-processing.

2. Shape fronX.

3. 3D model construction.

This is a bottom-up approach to reconstruction was proposed by Man8p] in the early 1980's

and assumes little or no prior knowledge is given. This is still the basis of many systems including
periscopic stereo. The alternative top-down approach assumes a priori knowledge of the scene or
the objects within it and attempts to recognize elements based on models. This model-based approach
has considerable merit in applications where the recognition of specific objects is paramount and there

are a number of practical examplg€dda86 NFJ93. However, the difficulty in defining models for
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arbitrary scenes or objects tends to make this approach less attractive for 3D reconstBiBOS [
chap.9].

In the bottom-up approach the pre-processing stage involves the detection of basic features in
the image such as points, lines and curves in order to estimate some useful geometrical cues about
the structure. Once these featuresjmage tokenshave been identified they can be processed by
one of a number of techniques that estimate some measure stdipeand/or depth of the objects
in the scene. Using this “shape” terminology, the concept of using two corresponding views could
be described as “shape from stereo”. However, this is almost always referred to, simgiigteas
matchingin binocular vision systems. Unfortunately, recovering depth for stereo is not as simple as
it sounds. There are two inherent problems, explicitly related to each other, which must be solved
in order to extract accurate estimates of depth. The first is to identify and matchriesponding
features in the left and right images. The second is the calibration of the camera system itself. This
involves estimating the internal camera parameters, which define the image formation, and the spatial
relationship between the two camera positions. Both of these continue to be the subject of major
research effort.

The remaining, “true’shapetechniques calculate depth indirectly by first estimating the surface
orientation from the image data and then integrating over a local area. These techniques have been

grouped into:

e Shape from Motion (SFM), similar to stereo but with either a single camera or the scene in

motion (usually the camera). This is the most widely used method.

e Shape from Shading (SFS), exploits the change in image intensity between corresponding im-
age points of objects with known reflectance properties. This relies on fixed illumination and

accurate reflectance properties of the objects within the scene, both of which are not usually
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known.

e Shape from Texture (SFT), uses the change in either the size or density of texture elements to
determine orientation, either directly or by first determining the ‘vanishing point’. This is only

useful if there are sufficient areas of regular texture.

e Shape from Focus (SFF), relies on the fact that only objects at a certain distance from the
camera, depending on the ‘depth of field’, will be in focus. All other points will be blurred in

proportion to the distance from that point.

e Photometric stereo, is similar to SFS but uses images with different scene illumination, captured
by a static camera. Relies on knowing the surface reflectance of all objects and requires a static

scene, so has limited use.

All these methods rely on knowing the depth of at least one point on any object in order to recover
metric structure. Apart from SFM, these techniques are generally used to yield secondary cues about
the structure of the scene and are often combined with the more direct, stereo based algorithms. The
use of shape techniques, is beyond the scope of the research presented in this dissertation.

Having obtained depth estimates and/or some basic information about the geometry of the scene, a
disparity imaggoften referred to as a range image, 2.5D sketch, or depth map) can be produced in or-
der to display the inferred structure. At this stage some form of texturing could be used to improve vi-
sualization of the recovered scene. Such representation igistilcenterednd notobject-centered
which is required for fully interactive 3D representations, such as those used in most 3D CAD mod-
elling tools. The final, 3D modelling stage therefore attempts to determine such object-centered de-
scriptions from the basic depth information and secondary cues by employing mititkxl-based
recognitionschemes oimaged-based reconstructia@igorithms. The representations of 3D objects

are largely dependent on which of these methods is chosen and there are now a number of possible
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alternatives which, themselves, fall into two distinct clasgekimetricandsurfacemodels. This last
stage of the reconstruction process is often considered to be outside the remit of Computer Vision and
relies heavily on techniques developed for Computer Graphics. An excellent, well-referenced, text
covering this discipline is by Foley, van Dam, Feiner and Hughd3FH97. Again, the subject of
modelling 3D data is beyond the scope of the research presented here.

This provides a cursory overview and does not consider the “type” of 3D reconstruction required
or the precise nature of image data captured from the scene. Both of these facts are closely related

and fundamental to any further consideration.

2.2 Review of Influential Work in Scene Reconstruction

3D scene reconstruction depends a great deal on the type of imaging system employed. The use of
single images, stereo pairs, triplets or image streams from video, all require a different approach.
These, in turn, depend on the amount, or lack, of camera calibration information available. It has been

shown Fau92 HGC9] that,

“in the absence of any constraints, structure can only be recovered up to a projective
ambiguity (which differs from truekzuclidean structure by some unknown 3D projective

transformation) from a pair of uncalibrated views”.

The “type” of reconstruction can, therefore, be classified according to the ambiguity of the resulting
model from the true, Euclidean structure. Mundy and Zissernv&rOB] showed that the overall
accuracy of reconstruction is related to the groups of projeqgplamar transformations$K52 and
developed a framework for specifying the ambiguity resulting from various types of imaging con-
straints and projective invariants. Tal@d, has been reproduced from that shownHiZ0] and lists

the four groups of projective transformations:
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gns

Group and dof Matrix Invariant Properties
o At only thecross-ratioof lengths and a few geometrical
Projective, 15 dof v v relationships such as intersection, tangents, inflecti
and the sign of Gaussian curvature.
Affine, 12 dof A parallelism, rgtlos of areas and _Iengths
ol 1 on collinear and parallel lines.
Similarity, 7 dof sR t all of the above and the ratio of length and angle.
(or metric) ol 1
R t inherits all the above plus volume.
Euclidean, 6 dof oT 1

Table 2.1: Hierarchy of Projective Transformations.

where A is an invertible3 x 3 matrix, R is a 3D rotation matrixt = (t,, t,, t. )T is a 3D

translation,v is a general 3-vector, a scalar an® = (0, 0, 0 )T is a null vector. It should be noted

that, while the subsequent transformations in the table inherit the invariants from those preceding
the converse is not true. These four groups of projective transformations define the stratification of
3D geometric structurePol0J where Projective is the most general form and Euclidean the most
constrained. These terms are also used to describe the type of reconstruction or its ambiguity, except
for similarity which equates tonetric, or scaled-Euclidean, reconstruction. The cross-ratio of four

collinear points is defined as:

cross(&y1, &o, T3, T4)

&1 — o] |B3 — &4

& — &3] | B2 — 4
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where&; are the vertices on a line in homogeneous coordinates for either 1D, 2D or 3D space, thereby
making it projectively invariant.

Table2.1clearly demonstrates the complexity of the problem. The camera, assuming the pinhole
modef, performs the most general projective transformation, yet the ideal result is the construction
of a full, Euclidean, model from which real-world measurements can be extracted. Projects in this
area of computer vision research therefore aim to reduce the ambiguity of the reconstructed model as
far as possible, given a set of constraints imposed by the particular imaging system employed and the
nature of the imaged environment.

Applying constraints to the problem of 3D reconstruction is an inherent part of any solution. Over
the last decade, the most obvious constraint, the calibration of the camera, has been studied in great
depth. If a camera system is uncalibrated, then the observed structure, from any given image pair, can
only be recovered up to a projective ambiguity, as quoted above. However, if additional constraints
are available, this projective ambiguity can be reduced so that an affine or a metric reconstruction
becomes possible. Luong, Maybank and FaugdtabIP2] showed that an affine reconstruction can
be achieved if three or more views of a static 3D structure are acquired by the same camera in general
motion with arbitrary pose and introduced the texgif-calibration The concept of camera calibration
without capturing an image of a calibration target placed in the world was presented at the same
time by Hartley Har93. Subsequently this technique has been refined for stereo image pairs with
known relative motion, or separation, between the views and is often referreepipatar or auto-
calibration. Examples with pure translatioMpyGvDP93 PH9Y, pure rotation Har94 and known

general transformatiorHMDB95, HC99, have been reported and reviewdif97, Zha98 TM97]

2There are a number of possible camera models - the parallel projectiaffiner camera model assumes parallel light

rays, not necessarily orthogonal to the image plane (as in orthographic), where the projection centre is at infinity. This is of

particular use when the objects and/or scene depth are very small
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in some depth.

All of the techniques mentioned above approximate the camera projection matrix by first estimat-
ing theFundamental Matrixthat defines the epipolar geometry between two views, as described in
AppendixA. However, without the addition of other constraints, these techniques can only recover
sufficient information for reconstructiomp to scale They can not yield the true, Euclidean, struc-
ture of the scene. Only with the inclusion of some “known” data, inwloeld coordinate frame can
Euclidean reconstruction be achieved. It should be noted, however, that Euclidean reconstruction is
not always required and projective reconstructions are often adequate for many applications. The de-
sire for a Euclidean reconstruction requires calibration by the more traditional method of using some
knowncalibration pattern, or grid, placed in the imaged scene. The most popular implementation
of this was reported by Tsairga87 but various refinements have since been maaai93 HZ0(Q].
Unfortunately, these methods suffer from the obvious limitation of requiring a calibration object and
therefore require some “off-line”, “prior-to-use” processing. They are often applied to each camera,
of the stereo pair, separately and therefore fail to make use of the strict epipolar constraint of two view
geometry which is the most fundamental aspect of stereo processing.

Most, if not all, of the reconstruction systems developed to date are intended for a particular ap-
plication which dictate the choice of imaging system and subsequently the reconstruction techniques
employed. Historically, there were only two basic options for the image capture system; calibrated
stereo heads, or a monocular camera in motion. The choice of which to use was governed to a large
extent by the cost of the hardware or the complexity of calibration. In general, the earlier systems
concentrated on the reconstruction of specific objects or scenes, using images captured from positions
surrounding the point of interest. These can be referred to as “small-scale” reconstructions, as defined
on page4 of Chapterl . The limitation to small-scale reconstruction stemmed partly from the pro-

cessing capacity of the systems but also, more importantly, from a lack of efficient coverage of the
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scene, except in cases where large, expessiaaimaging equipment is used.

In the last decade, or so, a third type of imaging system has emerged which attempts to address the
problem of “where to look next” by scanning the entire scene, effectively to “look every where”. Some
of these “alternative” stereo imaging systems cremtmi-directionalstereo by creating panoramic
views, or mosaics, using special mirror systems, or prigviiél89, YK90, GG93 PBEPO]. Others
form a “virtual” stereo system using a monocular camera rotating on a turn t&i67, MB92,
KS97]. The specific imaging geometry of these systems will be discussed in Cl&apteis the
author’s opinion that these systems are, in general, either “too complex”, “too expensive”, or have not
completely solved all of the extra processing problems incurred by such systems. This opinion is not
unsupported by the referenced author’s themselves who claim that the analysis of some methods of
omni-directional stereo (fish eye lens, spherical mirror) “are rather local, in the sense that they have
concentrated on the problem of acquiring 3D information based on the motion stereo method and
much attention has not paid to how we plan the next observatd6n92]. This view is supported
in [MB92] who insists that “the change in viewpoint must involve a translation of the optical centre.”
However, PBEPO] claims that “capturing panoramic omni-stereo images with a rotating cameras
makes it impossible to capture dynamic scenes.” The author of this dissertation disputes this last
claim since, if the angular velocity of the rotating camera is kept constant, then any structure with an
appropriate motion vector is static whereas any structure with a greater motion vector is obviously in
motion. The capture and reconstruction of dynamic scenes with a camera in motion is therefore not
only possible but has already been demonstrate@MBep].

Unlike most of these previous examples of alternative stereo systems, periscopic stereo does not
concentrate on producing a full panoramic view, it simply uses the inherent geometry of a panoramic
scan of the surrounding environment, acquired as the natural consequence of rotating a periscope, at

a fixed velocity, above a central optical axis. As stated earlier, one of the advantages of periscopic
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stereo is that it is able to make use of many existing techniques with “relatively” minor modifications.
Now that most of the basic concepts have been identified, the following is a brief review of three
major projects, two of which are directly relevant to this area of research. These projects have been
chosen because they are, in the opinion of the author of this dissertation, most responsible for extend-
ing the boundaries in this area of computer vision research and will continue to be the primary source

of reference in the future.

2.2.1 Review of Major Research Projects

There have been a number of recent international workshops devoted specifically to the techniques

associated with scene reconstruction and 3D computer vision. The most notable were;

¢ 2nd Joint European—US Workshop on “Applications of Invariance in Computer Vision”, Ponta

Delgada, Azores, October 19984FF93

e Int. NSF-ARPA Workshop on “Object Representation in Computer Vision”, New York City,

NY, USA, December 1994HPBG94

e Int. Workshop on “Object Representation in Computer Vision I1I”, Cambridge, U.K., April

1996. PZH99 (in conjunction with ECCV96).

e European Workshop on “3D Structure from Multiple Image of Large—Scale Environments (SMILE’98)",

Freiburg, Germany, June 199&\G99] (in conjunction with ECCV98).

e |IEEE Workshop on “Multi-View Modeling and Analysis of Visual Scenes”, Colorado State

University, Fort Collins, USA., June 1999K$§99 (in conjunction with CVPR99).

Of particular importance is the 1998 European ‘SMILE98’ workshispG98] which brought

together researchers from the most prominent projects in this area of research. The following is a brief
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description of the three main projects represented at SMILE’98 workshop. A complete description of

these projects is given in the introduction chapter of the workshop’s procee#nG9§].

VANGUARD - (Visualization Across Networks using Graphics and Uncalibrated Acquisition of
Read Data) aimed to automatically create realistic 3D models for use in AR and VR applica-
tions from a single “uncalibrated” video camera moving in unknown and unconstrained motion.
The applications selected for the project focused on four specific areas; ‘3D Surface Modeling’
to improve geometric modelling techniques and produce more realistic models, ‘Collaborative
Scene Visualization’ where CAD modelled objects are combined with 3D models extracted
from imagery to create dynamic virtual environments, ‘Tele-exhibitions for museums’ where
all the exhibits and museum interior are reconstructed in such a way to allow fully interac-
tive “walk throughs” over the Internet and finally ‘Stereo Visualization of objects and scenes’
from monocular image sequences to create ‘pseudo-holographic’ displays. These applications
required drawing together expertise from both Computer Graphics and Computer Vision and
were only made possible by classifying objects within the scene and extracting both geometry
and surface descriptions specific to these classifications. Three types of objects were extracted
and modelled; ‘Individual objects’ for which a full model was required, ‘room interiors’ for
which only a part models were required and ‘natural outdoor scenes’ which are largely planar
textures. The project has now concluded but some related work still continues at Oxford, where

the project’s website is located (aitp://www.robots.ox.ac.uk/"vanguard/ ).

CUMULI - (Computational Understanding of Multiple Images) is a long term ESPRIT project fo-
cusing on multi-image geometry and its application to 3D industrial metrology. It is effectively
a follow up project to the ESPRIT-BRA project VIVA. The objectives, building on the in-

sights into the geometry of 3D perception provided by VIVA, are three-fold. Firstly the aim
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is to recover 3D structure under three different situations; ‘Unknown camera parameters and
scene’ which has been well studied but lacks unified theory, ‘Partial camera or scene knowl-
edge’ wherea-priori image cues are used to extend the range or quality of reconstruction from
minimal image data and the correspondence of ‘non point-like image features’ such as lines,
curves and planes where the stronger geometric constraints allow relaxed conditions for recon-
struction and improve accuracy. Recent advances in multi-camera geoméﬂy,[Trin],
auto-calibration IHA%, Tri974 and efficient reconstructiorSpa9¢ have all been reported.
Secondly is to study the concepts of 3D perception in terms of the image sequence and non-
rigid motion estimation. Although the same underlying theory applies, the fact that under cer-
tain circumstances the geometry inherited from the discrete case becomes degenerate leads
to a requirement for more appropriate incremental geometry to be developed. This also in-
cludes the study of multi-image matching constraints, the development of better tracking tools
and more efficient reconstruction methods for the continuous recovery of large-scale environ-
ments. Lastly the generation of automated algebraic and geometric reasoning tools which
are required for the construction of complex large-scale models for AR and VR applications.
This is a new area of research which suggests that geometric models should be more than
just textured, rigid wire frames and should be more dynamic and incorporate real-world con-
straints. This project is ongoing and more information can be found ratp:{www-

sop.inria.fr/robotvis/projects/ )

PANORAMA - ACTS PANORAMA Project consists of a consortium of 14 European partners from
various universities, research institutes and industry and concentrates on the enhancement of
visual information exchange in telecommunications with 3D telepresence. The system un-

der development makes use of a calibrated trinocular camera system, an autostereoscopic dis-
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play, real-time image processing using special purpose hardware which enables the creation
of dynamic and photo-realistic models for video conferencing. The system incorporates tech-
niques for fusing of 3D model data with image textures and computer generated graphics to
create the photo-realistic models. This image synthesis approach also generates interpolated,
intermediate views using vector coding techniques which smooths out motion effects of the
deformable 3D models. Details of the project can be foundhttp://www.tnt.uni-

hannover.de/project/eu/panorama/

‘VANGUARD’ and ‘CUMULLI" are regarded as being particularly relevant to the research pre-
sented in this dissertation. The ‘VANGUARD'’ project provides an insight to the level of accuracy
acceptable for 3D reconstructions for VR “walk-through” applications and has successfully demon-
strated the use of single camera systems. However, Euclidean reconstruction is not possible with this
system, as described in Sectigr?. The ‘CUMULI’ project provides advances in the description
of multi-camera geometry and calibration which are more directly relevant to periscopic stereo and
mobile robot applications. ‘PANORAMA is not particularly relevant to the research presented in
this dissertation, but has been mentioned to complete a picture of the “state of the art” of associated
technology.

Although both the ‘VANGUARD’ and ‘CUMULLI’ claim to address (directly or indirectly) large-
scale 3D scene reconstruction neither have been “fully” demonstrated. The examples given by both
projects, available via their respective web sites, are impressive but are only sections of large-scale
reconstructions. The author of this dissertation has not, as yet, found examples of navigable (in
both a VR and a robotic sense), large-scale environments. This may be due, in part, to commercial
considerations. However, the fact that neither of these projects addresses the fundamental problem of

“where to look next”, suggests that these and many other similar projects have a limited capability of
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producing large-scale, VR style, environments.

As suggested at the beginning of this chapter, there is far more literature on the subject of 3D
reconstruction than can be presented here. The above is therefore only a cursory review of increasingly
expanding area of computer vision research. A list of people, and/or collaborating institutions, on the
projects given above, together with a short list of some other notable reconstruction projects, is given

in AppendixB.

2.3 Choice of Image Processing and Computer Vision Software Frame-

work

Before any useful results can be obtained from experiments into computer vision techniques a software
environment, or framework, is required to house the various types of image processing and display
tools. Even if this framework amounts to little more tharnaakhoccollection of programs, the inter-
action between them is extremely important and will have a considerable effect on the productivity.
There are two obvious choices, “off-the-shelf” or “writing your own”. The author of this disserta-
tion expended considerable time on the assessment of such frameworks and Aghpraliiddes an
insight to the considerations required when choosing or writing your own framework.

The software framework ultimately chosen to support the research presented in this dissertation
wasTina 3. The reasons for this choice are as follows:
Firstly, Tina is written in ‘C’ which provides, in the opinion of the author, the best compromise
between the application of object oriented design (which is possible in ‘C") and the flexibility to

define software models and programming structures required by most, “state of the art”, computer

3The source code, complete with documentation and examples, is available for research use on public license and can

be downloaded fromhttp://www.niac.man.ac.uk/Tina/index.html
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vision techniques. It has a simple graphical user interface which offers the possibility of construct-
ing scripted algorithms, as well as the easy construction of button activated processing. There is a
considerable amount of functional decomposition designed into the source code at all levels allowing
for the maximum amount of code reuse and the possibility to developing new algorithms quickly and
efficiently. The central core of the system is designed around a stack memory model which allows
simple transfer of image data between various processing tools. This allows for the comparison of
algorithms with efficient ‘reload’ data and ‘undo’ functionality. Each tool is however free to create
new image data, or make copies, as required. Access to the image data is extremely flexible, allow-
ing complete random access down to pixel level, but via consiget@ndput, ‘data-type’ invariant
methods. Many of these are implemented by efficient, in-line, macro’s. The data structures are well
conceived and offer good flexibility. In particular most of the image data objects conpbpar-

ties list which allow for the dynamic extensions of, and associations between, data objects. A full
set of tools for the usual forms of dynamic data structures, such as, single-ended, double-ended and
recursive linked lists, trees and graphs, are also included. The framework contains a sufficient set of
mathematical, image processing and computer vision libraries, as well as useful graphics and display
tools, which are appropriate for 3D reconstruction tasks. Finally this framework, unlike many of its
contemporaries, is a small, lightweight package, consisting only of the more essential components.
This greatly simplifies its useTina is not, however, perfect and does have a few short comings.
Although the documentation is quite good, the code itself is poorly commented in places and contains
the occasional bug. In the opinion of the author of this dissertalim, is probably the most flexi-

ble image processing framework freely available and does not incur excessive effort before productive

research can be realized.
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2.4 Summary

This chapter provides background information for the concepts and terminology used in this disser-
tation. Using Marr’'s bottom-up approacMfr87 four processes are identified which constitute 3D
reconstruction. A pre-process, feature detection stage provides the basic information for three mutu-
ally dependent processes. These are; stereo or correspondence matching, stereo camera calibration
and the projection of disparity images or reconstruction. Aspects of all of these are covered in this dis-
sertation. A final post-processing stage, for the production of visually realistic models, is not covered
in the research presented. Technical reviews of these subjects are deferred to the specific chapters.
Two research projects have been identified which have provided both impetus for the research
presented here and a source of reference for the latest techniques in 3D reconstruction. An image
processing and computer vision framework has been reviewed since this also provides a source of

proven techniques.

28



Chapter 3

Periscopic Stereo Vision

In Chapter2, the concept of implementing a stereo imaging system with a single camera, was identi-
fied as a possible solution to the problem of efficient capture of the surrounding scene. A number of
research projects have supported the concept of “alternative” stereo imaging systems in recent years
but, in general, most of the systems proposed to date have introduced as many problems as they claim
to have solved¥1YI89, YK90, IYT92, MB92, GG93 Sze96 PH97 PBEPO]. Not all of these have

been directly concerned with 3D reconstruction. However, each one has attempted to capture suf-
ficient information from the image data to implement various forms of robot navigation. An early
example presented itMYI189] used a camera with a fish-eye lens mounted on a mobile robot and
recovered depth of vertical structure in the scene from a sequence of images, captured while in mo-
tion. Apart from improving the field of view the system provided no performance advantage over a
standard single camera in motion to outweigh the complexity of image processing which required a
spherical mapping to convert the distorted image created by the fish-eye lens. Other systems have
used the reflections from a conic mirrdf{90], a split mirror [GG93 and only recently spiral (more

actually described as a dome) mirrors and spiral I&BHP0]. With the exception of §G93, all
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these systems required specialized feature detection and correspondence algorithms which add con-
siderable complexity for advantage of a panoramic view which ultimately yields low accuracy depth
information due to the lack of either any translation of the camera’s optical center or small baseline.
However, one major advantage of some of these systems is that they are entirely self-contained with
no external mechanics. While these imaging systems have been applied to robotic navigation with
varying degrees of success, as yet, there are no successful application to 3D reconstruction.

The use of rotation to achiewenni-directionaktereo was first, successfully, demonstratedMi 92].
This work and later exampleSfe96 PH97 rely on rotating the camera on a turn table. IMT92]
the panoramic view is created by capturing the scene through two vertical slits mounted on the turn

table in front the of the camera, as shown in Figdue This has the obvious disadvantage of requiring

® object point in scene

image plane

rotation axis

(a) imaging geometry (b) rotating camera

Figure 3.1: Sketch of rotating turn table camera with imaging geometry.

large, cumbersome, equipment. It also introduces a complication to camera, or system, calibration due
to a requirement for accurate positional feedback for the relative displacement of the camera. How-
ever, the recovery of depth information from these rotating camera systems is much better than the
static omni-directional systems since the baseline distance is greater and can often be varied to provide

improved performance for near or distant scenes. Apart form referend€ned] and [Sze96PH97,
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which have a similar imaging geometry, Figu8el has been reproduced here for visual comparison
of these systems and the genealogy of periscopic stereo. Note in Biguhat these systems create
adivergentstereo view.

The merits and demerits of the omni-directional and rotating camera systems are in direct opposi-
tion. However, a system that combined the merits of both would be an attractive alternative, especially
for large-scale scene reconstruction. The idea of implementing a stereo vision system using a single,
flat, rotating mirror was first reported by Murray and BeardsM8p2]. In their system the axis of
rotation of the mirror was perpendicular to the optical axis of the camera, as shown in Big(ag
With this configuration imaged objects would appear to move horizontally across the image plane
for a given sequence. This arrangement yields a visually (human) sensible data set but it relies on
a somewhat complicated mechanical arrangement and an accurate measurement of the angle of the

actuated mirror plane for the camera geometry. Murray and Bearddi897] suggested a second,

image
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! Image ptane Lt
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(a) horizontal scanning mirror fronMB92] (b) rotating mirror from CC94H

Figure 3.2: Sketches of horizontal scanning and rotating cameras.
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simplified, mirror arrangement where the axis of rotation lies along the optical axis of the camera, as
shown in Figure3.2(b) However, they declared its use to be impractical due to the “tumbling” effect
induced on the image data by the trajectory ofilvial camera which rotates in sympathy with the
mirror. Clark and ChanGC94H4 adopted this second mirror arrangement and applied simple geomet-

ric transformations on the image data to return, or “untumble”, it to a visually sensible, horizontally
scanned sequence. They concluded that this arrangement would in fact offer many advantages over
existing systems and introduced the tgratiscopic stereoBoth of these configurations implement a
convergenstereo view from successive frames of the image sequence captured as the virtual camera
rotates in sympathy with the mirror.

While the difference in the imaging geometry of these systems is subtle, the implementation of
the image processing for the respective configurations is significant. In the latteiCs284(, the
configuration proposed retains all the merits of its predecessors without, reportedly, incurring exces-
sive complexity. However, the concept of “tumbled” and “untumbled” image data is a continuous
thread throughout this dissertation and is the fundamental reason for the system and image processing
analysis contained herein. This chapter reviews the concept periscopic stereo and introduces some
practical points on the construction and operation of a realizable system. The analysis of the virtual,
relative, camera geometry has been reworked here, since the version offedosd was for a
system which was mounted upside down and assumed a left handed coordinate system, in order to
allow for suitable alignment of the camera, mirror and world coordinate systems that would be applied

in the real system with the camera pointing vertically up.
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3.1 Virtual Camera Geometry

Periscopic stereo is essentially a system which implements a stereo vision system by using a mirror
that rotates about the camera’s optical axis, as shown in FR)@reThis system creates a series of
virtual camera positions where any two frames from a sequence form a converging stereo view of the
scene. The origin of the system is defined as the centre of the mirror plangightil@andcoordinate
system has been chosen in order to simplify the use of existing software withiimidoeframework.
The analysis for a left-hand coordinate system would be the same except for the interchange of some
elements in the vector and matrix representations.

The real camer&’. is situated at some distanéalong the axis labelled,, from the centre of
the mirror plane’,,,. The centre of the mirror plane is assumed to be the system origin and is labelled
O,,,. This choice of system origin is fundamental and its importance is explained later in the analysis
of depth estimation from periscopic stereo in SecBo® The choice ofX,,, Y,, and Z,, axis are
consistent with a right-handed coordinate system Withaxis pointing out into the scene. This is in
keeping with with standard theorgHB99.

With reference to Figur8.3, the basic geometry of the system can be derived by inspection. The

surface normah to the mirror plane’,,, is given by:
[sinf sin ¢, cos @ ,sinf cos ¢ |* (3.1)

and position of the mirror plane, with respect to the camera, can be deriveddrend, cos (the

translation from the real camera position to the mirror plane) and its normal such that:
C,=C,—an (3.2)

This can be thought of as a simple perpendicular projection of the real camera onto the mirror plane.
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Figure 3.3: Basic geometry for the periscopic stereo head.

The position of the virtual camera is therefore given by:

C,=C, —2an (3.3)
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Using standard trigonometric relationships EquaBddsimplifies to:

0 sin @ sin ¢ sin 20 sin ¢
C,=|p | —2bcost cos 0 =—b cos 20 (3.4)
0 sin @ cos ¢ sin 20 cos ¢

If we assume thad = 45° the respective terms in Equati@ disappear, demonstrating that as
the mirror rotates the position of the virtual camera tracks around behind it in the}jjaae0. Other
reasons for eliminating will be explained later in Sectio8.3.

Only the position of the centre of the virtual camera has thus far been determined. The analysis
must be extended to determine the behaviour of all points on the image plane. Considering some
arbitrary pointp, “near™ which is offset from the optical centre along the, y— andz—axes such
that, in general:

p, = [6x,b+6y,6z]" (3.5)
The virtual position of this point can be determined from Equa8d@with a new translation scalar,

an, for the projection across the mirror plane, as shown in Figutesuch that:

As before o, is determined from the origin of the point in question and the surface normal to the

mirror plane by considering th&t,,, - n = 0 and substituting foC,,, in Equation3.2 such that:
(C,—an) - n=0 (3.7)
Givenn -n =1, yieldsa = C.. - n, or, by the same argument, for the new point:

ap =p, - =sinf singdz + cosf (b + d0y) + sinf cos ¢ iz (3.8)

1The use ohearis to allow for a non-zeréy which is required for the transposition of the axis due to the reflection

component as shown in Figuge4
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Figure 3.4: Reflection and rotations in periscopic stereo.

Substituting for EquatioB.8in Equation3.6yields,

b, = pr_2(pr'lﬁ’)ﬁ

ox sin @ sin ¢

= b+ oy | —2(sind singdz +cosf (b+ dy) +sin cos¢pdz) cos 6

0z sin 6 cos ¢

(1 —2sin? 0 sin? ¢ ) 0z — sin 20 sin ¢ (b + dy) — 2sin? 0 sin ¢ cos ¢ 0z

= —sin20 sing dz + (1 —2cos?0)(b + dy) — sin 20 cos ¢ 62 (3.9)

—25sin? 6 sin ¢ cos ¢ 6z — sin 20 cos ¢ (b + dy) + (1 — 2sin? 0 cos? ¢) 6z
using the double angle, trigonometric relationshipsdi@ar26 and cos 260 where necessary. Equa-
tion 3.9 simplifies to Equatiol8.4whenéx = dy = 6z = 0.

A comparison of the terms in the positional vectors derived in EquaBetand3.9reveals that,

even ignoring the effect of, extrag and ¢? terms have appeared in the latter. This demonstrates
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that any point on the image plane, except the point coincident with the optical axis, will be subject
to a tumbling motion consisting of two rotational components. The first rotational component is the
circular track of the virtual camera about the mirror centre, or system origin, and the second is a
rotation of the virtual image plane about its optical axis. Both due to the effegt of

Although the system is centered about the mirror plane, none of the above analysis has been
concerned with identifying a specific reflection component. While this reflection component is present
in Equations3.4 and 3.9 it has been deliberately ignored, until now, in order to simplify and aid
description of the system geometry.

In order to isolate and remove the components which induce the tumbling motion of the image
data it is necessary to analyze the 3D spatial transformation which maps any point on the real image
plane onto its corresponding point on the virtual image plane. Assigning the spatial transformation

matrix, T, and rewriting Equation8.4and3.9as a pair of simultaneous equations yields:

c, = T.C,

p, = T.p, (3.10)

Subtracting to giveC', — p, = T. (C, — p,) and substituting foC,, C,, p, andp, yields,

0 ox sin 20 sin ¢
T- b | — | (b+dy) = q—b cos 260 - Dy
0 0z ) sin 26 cos ¢ )

(3.11)
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which simplifies to:

—6x —(1—25205%¢ )0z — bs20s¢ + (52056 ) (b + 6y) + 2520spchdz
T-1 —oy = +520s¢0x — bc26 — (1 — 2¢20)(b + dy) + s20cpdz
—0z +25%0spcpdx — bs20cg + (s20ch ) (b + dy) + (1 — 2520c2¢ )52

(1 —2sin%0 sin? ¢ )dz — (sin 26 sin ¢ )dy — 2sin? @ sin ¢ cos d 5z

= — sin 26 sin ¢ dx — (cos 20)dy — sin 260 cos P 0z

—25in? 6 sin ¢ cos ¢ 0z — (sin20 cos ¢ )y + (1 — 2sin 0 cos® ¢ )iz

(3.12)
where—bc26 — (1 — 2c¢%0)(b + dy) = —bcos26 — (— cos 26)(b + y), switching from shorthand
notation and applying alternative double angle trigonometric relationships.

Factorizing to form the transformation matrix yields:

2sin% # sin? ¢ —1 sin20 sing 2sin® 6 sin ¢ cos ¢

T = sin 26 sin ¢ cos 20 sin 26 cos ¢ (3.13)

I 2sin? 0 sin ¢ cos¢ sin26 cos¢ 2sin? 6 cos? ¢ — 1 |

The factorization in Equatio.13is derived by simply isolating the vectors components and
rewriting in matrix form. It should be noted that there was a typographical error in the first column,
third row of equation (14) inCC944, which should readin 20 cos ¢ and notsin 26 sin ¢.

The transformation matrix given in Equati@13 contains a reflection and the two rotational
components identified above. It is apparent from EquaBalBthat the virtual camera rotates about
the optical axis,Z,,, and also about the system’s vertical ax%,. Removing the rotation about
the optical axis and the reflection &f,,,, due to the mirror, would return a sequence of images to a
normal,fronto-parallel, scan of the horizon. Removing these components effectively “untumbles” the

image sequence.
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Combining the standard matrix for a clockwise 3D rotation aligutand a reflection about the

X, = 0 plane yields:

cos¢p 0 sing -1 0 0 —cos¢ 0 sing
CW Roty¢.Rflty—g = 0 1 0 0 1 0| = 0 1 0 =T,
—sing 0 cos¢ 0 01 sing 0 cos¢

whereT,,, the matrix transformation due to both components.
The matrix transformation without these componehtsan be determined fronT’ = T,.! T

which yields:
cos ¢ 0 —sin¢

T/

sin26 sin¢  cos20  sin 26 cos ¢ (3.15)

—cos20 sing sin20 —cos26 cos¢

Comparison of EquatioB.15with equation (15) in CC94H shows that they have identical com-
ponents, albeit for an interchange of the first and seconds rows and columns due to the redefined
coordinate system. Again, there is a typographical error in equation (18)G@84 where the sign
of sin 26 in the first column of the third row is incorrect. Confirmation of Equatiob5can be deter-
mined by substituting” back inT = T,,, T/ and using the double angle, trigonometric relationships,
as in Equatior8.9above.

With the squared components of the first and third rows of Equa&idBnow removed and as-
sumingfd = 45°, the relative camera geometry of the imaging system, described by Eq@ation
has effectively been reduced to a scan of the horizontal plane about the systé, akisthis con-
figuration any subsequent stereo processing can be conducted along single raster lines in the images,

instead of across the whole image plane.
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3.2 Removing the Tumbling Motion

In practice removing the tumbling motion from a sequence of image data is relatively straight forward.
As each image is recovered from the camera’s frame buffer, it can be stored in the images’ data array
by reading backwards from right to left, thereby implementing a reflection of the x image coordinate.
This equates to a reflection in the plafg, = 0, in Figure3.4, or alternatively a reflection in the
plane, X, = 0, in the camera coordinate frame in Figétel of AppendixA.

A rotation matrix, centered about the optical axis, can then be applied with an operator equivalent
to the angular displacement between frames. This is achieved using the computer graphics technique
of applying a translation to the rotation origin, a 2D rotation about that origin and finally applying an
inverse translation to the compensate for the first. This geometric transformation of the image data
often yields new pixel coordinates which lie between the original pixel grid. A close approximation
of the new intensity value for the pixel is therefore derived by interpolation. However, interpolation
effectively adds a re-sampling, or filter, component to this image “pre-processing” stage which is not,
in general, desirableoh93. This is discussed further in Chaptér

Figure 3.5 shows three frames from the original image sequence and the same frames with the
rotation about the optical axis corrected. Correcting for the rotation about the optical axis introduces a
rotating frame into the image data, as shown in FigiE€b) This frame, referred to in this dissertation
as thesilhouetteframe, complicates subsequent processing. This is discussed in Chagtavever,
it should be noted that it is not necessary to correct the virtual image plane prior to all subsequent
processing. The process of removing the tumbling motion from the image data is, in practice, similar
to image planeectification except that the trueanonical configuratiofy as shown in Figur&.6(a)

is not completely achieved. This is discussed further in Chaptarsi6 later.

2The canonical configuration for a stereo head is with parallel optical axes and coplanar image planes

40



(a) original images

(b) corrected images

Figure 3.5: Sequence of original and rotationally corrected images.
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3.3 Depth from Periscopic Stereo

Recovering depth from stereo images requires the estimation of the disparity between corresponding

image points. In a canonical stereo head the distance from some 3D point in the scene is determined

by:

If

= o)

(3.16)

wherel, is the interocular separation between the camerdsaseline f is focal length of the cam-
era/s and; — - is the horizontal disparity between the corresponding images points, as shown in Fig-
ure 3.6(a)(reproduced fromJKS95 chap.11] for ease of reference). The geometry of the periscopic
stereo head is not as straight forward. However a measure of disparity and hence an estimation of
depth are still possible.

Figure3.7demonstrates the situation where a scene point is imaged in two, sequential, virtual im-
age planes. First consider the situation where the system @igicoincides with a camera rotating,

horizontally, about its own optical centre (or thg, axis, “into the page”). For a single image mea-

Z X

rotating mirror virtua
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Figure 3.7: Depth from periscopic stereo.
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surement, the scene point is related, via similar triangles from the perspective, or central, projection

model of a camera system (see AppendljpEquationA.3) to the world point by,

T
m$:—:

f

N &

Y.
— 3.17
7 (3.17)

By rotating the camera by fixed, angular displacemeptsnultiple instances of this are generated

and depth is derived from the disparity of the image points and the focal length of the camera. Now
consider the virtual camera position displaced alongAhgaxis by I,. Rotating the mirror now
generates a series of virtual cameras each displaced by an interocular separation determined by the
angle of rotation and the distandg These parameters effectively determine the stereo baseline.
Subsequent camera positions now converge onto the system origin introducing a limitation to the sign
of the disparity. It is known that converging cameras yield an arc of zero disparity with a radius
determined by the product of the convergent optical a3&$pg, as shown in Figur&.6(b) Only

3D points beyond the arc are valid and therefore will always generate a positive measure of disparity,
assuming a calculation using left camera to right camera’s imaged points.

Using the disparity from corresponding imaged points together with the relative orientation be-
tween the camera positions, an estimate of the 3D position of a point in the scene can be derived.
However, the position of the virtual camera is determined by the spatial transforrfi@t{@noring
the effects ofl',;,) and specified in terms of the system’s coordinate frame afgut Applying the
change in coordinate system and the transformation, as shown in Bigueepoint, P, in the scene
is given by,

pP.,=TP.,=TP.,, (3.18)
whereP,,, P.. and P, are the point in the coordinate frames of the virtual camera, the real camera

and the mirror respectively. Thé andZ components between the real camera and the mirror coor-

dinate frames are exchanged by direct comparison as shown in BiguEequation3.17can now be
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expressed in terms of the mirror coordinate system by,

z X T2 Xm Yy Ye T, Zn
ST _fe_ _“w@dm 4 Y _Ze_ _"zlm 3.19
A VS Ty B 7/ VI Ty (3.19)

whereT’,, T/, andT’, are the respective rows of the transformation mattixignoring the effects
of T,,).

Applying the transformatioff” for the real to virtual camera coordinates yields:

cos ¢ X, — sin¢ Z,, (3.20)
sin 260 sin ¢ X,,, + cos20Y,, +sin26 cos¢ Z,, — b

and

—cos 20sin ¢ X, + sin 20 Y, — cos 260 cos ¢ Z,, (3.21)
my, = .
Y sin 20 sin ¢ X,,, 4+ cos20Y,, +sin260 cos ¢ Z,,, — b

The choice of a “sensible” angle for the mirror plane simplifies the situation considerably.

For# = 45°, Equations3.20and3.21reduce to,

cos ¢ Xy, —sin ¢ Z,,
;= 3.22
mn Sin & X, + COS b Zm — b (3.22)

Y,
_ m 3.23
My Sind Xy + OS5 b Zym — b (3.23)

and rearranging yields:

bmy = { —cos¢ +mysing sin @ + my cos ¢ ] o (3.24)
Zm
- . -
bmy = { mysing —1 +mycoso } Y (3.25)
L Zm i

Equation3.24relates a single image measuremein two unknownsX,,, andZ,, and Equatior8.25
relates the to three unknowns(,,, Y,,, and~Z,,. Given fixed multiples of yields multiple instances

of Equations3.24and3.25 either set of which can be used to estimate the depth of the imaged scene.
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In practice, a set of Equatiofds24are used to derive depth estimates because of the greater disparity
across the image plane from the rotation aboutitheaxis, refer to Figure8.5in order to visualize
this.

With reference to Figure8.5and3.7 it should be noted that the standard configuration creates
a cross-eyed stereo. In this configuration the higher frame number of any two images selected from
a periscopic stereo sequence is defined as the right hand image in a stereo pair. This is not however
exclusive and a diverging configuration is also possible by exchanging the order of the left and right
hand images of the stereo pair. This configuration is not used in any part of this research.

In theory, a selectichnumber of image frames with sniallisplacements between them can be
used to improve the accuracy of the estimates of depth and/or position. However, in practice there is
a number of limiting factors which must be considered. The following section identifies these factors

and also describes the construction of a periscopic stereo head.

3.4 Design, Construction and Operation of a Periscopic Stereo Head

Figure3.8 shows a sketch of a periscopic stereo head. From the analysis in S&&itre preferred
configuration is for al5° mirror rotating about the camera’s optical axis at some known distance
along it. While it is feasible to vary the angle of the mirror plane while in use, the added complexity

to camera calibration software together with the requirement for accurate measurement of the angle
of the mirror plane effectively negates, in practice, any such consideration. The motivation for this
research is the reconstruction of remote environments and these may be hostile to precision machinery.

The design and construction of the periscopic head is therefore guided by the need for an enclosed,

3The scene point must be imaged in all frames so there is a limit to the number of successive frames containing the

same point.
4The definition of “small” displacement is given in Sectid#

45



robust unit.

|

transparent dome !

of outer casing 2
? illumination

' compartment

separation band -
stops light dispersing
through glass section ﬁﬁ
(A
viewing section SN
of outer casing — \\
made from low —
distortion glass

support bearing

<—— 45 degree mirror

| mirror
compartment

| opaque rotating
inner casing
opaque section

of outer casing—=

+— camera lens
CCD camera with
electronic shutter |

raised camera
L — .
mounting

connecting gear

/
ring gear assembly fixed outer
casing
position sensor—
drive shaft

lower fixed

casing — <—— stepper motor

Figure 3.8: Sketch of a periscopic stereo head.

The periscopic head is constructed from three tubular sections assembled around a single central
axis. The outer casing and lower, inner casing are fixed while the upper, inner section is free to
rotate. This upper, inner section is driven by a stepper motor via a ring gear system. The ring gear
assembly sits just below the shoulder of a raised section of the lower casing which houses the stepper
motor and control electronics. The raised section allows a transmission path from the central drive

gear of the stepper motor out to the ring gear, via a connecting gear mounted on the lower section
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just below the shoulder. The camera, which is chosen to have a reasonably accurate alignment of
its optical axis and the centre of the CCD gtigs mounted on the raised section and aligned to the
central axis. The inner rotating section is opaque and has a plate at the top with an aperture to the
mirror compartment. A circular, good quaftymirror is mounted ati5° to the central or optical

axis. Such mirrors are standard components in small, home, telescopes. The outer casing is opaque,
except for a low-distortion glass viewing window and incorporates a transparent dome housing an
illumination compartment for use in environments with poor lighting. The wiring for the illumination
compartment runs up between the inner section and outer casing and therefore should be kept to
the minimum acceptable current rating for the illumination required. The outer casing sits on top
of a support bearing which allows the inner rotating section to float freely while offering stability.
The lower casing houses the control electronics, consisting of speed control and switching for the
stepper motor, via a Hall-effect sensor. The Hall-effect, or scan, sensor also controls synchronization
of the image capture buffer which effectively starts and stops each image sequence, or scan, of the
surrounding environment.

The distance between the camera and the mirror, together with the angular velocity, effectively
determines the baseline distance between the virtual stereo cameras. It might, therefore, be useful to
be able to vary the distance between the camera and the mirror. However, this complicates the design
and construction of the head. The baseline distance is, at present, fixed according to the viewing angle
of the lens such that the edge of the mirror plane is never in view (that is the reflected view of the
scene completely fills the camera’s field of view). This effectively equates to being proportional to the

overall size of the periscopic stereo head. There is no need for the use of a wide-angle, or zoom lens,

5The position of the optical axis is assumed to be coincident with the centre of the image plane, however, this is not

always the case with low-cost cameras. This is covered in more detail in Clapter
SImperfections in the mirror will translate to the image data.
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in this context; a standard camera lens capable of focusing on the mirror is sufficient.

The accuracy of the speed of rotation needs to be “relatively” high so fine pitch stepper motors,
operating in micro-step mode, are recommended. In practice, small fluctuations in the motor speed
are negligible and are not expected to affect the performance of the image processing algorithms.
However, there are obvious limitations to the absolute speed of rotation. With the standard frame
rate for video of25 fps there is a maximum speed of rotation allowable before blurring of the image
becomes a problem. This can be offset, to some degree, by the use of a shuttered camera. However
image blur should still be taken into consideration.

At the time of writing this dissertation the prototype periscopic stereo head had not be constructed.
All experiments were conducted using a shuttered CCD camera (Hitachi KP-M1E/K) suspended
above a turntable rotating #6.66 rpm (16.66 rpm = 5997.6 dpm = 99.96 dps). Figure3.9shows the
experimental setup used for creating an image sequence similar to that expected from a real periscopic
stereo head. The angular displacement between frame89#/25 = 3.9984 dpf. With approxi-
mately4° between frames the amount of overlap on the imaged scenes allows for a large number of
corresponding features to be matched across three, four or even five frames. At this, moderately, low
number of revolutions, a shutter speed of 126 second is still necessary in order reduce the an-
gular displacement while the shutter is open to an acceptialiie° and thereby eliminate any image
blur. There is obviously no synchronization between the motor, the shutter and the camera’s frame
rate in the “simulated” periscopic stereo head used for the research considered in this dissertation.

A reduction in the speed of rotation in order to reduce image blur, or improve the percentage of
corresponding features across a larger number of frames, is not an available option. This is because a
reduction in disparity between corresponding image features would lead to reduction of the ultimate
accuracy of depth estimation. It is known that the use of more than three frames of image data adds ex-

cessive computation for no extra accuracy from the numerical processing for reconstraetiRed.

48



Figure 3.9: Photograph of the experimental apparatus used to implement a periscopic stereo imaging

system.

This is discussed further in ChaptéerA speed of approximatelis rpm can be generally regarded as

an operational minimum. The alternative situation of a small increase in the speed of rotation would
allow for better measurements of disparity. However, this would also require the use of faster shutter
speeds, which effectively reduces the amount of light entering the camera and subsequently reduces

image clarity. Therefore, a practical trade off which must be made. A good initial compromise, deter-
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mined from experience, is to use only one fighér frame and effectively capture only half the image
data. An alternative compromise is to use the same rotation speed but select every other frame for
processing. Experiments have shown this to produce a usable image sequence.

The video capture card used in all the experiments was a Brooktree Bt848 which supports full
768x576 PAL image resolutions and a number of capture formats. All image streams where captured
at 1/2 PAL using BtYUV format and later converted to greyscale PGM images. Capturing 92 (slightly
greater than 90 from° separation to allow for some overlap at the end of the scan), 1/2 PAL, 32-
bit images requires at least 40.7Mb of storage space. Even running on a 200MHz Pentium MMX
with 128Mb of RAM the card and the standard software supplied with it is capable of capturing a
complete,360°, scan of the surrounding environment. However, in order to maintain compatibility
with a Linux operating system, the use of in-house software was preferred. The Homogeneous Video
Capture Interface (HVCHwritten by Mike Lincoln [Lin99] streams raw 16-/24-/32-bit RGB, or 8-bit
greyscale, video data to a dedicated video file on disk. Using direct access to the card and system

RAM, HVCI is capable of streaming large amounts of video data.

"Many CCD cameras use two fields, of interlaced pixel elements or rows, per image frame, each of which can be saved

to the camera’s image buffer via different modes of operation.
8Available from: http://vase.essex.ac.uk/software/hvci/index.html
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3.5 Closing Remarks

This chapter has reviewed the analysis of the relative camera geometry induced by periscopic stereo
and introduced, for the first time, a practical design for the construction of a robust periscopic stereo
head. The imaging system vyields a virtually constant geometric relationship between consecutive
image frames. However, it also introduces a tumbling motion to the image data. It has been shown
that this tumbling motion can be corrected with standard geometrical transformations which can be
applied directly to the image data prior to subsequent processing. However, it has been suggested that
the rotational component about the optical axis should be corrected at a later stage.

It should be noted that periscopic stereo is not intended to replace conventional stereo which
is predominant for many robotic tasks. Periscopic stereo is not intended to “show you where your
going”. However, it can record where you have been and it's inclusion in a robot’s sensor array allows
for increased perception for both robotic systems in, and subsequently human investigation of, remote
environments.

In general, this concludes the discussion of the hardware aspects of periscopic stereo. All the
remaining chapters in this dissertation deal with the image processing and computer vision software
techniques required to realize large-scale scene reconstruction using image sequences captured by a
periscopic stereo head. The concept of when the rotational correction should be applied and the effects
of delaying the correction continue through Chaptgrs and7, each of which deals with one of the

three, mutually dependent, processes that constitute 3D reconstruction.
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Chapter 4

Feature Extraction for 3D Reconstruction

A fundamental prerequisite of the 3D reconstruction process is the initial extraction of relevant fea-
tures from the 2D image data and their representation for subsequent processing. In order to maximize
the completeness of any model of the scene these extracted features need to have different levels of
interpretation so that any object in the scene can be described in terms of, say, the distribution of some
of its points or the number of visible sides or even the area of its connected surfaces. The problem with
standard techniques for feature extraction is that they usually deal with just one-dimensional (edge) or
two-dimensional (corner) features and then represent these simply as collegbiointsbf interest.
Historically, this was acceptable for reconstruction algorithms which used ‘edge’ points to recover 3D
structure by matching theorrespondingpoints in two or more images of the same scene. However,

it has been showr9T98 MK98] that the correspondence of ‘non point-like image features’ such as
lines, curves and planes, with their stronger geometric constraints, allows some relaxation of the con-
straints applied to 3D reconstruction and improves the overall accuracy of the final model. Feature
extraction for the purposes of scene reconstruction is therefore more than just the detection of either

edges or corners. Ideally this initial, sometimes referred foragprocessingstage should consist of
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a single efficient process that deals with features in a consistent way and represents them in a manner
that aids the later stages of the reconstruction process.
In general, feature detection algorithms can be defined in terms of the following list of basic

requirements:
1. provide a unique response for each feature element,
2. generate good localization to sub-pixel accuracy,
3. be robust in the presence of noise.

These requirements are quoted in many computer vision'textd have been used by many re-
searchers to design feature, or more specifically, edge detectors. However, there is also another impor-
tant requirement which is sometimes overlooked and that is the computational load of the algorithm
itself. While it may be acceptable in some situations to concentrate on accuracy, 3D reconstruction
algorithms are inherently computationally intensive so expending valuable time on an excessively
complex pre-processing stage, regardless of the increased accuracy, is counter productive. That is
not to say that speed should be regarded as more important than accuracy; simply that there should
be a sensible compromise between these requirements. The following section reviews some of the
problems with the popular edge and corner detectors and suggests that the recently reported SUSAN
algorithm for feature extraction gives the optimal compromise for a 3D reconstruction system.
Comprehensive treatments of feature detection can be found in any of the recommended general
texts referenced in Chapt@r There is also an excellent review by Stephen Smith, available on the

Internet viaCVOnliné.

probably stem from Abdou and Pratt@uantitative design and evaluation of enhancement/thresholding edge

detectors, Proc. |IEEE
2seehttp:/iwww.dai.ed.ac.uk/CVonline/feature.htm or http://www.fmrib.ox.ac.uk/"steve/review/
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4.1 The Problem with Derivative Based Feature Extraction

A considerable amount of research has been conducted on edge and corner detection. Much of this
has concentrated on improving methods which are based on calculating either the first and/or second
derivatives of the image intensity function. A variety of alternative methods, ranging from morphol-
ogy to surface fitting, have also been reported but most are computationally intensive and do not yield
any significant improvements over the standard, derivative based me®wd®7]. In the opinion of

the author of this dissertation, the most popular derivative based feature detection algorithms, have
been presented by; Cann®dn8§ with extensions by DericheJer87 or Haralick [Har84 for edges

and Kitchen and RosenfelkR82] or Harris and Stephen$is89 (also referred to as the Plessey al-
gorithm [Nob88) for detecting corners. It is well known in signal processing that derivatives enhance
the noise component as well as the information component of a si§eaBf. Their use is therefore,
usually accompanied by some form of filtering. The inclusion of filtering in images effectively blurs
any features and introduces error in determining their accurate position. Various types of filtering,
that have an idealsotropic, response, most prominent of which being Gaussian, have been employed
in order to minimize this positional error. However, these are essentially implemented by discrete
kernels which can, at best, only approximate the desired properties. Therefore, even before any other
problems are considered, there is an immediate conflict between robust detection and localization
accuracy which requires some trade-off.

A second, less obvious, problem is the ability, or rather inability, to produce edge enhanced im-
ages with good connections at junctions. This is, in some respects, a continuation of the inclusion of
filtering which tends to “round-off” corners but is also as a consequence of the inherent differences
between processing one and two dimensional features. The separate development of good edge de-

tection and good corner detection is testimony to the fact that a combined, edge and corner detection
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algorithm with a high level of performance has not been an easily solvable problem. This problem of
“good connections” is often considered as a concern for subsequent edge linking algorithms which are
used to formstringsof edge pixels that can be modelled by either straight lines or curves. However,
the accuracy of these strings and the geometric primitives which they form are directly influenced by
the performance of initial detection stage. This problem may appear trivial, especially when consider-
ing the use of good corner detection algorithms which could “fill in” the gaps left by an edge detector.
However, the use of separate processes does not necessarily improve the accuracy or completeness
of the subsequent model of the imaged scene, but does incur considerable computational costs. No
single edge detection algorithm, that has been developed to date, can yield the perfect response to all
edge types or cope with all types of junction. Indeed, it can be argued that most edge detection al-
gorithms are effectively “tailored” to specific edge types and favor the construction of particular edge
strings. There is, therefore, a second conflict between extracting the maximum amount of structural
information from the image while minimizing the complexity of the algorithm and its computational
cost.

Feature extraction for reconstruction, ideally, requires a composite approach that yields both one
and two dimensional features and represents them in a way which allows the formation of a range of
geometric primitives from simple points and lines to curves and surface patches. These are not new
ideas and many attempts have been made to produce an algorithm which produces such composite
data. In order to illustrate this a short review of a recent project, which was considered for use in 3D
reconstruction by the author of this dissertation, is included. The comments made below are included
only to serve as an example of the difficulties of designing a combined feature detection algorithm
and not as an in depth critique of this system.

The “FEX” (Feature EXtraction)Hor94] project has reportedly developed a versatile feature de-

tector that produces feature adjacency graph (FAG)f points, lines and “blobs” (homogeneous
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regions) from the initial image in a single stage process. The idea behind this project (“to clas-
sify features and centralize the data in a single output image which also incorporates neighborhood
relationships”) For94 is of interest to 3D reconstruction since a lot of structural information is en-
coded. However, the implementation of the key components in this particular project still suffer from
some fundamental problems. Firstly the basic feature extraction relies on standard gradient based
algorithms, which as discussed, suffer from the contradiction of localization accuracy versus noise
suppression. Most of the gradient-based feature extraction algorithms require a parameter to control
the scale of filtering used and this is largely dependent on the type of feature to be recovered. In this
case, an estimate of the scale required is calculated from some “local” image statistics and then used
in a number of rather complex stages of convolution to yield the initial responses. This scale-space
approach is well known. However, a new combination of geometric measures is regeitéd [

which yield junctions and short, straight line, segments. It is unclear from the paper whether the
computationally intensive method employed produces more accurately located features or simply en-
forces very stringent segmentation to ensure the production of a tri-class or “ternary” image. The
paper does, however, admit that junction connectivity in the initial process is poor and that a second
process, called FAGANA, is used to improve the segmentation accuracy of the image by bridging the
gaps and closing inconsistent line or point structures. The added complexity of classifying each pixel
in the image and then producing an accurate (which is, in itself questionable) feature adjacency graph
seems computationally excessive when subsequent processes are unlikely to make full use of all this
information. In practice, images contain regions which are often difficult or impossible to classify. In
the case of 3D reconstruction, systems tend to employ techniques which are conservatively biased to
ignore possible errors. In such circumstances producing a greater volume of data which contains a
proportional amount of erroneous elements is counter-productive.

Even though this implementation has some fundamental problems the aims and the basic concept
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warrant further investigating at some stage in the future. For now, it is concluded that this approach
does not, as yet, offer any improvement over other techniques.

Until recently there have been few practical alternatives to derivative-based feature detectors.
However, the SUSAN feature detect@Bg97], developed by the Robotics Group at Oxford University

offers a possible alternative. The following is review of the SUSAN algorithm for feature extraction.

4.2 The SUSAN Algorithm of Feature Extraction

A new approach to feature detection and low-level image processing, referred to as SUSAN, was
reported in B97. Its principle of operation is different from many previous feature detection al-
gorithms because it does not attempt to calculate the derivatives of the image data. Instead, an ap-
proximately circular mask is used to calculate the local areamilarity to the mask’s central pixel,
referred to as theucleus across the whole image. This is effectively a form of local integration of the
image intensity function. The SUSAN algorithm has, therefore, a certain degree of noise rejection, or
filtering, inherently built in. There is little need for any prior filtering stage, which improves localiza-
tion, connectivity and overall algorithm efficiency. Since the technique for feature detection is based
on the ratio of the area, the localization of features is independent of the mask size. The mask size is
therefore chosen to maximize the digital approximation to a true isotropic response. This is derived
from the analysis of standard Gaussian filtering which gives an optimum response with a mask radius
of 3.4, equating to a 37 pixel mask (7x7 mask minus three pixels in each corner, approximating a
circular mask) £§B97.

Figure4.1has been recreated from the original paper to demonstrate the basic idea 4Flga)e
shows several masks placed on a simple image at particular locations. &ig(bgndicates which

areas are similar (shown as unshaded, or white) and which areas are dissimilar (shown as shaded,
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Sections where pixels have different brightness
to the nucleus.
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(a) Masks over image (b) Areas of similarity

Figure 4.1: Basic concept of the SUSAN algorithm for feature detection.

or blue) to the mask nucleus. Extracting features from a similarity measure becomes apparent from
consideration of the ratio of the shaded to the unshaded areas within each mask irtHi¢har& he

mask labellede’ is situated on a homogeneous region and has a maximum area of similarity. When
the nucleus of the mask is close to an edge, the area of similarity, referred to as the ‘USAN'’ area, falls
to approximately half that of the total mask area. If the nucleus is close to a corner the ‘USAN’ area
falls even further to approximately one quarter of the total mask area, as shown with the mask labelled
‘a’. By subtracting the USAN area from the total area of the mask a measure of the proximity to a
feature is achieved. The smaller the area of similarity, the more prominent the indication of a feature.
This gives rise to the acronym SUSAN, “Smallest Univalue Segment Assimilating Nucleus”.

This simple and effective feature detection algorithm is controlled by two factors. The first “bright-
ness”, or similarity, threshold controls the initial response and second, “geometric”, threshold deter-
mines the selection of either one- or two-dimensional features. Both of these thresholds were derived
empirically [SB97, but there is little need to question their validity considering the simple nature of

the algorithm. The USAN area] for a given pixel is determined from the sum of similar pixels such
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that;

(/) = c(F,7p) (4.1)

T

where, using the original symbolSB97, r¢ is the vector defining the position of the nucleus in the
image and” is the vector defining the position of any other point within the mask.the similarity

comparison function given by;
s\6
c(F,i0) =e (i) where s=I()—I(r 4.2)

andt is the brightness, or similarity, threshold ah@) and () are the image intensity values for
the nucleus and any other pixel within the mask. This intensity, or brightness, comparison function
is shown in Figuret.2 and was reportedly chosen to give an optimal balance between enhancement

and stability EB97. The smoothing effect of the exponential is obviously preferable to a box filter

Figure 4.2: Similarity function for SUSAN algorithm.

response and the power to which it is raised can be modified depending on the nature of the image.
An extensive justification for this is given in Smith’s pap8B097. Finally the initial feature response

R(rp) is determined by comparison with the geometric thresiaddch that;

g—n(ry) ifn(r)) <g
R(r)) = (4.3)

0 otherwise
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With reference to Figuré.1, the value of the geometric threshold for an edge is s@t£03n,,,4. /4

and for a corney = nmax/2. An USAN area of greate$n, .., /4 must be a homogeneous region
whereas an USAN area of greater thay,.. /2 indicates an edge is near by. From this description of

the SUSAN algorithm, it is apparent that the initial feature response will contain multiple indications
of the same feature. These multiple indications are eliminated in the usual way by the application
of Non-Maximum Suppression (NMSPRv97, JKS95 SHB99. However, there are a number of
possible problems in the classification of either one- and two-dimensional features. Smith suggests
that these are solved by a few, relatively, simple checks. This is investigated further in Segtiah

this point, it is more appropriate to consider edge and corner features separately.

4.2.1 Edge Detection Using SUSAN

Following the production of an initial response, as given by Equatiohs4.2and4.3, a second pass
through the image is required to further enhance the features and eliminate and multiple indications
of the same feature. The application of NMS in the second pass requires knowledge of the feature’s
direction. Before considering this further it is essential to recognize that the initial processing can
produce two distinct types of edge. Smith refers to these as;itler-pixel edge case”, where the
nucleus is near an ideal step edge producing only two regions within the mask, ardttagixel

edge case”, where either a thin band or a gently sloping edge produces a small central USAN area
surrounded by two dissimilar regions. In the first, inter-pixel, case the edge direction is perpendicular
to the vector between theentre of gravitCoG) of the USAN area and the mask nucleus. The CoG

of the USAN area is calculated using 1st moments. In the intra-pixel edge case the longest axis of

symmetry, calculated from the 2nd momentsé the USAN area, is used to directly determine the

3The theory of ‘moment’ calculations is covered in most standard CV texts, see Jain, Kasturi and SaK&&%k [

chap.2]
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edge direction, which is parallel. It should be noted that the use of the term “moments” is misleading
since the computation involves summing pixels which have values given by Eqdatiand are not
binary valued, which is the more recognized use of moment calculations. The use here is therefore
more accurately described by the calculatiovafimetricmoments.

The decision as to which case is appropriate for any particular image point is based on the size of

the USAN area. According td&SB97,

“...if the USAN area (in pixels) is smaller than the mask diameter (in pixels) then the
intra-pixel case is assumed. ... Ifthe USAN area is larger than this threshold, then
the centre of gravity of the USAN is found and used ...according to the inter-pixel
edge case. If, however, the centre of gravity is found to lie less than one pixel away from
the nucleus then it is likely that the intra-pixel edge case more accurately describes the

situation”.

This initial, area-based, condition, described in the first sentence, will be defined hefeist-&3ne
in order the differentiate the it from the cases which it determines and the subsequent use of moments.
Little justification, beyond that of “applied” logic, is given in the paper for this important decision.
The reason for this, in the opinion of the author of this dissertation, stems from the fact that the mask
size is fixed and therefore the ratio of the area of a single pixel wide band to the total area justifies the
conclusion in most practical situations. However, the author of this dissertation has found this to be
a poorly constructed simplification. The choice for this inter-pixel vs intra-pixel condition does have
important implications on the overall performance of the algorithm. This is covered in more detail in
Sectiorn4.3.2
Once the edge direction has been found, using either the 1st or 2nd moment calculations, the initial

response is thinned using NMS. The basic algorithm for edge detection using the SUSAN algorithm,

61



simplified and expressed pseudo-codey the author of this dissertation, is shown in Figdrg The

original code for all the SUSAN feature detection is available for download from the Oxfofld kite

Before Any:

1st Phase:

2nd Phase:

for ( range of pixel values)

for (allimage ){

for (allimage ){

}

setup similarity look-up tabldUT) for B_thresh;

Mask image to form\/;
assign ptrM.. to LUT based on brightness of mask nucleus;
Calc.usanA =", M. — Myw;
if (usanA < G_thresh)

assign initrespnRk = G_thresh — usanA;

if (usanA > MaskWidth) {
Calc. 1st moments afsanA;
if (CoG| > 1x pixelwidth) {
Calc. edge direction from Ca®@ector;
perform NMS across edge;

}

else jumpto ‘2nd moments’;
}
Calc. ‘2nd moments’ ofisan A4;
Calc. edge direction from longest axis;
perform NMS across edge;

Figure 4.3: Basic pseudo-code algorithm for edge detection using the SUSAN algorithm.

should be noted that Equati@n2 is implemented with a look-up table (LUT) which is constructed,

prior to image processing, for the complete range of pixel values and scaled by 100 to accommodate

fast integer operations. Subsequent binary thinning, using Smith’s own rules, is sug@s9ed [

to eliminate small spurs and ensuramber-of-neighboursonnectivity but this seems to be little

different from standard algorithms for the production of edge strings and an unnecessary expense.

The use ohysteresighresholds, as used by Canriygn84§ to eliminate thestreakingeffect on edge

strings, is not required in any post processing st&R9[]. The production and use of edge strings is

discussed further in Sectigh4 and Chapteb.

Although not implemented in the original, it is suggest8897 that an accurate, sub-pixel, es-

4The SUSAN source code can be foundketp://www.fmrib.ox.ac.uk/ steve/susan/index.html
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timate of the position of the edge can be found by determining the peak of a three-point quadratic
curve fit perpendicular to the edge. This sort of extra information, which usually includes edge direc-
tion, connectivity and edge strength, or contrast, is often associated with the use of more complex data
structures that describe the edge elements (often teEuigel’'s. Such structures are not implemented

in [SB97 but are an essential element of image processing imthe framework. Modifications

to the SUSAN algorithms, discussed in Sectib8.2 have been derived and developed for use with
Tina . A small, but important, factor with such data is concerned with the representation of edge
direction. In many cases it may be desirable to specify the edge directioh ira360° range with

some specification for the gradient across the edightover dark- positive gradients pointing north
equate t®°). The nature of the SUSAN algorithm does not readily produce this gradient information

so the range of orientation is restrictedI&)°.

4.2.2 Corner Detection Using SUSAN

Corner features are processed in a similar manner to that of edges, except that only the larger initial
responses are selected for second phase processing by the lower of the two geometric thresholds
described on page0, in Sectiond.2above. Smith suggests that, in practical applications, the use of a
wider brightness thresholdX 25 in 256 grey-levels) may be desirable to ensure a “suitable” quantity

of features. This has not been necessary in the course of the research presented herein and, unless
stated, a threshold of 20 (in 256 grey-levels) should be assumed.

In the edge detection algorithm the geometric threshold effectively acts as noise suppression and
has no real effect on the selection of one-dimensional features. For corner detection, however, the
geometric threshold is fundamental to the selection of two-dimensional features. The indication of a
corner is only possible when the USAN area is below half the total mask area and, more specifically,

when approaching one quarter. Therefore the smaller the USAN area, the larger the response and the
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more acute the type of corner. However, some tests are necessary to segment corners from the intra-
pixel edge case which are also indicated by small USAN areas, or anyfaldepositivéndications.

The second test, described in the second sentence of the quotation d@ipdefermines the absolute
distance of the CoG to the mask nucleus by calculating 1st moments of the USAN area. If this distance
is small (in this case less thaf2 of a pixel's width), then the initial response is from an intra-pixel

edge case and not a corner. The indicated feature is therefore rejected. An extra test here enforces
the contiguity of the USAN area’s elements, outward from the nucleus, in the direction of the CoG
According to Smith§B97, the latter is only really necessary for images with fine, detailed, structures

or a high proportion of noise and is included as the final validation of a two-dimensional feature since

it does not incur considerable computational cost.

After the tests have validated the presence of a corner, two-dimensional NMS is applied over the
response surface, using a 5x5 pixel mask, to remove all but the maximum indication. As with the
edge detection algorithm, sub-pixel accuracy can be estimated by fitting a quadratic surface to the
initial response, centered on the peak pixel identified by the second phase. This was not implemented
in [SB97 but has been introduced in the course of the research presented in this dissertation in order
to maintain consistency with the edge detection algorithm and the use of ‘Edgel’ structures for sub-
sequent use in the stereo matching/correspondence algorithms described in 6hdjterfeature
strength is given by the interpolated value from the quadratic surface fit used to derive the sub-pixel
position. Feature orientation is defined as being parallel with the direction of the CoG vector. The
pseudo-code algorithm for the modified second phase of the SUSAN corner detection is given in Fig-
ure4.4. In the original implementation, phase two was actually implemented as an extension of phase

one with only two passes through the image data being made. However, it is far simpler to consider

5This second test is apparent from the fact that the USAN area of a valid corner should be restricted to a small sector

within the mask
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2nd Phase:  for (allimage ){
if (usanA < G_thresh) {
Calc. 1st moments afsan A,
if(|CoG| > /2 pixelwidth) {
if (Contiguous)
assign as valid corner;
I3
3rd Phase: for (all image ){
perform 2D NMS;

}

Figure 4.4: Second and third phase, pseudo-code, algorithm for corner detection using SUSAN.

the SUSAN corner detection algorithm in three distinct phases, as shown in Bigure

4.3 Performance Review of SUSAN Edge Detection

The SUSAN algorithm could be one of the most important low-level, image progressing algorithms to
be derived in recent years and yet it has not received the recognition it deserves. This may be due to a
lack of faith in its efficiency claims or in the use of some of the conditional thresholds (often referred
to asmagic numbeiksin its implementation. The production of accurate, sub-pixel, edge and corner
responses is dependent on a few, “relatively simple”, conditional statements which appear logical and
consistent. However two of these tests, specifically those in the edge detector, are not implemented
with the same degree of precision that is shown in the rest of the formulation of the SUSAN algorithm
in [SB97.

From Sectiortt.2.1, the SUSAN edge detection uses NMS to thin the edge response. This requires
knowledge of the edge orientation which is determined using either the 1st or 2nd moments of the
USAN area, depending on the which of two cases of edge type, inter-pixel or intra-pixel, occur for a
given mask position on, or near, a feature. The decision on which moments to use is based, primarily,

on the comparison of the USAN area with the diameter of the faBhis assumes that only a thin

5For the 37 cell mask used, the diameter is 7
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line of a single pixel wide occurs in practical images. This is an over simplification which introduces
the possibility of error. There is no reason why a band of similar pixels, three rows wide, could not
occur in a real image. In such a circumstance, the algorithm, as it stands, would conclude an inter-
pixel case would exist, even though the calculation of the CoG would lead to a zero length vector to
the nucleus and, as such, be unable to determining the edge direction. Smith recognizes this fact in
the implementation with a subsequent condition to the inter-pixel case that requires that, if the CoG is
found to be within a radius of one pixel from the nucleus, the intra-pixel edge case is assumed. 2nd
moments are then calculated and used to determine the edge direction. This is a logical approach to
the problem but leads to twice the amount of processing than that required for either of the two cases
alone. This occurrence should, therefore, be kept to a minimum. Fgbshows the fragments of
source code (reproduced from the original version, with comments replacing the standard code which

is not of interest here) for the two conditional statements which are in question.

z = sgrt((float)(x*x) + (y*y)));
if (z > (0.9%float)n)) /* 0.5 */

do_symmetry=0;
/* Determine edge orientation and carry out */
/* non-maximal suppression across the edge. */
}
else
do_symmetry = 1;
}
else
do_symmetry = 1;

if (do_symmetry==1)

/* Calculate and use 2nd moments */

Figure 4.5: Fragment of original source code showing inter-, intra-pixel edge case conditional state-

ments.
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The following is a detailed review of three typical inter- and intra-pixel edge cases that demon-
strate the concerns with the exact values of the condition variables used in the SUSAN edge detection

algorithm.

4.3.1 Analysis of the Threshold Problems in the SUSAN Edge Detection Algorithm

Figures4.6 and4.7 illustrate examples of where the conditional statements in second phase of the
SUSAN edge detection algorithm, as shown in Figuteand 4.5 do not always ensure that the
correct case is chosen. In the following discussion the values of the USAN area are simplified, such

that each pixel adds ‘1’ to the total, and the moments are scaled accordingly. FHgéifas4.6(c)

usan=171 cal( r=9.75  usan=13 calq r=13.75 usan=9 calq r=17.75
<t + qrea <+ + qred <1+ qred
NM S appliex NMS appliec NMS appliec
ed=0.47 ed=0.29 ed=0.27
(a) edge deleted (b) edge deleted (c) valid edge

Figure 4.6: Examples of suspect cases in SUSAN edge detection where the mask nucleus is (a) and

(b) approaching and (c) at3®° corner of a large USAN area.

show the mask nucleus approaching0& corner of some large area of similarity. In Figutes(c)

the USAN area is small, only 9 pixels since the nucleus is over the corner, and the initial response is
high, 17.75. The geometric threshold for a cofrier26.75 In Figuret.6(b)the USAN area is 13 and

in Figure4.6(a)17 with the initial responses of 13.75 and 9.75 respectively.

Although edge responses are being considered, these particular examples have been chosen specif-

"The first phase, or geometric, threshold is giverdp x 37 — 1 = 26.75.
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ically because they reflect the subtlety of the problem which only manifests itself near corners or
junctions, thus leading to increased gaps in edge strings. In Settipit was stated that one of
the problems with gradient based feature detection was that of poor connectivity at junctions. The
SUSAN algorithm reports§B97 to have very good connectivity at junctions. However, this can be
either an advantage or disadvantage depending upon how the edge strings are subsequently processed.
If simple, “line”, strings are to be matched, then the lack of connectivity at junctions would mean that
there would be little need for any “long-string” segmentation and therefore much easier approxima-
tion, or modelling, of the lines. Alternatively, if homogeneous region$p@p edge strings, are to be
extracted, good connectivity simplifies segmentation and reduces the need to bridge any small gaps
around the periphery. In either case, the decision on the use of 1st or 2nd moments should not be left
to such an “apparently” arbitrary choice of thresholds whichterel-codedinto these conditional
statements.

In Figure4.6(a)the USAN area is 17 so the inter-pixel edge case is assumed and the CoG of the
USAN is calculated. The 1st moments of the CoG@r&x, = 15 andCoG, = 7 respectively and

calculating the normalized magnitude of the CoG vector using;

1

usanA

|CoG| =

\/ (CoG2 + CoG2) (4.4)

yields, in this case, comparison figure of 0.973. Equadidns another way of expressing the second

inter-pixel vs intra-pixel conditional statement described on ggef Section4.2 which is defined

as \/(COG§ + CoGg) > 0.9usanA in Figure4.5. The latter will be referred to herein dsst-Two

in order to differentiate the original conditional statement from Equatidn Note that the original
SUSAN threshold of 0.9 allows for the central pixel which is always assumed to be in the USAN area
and therefore not directly counted.

A value of 0.973, for the case, above suggests that the edge direction of the example in Fig-
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ure4.6(a)can be calculated from the 1st moments as 7/15, or 0.466. This is less than the 0.5 lower
condition for the direction of NM$and therefore defined as being vertical. Reference to Fig6(a)

shows that this is clearly not the case and the application of NMS across the derived vertical edge
would lead the comparison of the features along the central row of the USAN area and the subsequent
removal of this particular edge element.

Figure4.6(b)demonstrates the situation where the mask has moved to the adjacent pixel. At this
point the initial response is greater. The shape and therefore the moments of the USAN area have
changed taCoG, = 17 andCoG, = 5. Evaluating Equatiod.4 yields a figure of 1.36 suggesting
1st moment calculations for the edge direction, leading to the tangent of 0.29 and another vertical
edge being reported. As with Figudet(a) this edge element is removed by incorrect application of
NMS along the edge instead of across it. It is only when the mask reaches the corner of this region
of similarity does this situation improve. In Figude6(c)the 1st moments ar€oG, = 15 and
CoG, = 4, yielding |CoG| = 1.7 and another vertical edge direction from the tangent of 0.27, this
time “arguably” correct This element is not removed, regardless of edge direction, because it has
the maximum local response. This particular case is of further interest. If, for argument, the intra-
pixel edge case is assumed and 2nd moments are used to determine edge direction, the element is still
kept but the calculation would yield a horizontal edge. This discrepancy in edge orientation is not an
immediate problem but does become significant to subsequent edge string processing.

The situation demonstrated by Figute/(a) highlights not only the possibility of incorrect as-
sumptions about the edge direction but also the inefficiency of using both 1st and 2nd moment cal-

culations for a particular edge element. The USAN area is 22 and Test-One, the comparison of the

8Edge direction in the inter-pixel case is perpendicular to the CoG vector and the direction for NMS is segmented into;

vertical, less tha6.6° (tan(0.5)), horizontal, greater tha$B.4° (tan(2.0)), or diagonal being between these values)
9This corner element can be considered as either a vertical or horizontal edge with no subsequent NMS problems, only

the feature’s orientation is affected
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usan=22 r=4.75  usan=9 r=17.75 usan=8| |cg¢ |r=18.75
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NMS 7 applied
(a) valid edge (b) valid edge (c) edge deleted

Figure 4.7: Further examples of suspect cases in SUSAN edge detection where the mask nucleus is

(a) near at5° corner of a large area and (b) & (c) approaching a shatgorner.

USAN area with the diameter on pagé, suggests the use of 1st moments which@e&r, = 8
andCoG, = —17 respectively. However evaluating Equatibd concludes the use of 2nd moments,
since the computed value of 0.73 is less than the threshold of 0.9. The use of 2nd moments yields a
diagonal edge direction and the correct application of NMS. However, twice as much processing has
been carried out to achieve the correct result. At first inspection it may seem obvious to adjust the
threshold of Test-One, or even remove it altogether. However, this could lead to greater problems with
the more standard vertical and horizontal edges from large USAN areas which could, if using 2nd mo-
ments, lead to an incorrect diagonal edge direction. This particular example may not be a problem, as
the correct resultis produced. However, this case has been highlighted here because of the significance
of the computed value of 0.73, which could be used in the second (inter-pixel confirmation) condi-
tional statement. If the threshold in Test-Two was set to say 0.7 then evaluating Equédtieould

confirm the the inter-pixel case and the 1st moments used to determine the edge direction. However
this would lead to an incorrect application application of NMS and the edge feature being deleted.

The importance of this illogical suggestion and the relationship between Test-One and Test-Two will
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be covered in greater detail in Sectiér3.2

In the final example, Figure4.7(c) and 4.7(c) demonstrate the opposite problem of correctly
identifying elements in small USAN areas, for instance those created by acute corners. IdFig)re
the USAN area is 10 and the 1st moments@r&s, = 6 andCoG, = —3 respectively. Test-One
would suggest the use of 1st moments since the area is greater than the threshold. However, Test-Two
would conclude that the CoG is too close to the nucleus and that 2nd moments should be used. The
use of 2nd moments in this case derives a horizontal edge direction and allows the correct application
of NMS. Again the correct result has eventually been achieved. However, there would be no reason
to carry out the 1st moment, CoG calculations if a slightly higher threshold was applied in Test-One.
For the adjacent pixel shown in Figude7(c) the situation becomes much worse. The USAN area
is now only 8 and the 1st moments are oalyG, = 8 andCoG, = —2 confirming of the use of
1st moments. However, here an incorrect vertical edge direction is determined with the subsequent
removal of a valid element. At the next two pixel positions the edge elements are retained because
their initial responses are much greater than the surrounding edge indications. However, the tip of the
acute corner has become detached from the rest string.

The above examples have shown that while the SUSAN algorithm is, for the most part, efficient
and accurate there are some questions concerning the use of the thresholds in the two inter-pixel,
intra-pixel conditional statements. The introduction of a few anomalies may, at first, appear trivial,
but their existence leads to the possibility of doubt in the SUSAN algorithm. At best these anomalies
lead to reduced efficiency. However, at worse, they lead to incorrect calculation of edge direction,
often with a90° phase shift, resulting in the incorrect application of NMS and subsequent removal
of valid edge elements. While these errors amount to no more than a few pixels near corners or
junctions they are sufficient to introduce significant errors into the accuracy of features, particularly

string elements such and pointsand mid-pointswhich are used in the correspondence of these
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features and are subsequently projected onto the reconstructed model of the scene. Furthermore the
fact that these conditional variables in question can be used to “tune” the final edge response for

subsequent processing warrants further study of their use and interaction with each other.

4.3.2 Tuning the SUSAN Edge Detection Algorithm

In Section4.3 detailed analysis of particular situations where the SUSAN mask nucleus is near cor-
ners, or junctions, revealed that, while the basic SUSAN algorithm is sound, the hard-coded imple-
mentation of thresholds in the inter-, intra-pixel conditional statements lead to the introduction of
errors. Furthermore, the initial inter-, intra-pixel condition should not to be determined by an arbi-
trary choice such as the area of a single, pixel wide band across the mask. However, the conditional
statements could be controlled by an external variable which could improve efficiency and more im-
portantly tune the output. The aim here being to produce either fully connected or distinctly segmented
edge strings.

In order to gain a better understanding of the use and interaction of these thresholds the edge
detection algorithm was repeatedly applied to the test image supplied with the original SUSAN source
code. This is reproduced in FigudeB for convenience.

Each time the experiment was repeated the Test-Two threglddid:() was varied in the range of
0.5to 1.1 for specific values of USAN area threshold (usanAT) in the range of 600 to 2000 (in steps of
200). Values outside these ranges lead to a rapid degradation of performance, which is logical, consid-
ering their function. However, this suggests a motive for the original “hard-coding” of the thresholds.
The percentage of pixels which require both 1st and 2nd moment calculations was recorded in each
case. Figured.9(a) 4.9(b) 4.10(a)and 4.10(b)show the results from these experiments. When
the Test-Two threshold©oG|) is set low, confirmation of the inter-pixel condition is more likely.

However, as the threshold rises the condition becomes less likely and the intra-pixel is preferred. The
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Figure 4.8: Original SUSAN test image.

gain in efficiency is apparent in Figurds9(a)and4.9(b)where the percentage of both 1st and 2nd
moment calculations is plotted agaif€toGG|. These results suggest that a threshold above 0.9 leads
to a less efficient algorithm. Below 0.65 the algorithm is very efficient and little more can be gained.
Varying the USAN area threshold (usanAT) has a small, but noticeable, effect on efficiency. This is
logical since the larger this threshold, the greater the number of edge indications that are processed
directly by the 2nd moment calculations. However, interestingly, the efficiency gain is not as great as
that shown previously. In Figures10(a)and4.10(b)the effect of varying the area threshold is more
apparent. As the area threshold is increased, the number of intra-pixel cases increases. This appears to
increase the possibility of error near corners, or junctions, leading to a reduction in the total number of
valid edge elements being reported. What is more even interesting, is that this effect is only moderate
below 1600 and not significant below a threshold of 1000, where the results are virtually identical.

In Figures4.9(a)and4.9(b)each plot follows the same general trend in efficiency so there appears
to be little interaction between the two thresholds. However, the results in Figli@®)and4.10(b)

show that there is some small interaction between the two thresholds. The plots with the higher
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Percentage of both 1st & 2nd moments against magnitude of C of G vector threshold.
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Figure 4.9: Results of tuning SUSAN’s inter-, intra-pixel conditions — use of moments.
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Edge elements set against magnitude of C of G vector threshold.
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Figure 4.10: Results of tuning SUSAN's inter-, intra-pixel conditions — number of valid edge elements
produced.

75



‘usanAT’ thresholds tend to have a flatter response over the rarjg®6f threshold, while the lower
‘usanAT’ thresholds show distinct points of interest@bG| = 0.55, |CoG| = 0.7 and|CoG| = 0.9.

The maximum number of ‘Edgels’ occurs|@toG| = 0.55 with small reductions dCoG| = 0.7 and

|CoG = 0.9]. This follows the transitions in levels of efficiency shown in Figuée3(a)and4.9(b)
However, this does not reflect the actual quality of the edge response. Although a few extra ‘Edgels’
are displayed fotCoG| = 0.55 they appear on the baseline of the shallow isosceles triangle of
Figure 4.11(b) (left-hand image, near the corners) and change the single pixel spur shown into a
block of three pixels. It is therefore questionable that this is a better quality response than that from
|CoG| = 0.7. Atthe |CoG| = 0.9, these features are removed altogether. However, the effect on
quality can, again, only be regarded as marginal. Itis clear from these results tf@bHehreshold

can be fixed at 0.65. Thereby gaining good efficiency, without any significant effect of the quality of
the edge response.

Unless an image contains a lot of fine detail, or noise, the majority of edge elements are reported
by the inter-pixel edge case from large USAN areas where the use of 1st moment calculations yields
the correct application of NMS. This suggests that the primary threshold should be kept relatively
low. However the results show that this is not, as essential, as logic would dictate. Higher thresholds
produce a gradual reduction in the completeness, but not necessarily quality of the edge response.
Figures4.11(a) 4.11(b) 4.11(c)and4.11(d}° show the edge responses for Test-One thresholds of
1000, 1200, 1400 and 1800, all with the saifieG|, or Test-Two, threshold. For Test-One threshold
of 1200 or below, the edge response has complete connectivity around right-angle corners and only
small gaps at some ‘T’ junctions and high curvature corners. These small gaps could be subsequently
removed with a simple bridging procedure, incorporated as part of an edge string process. For a Test-

One threshold of 1400 more small gaps begin to appear at ‘T’ junctions and this trend continues as

Note: The images are not processed up to the frame limit due to the use of the mask window.
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Figure 4.11: Valid edges reported for SUSAN test image demonstrating the algorithm tuning with

thresholds at{CoG| = 0.65 and ‘usanAT’ = (a) 1000, (b) 1200, (c) 1400 and (d) 1800.
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the threshold increases until, at a threshold of 1800 and above, where no “loop”, edge strings exist.
From these results it is clear that the SUSAN edge detection algorithm can be tuned to an op-
timal efficiency response for both connected and segmented strings, with no extra processing. This
is achieved via the application of a fixed threshold in the secondary, inter-pixel confirmation, condi-
tional statement and the use of an external, parameter for the primary, inter-pixel/intra-pixel, condi-
tional statement with the values of either 1200 or 1800 depending on the desired response. Although
Smith [SB97] has already conducted a statistical analysis of the SUSAN algorithm, a further statis-
tical analysis should be conducted on the use of the “tuning” parameters introduced in the course of
the investigation presented in this dissertation. This should also include a statistical analysis of the
sub-pixel localization and feature orientation both edges and corners. A technique for applying such
an analysis and modelling sub-pixel accuracy is describedac9g. Such analysis would constitute
a considerable distraction from the main emphasis of this research and is therefore recommended for

future consideration.

4.4 Integrating SUSAN with TINA

Integrating SUSAN edge and corner detection intoThrea framework has highlighted a number

of compatibility issues with subsequent processing. The issue concerning the connectivity of edges
strings was covered in Sectiods3and4.3.2 Although the use of the extra parameter suggested in
Section4.3.2assists the generation of edge strings, subsequent processes do not necessarily appre-
ciate this. Figuret.12 compares the result of string processing the edge images created from both
Canny [Can8§ and SUSAN edge detection algorithms. Although a similar number of edge elements
(approximately 7800) are present in both imagésa’s subsequent string processing tends to seg-

ment the already connected SUSAN edges, as shown in Mgl2¢b) while bridging the reportedly
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(b) SUSAN edge strings

Figure 4.12: Comparing edge strings after (a) Canny and (b) SUSAN edge detection implemented in
Tina

less connectedgB97 Canny edges, as shown in Figutel2(a) The connectivity of the strings cre-

ated after the SUSAN edge detection algorithm can be improved by reducing the overall number of
edge elements by raising the similarity threshold. In the Figui@(b)was 10 grey-levels (in 256
grey-level) in Figuregt.13(a)and 4.13(b)the thresholds are 15 and 20 respectively. Modifications
have been made to the string processing algorithniBna to switch out unnecessatysteresis
thresholds However, seamless integration has not been achieved to date.

A similar compatibility problem is also apparent in the correspondence matching, see Ghapter

79



(b) Similarity threshold of 20

Figure 4.13. Comparing edge strings after from SUSAN edge detection with the similarity threshold

increased to (a) 15 and (b) 20 grey-levels.

corners from both the Harris and Stephens (or Ples$¢$88 and SUSAN corner detectors demon-
strated in Figured.14(a)and4.14(b)respectively. Again, although the number of corners is similar

in both cases, over twice as many correspondence matches are derived from the former detector using
default parameters. Modifying the similarity and geometric thresholds for the SUSAN corner detector
to 15 grey-levels, as shown in Figuré4.5(a)and0.6 n,,,, (see Sectiond.2and4.2.2 improves the
situation, as shown in Figuré.15(b) However, fewer matches are achieved. The correspondence

matching is derived from the cross-correlation of the local image intensity function about the feature
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(b) matched SUSAN corners

Figure 4.14: Comparing Tina matching after (a) Plessey and (b) SUSAN corner detection algorithms.

position. Examination of the area surrounding unmatched corners reveals that the location of the fea-
ture follows the change in profile of the feature and effectively induces a relative shift in the corner

location.
Full integration of the SUSAN edge and corner detectors intd'thea image processing frame-

work requires further investigation and possible modification to either or both systems.
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(b) matched SUSAN corners with threshold of 15 arfen,qx

Figure 4.15: Comparing Tina corner matching after SUSAN corner detection algorithm with modified

thresholds.

4.5 Summary

In the opinion of the author of this dissertation, the SUSAN algorithm for low-level image processing
is one of the most important techniques to be developed in recent years. It is particularly useful
as a pre-process for 3D reconstruction since the basic summing process of the SUSAN algorithm
effectively produces a local integration of the image. Therefore, it has an inherent noise rejection
capability built into the algorithm and there is no need for any of the extra filtering, which tends to

induce localization error in derivative based feature detectors.
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The fact that localization of features is reportedly independent of mask size allows for a fixed size
to be defined and therefore a simple software implementation. This, coupled with the lack of depen-
dency on any image statistics to derive control parameters for the algorithm, leads to a fast, efficient
feature detector. Both edge and corner features can be extracted using the same basic algorithm with
only a single test to select the appropriate second stage processing for an accurate, sub-pixel, edge
or corner responses. The efficiency and accuracy of the edge response is controlled by two condi-
tions, which although questioned in the course of this investigation, can be used to derive either fully
connected or segmented edges for subsequent string processing. However, the use of these requires
caution since they are only valid over a limited range. The integration of both SUSAN feature de-
tectors with subsequent processing is not seamless and modification to remove any bias for derivative
based feature detectors from these is required for optimal use.

A complete listing of the source code for implementation of SUSAN edge and corner detection,
together with modifications detailed in SectidrB.2is given in AppendixD. This source code has

been written explicitly for incorporation ifiina and will therefore not execute in isolation.
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Chapter 5

Solving the Correspondence Problem for

Periscopic Stereo

Most of the stereo algorithms used in 3D reconstruction require features, identified from differing
view points, that correspond to the same real world object, tmékehed Matching corresponding
features across two or more images continues to be a challenging task in computer vision. In essence
it is an optimization problem where the important constraints that can be used to solve the problem
are ultimately determined by the solution itself. The features can be either individual pixels or strings
of edge elements and the subject, often referred to simply asotinespondence problerhas been
covered extensively, appearing in almost every text on computer vision. Much of this chapter is,
therefore, a discussion of application of known theory. However, few treatments of this subject fully
emphasize the fact that while there are many useful techniques that could be applied to all correspon-
dence problems no one particular solution can be appliedl toroblems. In fact, most problems,

by the very nature of the features to be matched, the imaging system employed and the subsequent

processing for which the match is required, have “uniquely preferable” solutions. This chapter begins
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with a short review of some of the general techniques and is then followed by a more detailed descrip-
tion of how these have been applied in order to produce sets of corresponding features for use with
both calibration and reconstruction tasks associated with periscopic stereo images. In particular these
techniques are applied to both rotationally corrected and uncorrected periscopic stereo image pairs, as

defined in SectioR.2, in order to assess their compatibility and/or limitations with this image data.

5.1 Constraining the Problem

Techniques for correspondence matching are often grouped into either Feature-based or Area-based
methods. This is more of an historic grouping rather than a practical one. At the lowest level of
processing this distinction is valid but most modern solutions tend to combine techniques from both.
Such classifications can therefore be misleading. In the early days of computer vision research much
attention was given to the correlation of images (area-based techniques). The correlation of large areas
of an image is computationally intensive so considerable effort was applied to improving performance
by tuning the selection of the size and location of the search areas for corresponding points. Area-
based methods have the disadvantage that they use the intensity values at each pixel directly and are
therefore sensitive to distortions that arise as a result of changes in scene illumination, camera position
or the camera’s imaging properties. Alternative, feature-based methods, where specific characteristics
such as contrast, length and orientation are matched, tended to be less ambiguous. This is due to
the lower number otandidatematches as well as the lack of dependence on the image intensity
function. They also allow higher precision estimates of the disparity between the matched features.
However, these also fall short of the desired performance for many real-world systems. Contrary to the
impression gained from the considerable amount of early literature on each, the two sets of techniques

are not mutually exclusive.
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The correspondence problem is inherently ambiguous and there is no such thing as a perfect
result. In practice mismatches will always occur in a set of corresponding features. However, their
occurrence can be reduced by the application of certain constraints. The following is a description
of the constraints which are often applied to solving the correspondence problem. These constraints
are derived from either the geometry of the imaging system, the photometric properties of the imaged
scene or some specific properties of objects in the real world. Alternative descriptions of these can
be found in the text by Klette, Sdimhs and Koschar[SK98, chap.4] or in the text by Sonka, Hlavac

and Boyle BHB99 chap.9].

Epipolar: A pair of points, imaged on separate planes from differing views, that correspond to the
same 3D world point are constrained to lie on the epipolar line projected onto each image by the
opposing image ray which joins the optical center and the imaged point. This is a geometrical
law (described in Appendi®) applicable to stereo camera systems and is the strongest possible
constraint which can be applied to the solution of the correspondence problem. It's application
effectively reduces the search space from a 2D region to a 1D line but requires knowledge of
the relative camera position between the views in order to apply imagengletifecationwhich

enforces theanonicalstereo configuration.

Uniqueness: Excluding self-occlusion, where two points which lie along the same image ray are
seen as a single point, only one point in the second image should correspond to a point imaged
in the first. In practice there are often several candidate matches which could correspond to
the original feature. This problem is more apparent when matching isolated point features than

edge strings but should always be considered.

Mutual correspondence: This is an extension to the uniqueness constraint and states that correspon-

dence must exist from both left to right and right to left images. This is an obvious requirement
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of all correspondence algorithms which helps eliminate mismatches.

Photometric compatibility: The image intensities of corresponding image points should be similar.
This is a rather weak constraint because it assumes that there is little or no absolute or relative

illumination change between image frames which is not generally the case.

Feature compatibility: Only features from the same physical origin should be matched. This sounds
the same as the original definition of corresponding image points, however, some extracted
image features arise from shadow, or reflection, of objects which are not consistent between
views. These type of features should not be used when attempting to solve the correspondence
problem. However, isolating these from usable features (arising from abrupt discontinuities on
the object surface) is virtually impossible unless some prior knowledge of the imaged objects

and the illumination are known.

Geometric similarity: In general, the geometric characteristics of corresponding features do not
change a great deal between views. Therefore, a correlation measure between, either, the local
regions or some specific feature characteristics should be relatively high. This assumes that
the interocular separation is small compared with the scene depth, or that there is little or no
rotation about the optical axis between the views. However, if either of these conditions exist
then the profile of the imaged feature will undergo some form of distortion and the correlation

measure will be reduced.

Disparity smoothness: Assuming a static scene, the disparity calculated for a set of matched features
should change slowly across the whole image. This can be visualized by considering two points
in the scenep andg, that are relatively close to each other. Each should yield corresponding

image points, in the left and right images, with a small absolute disparity difference. A deriva-
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tive of this constraint, referred to as the “disparity gradient limit”, is used in the popular PMF

correspondence algorithrRMF89, which is widely referenced.

Disparity limit:  There is an absolute limit to disparity, below and above which humans lose the abil-
ity to resolve stereo images. In a computer vision sense this translates into the resolution of
the camera in one extreme and the amount of image overlap between views in the other. With
reference to the geometric similarity constraint above; as the disparity between two views in-
creases the greater the change in the profile of any particular feature and the lower the similarity
with the corresponding feature. If there is some prior knowledge of the relative transformation
between the two camera views then the disparity across the image should be consistent with the

relative camera motion.

Ordering: For an object with a surface of gradually varying depth, two sets of corresponding feature
points should lie in the same order along their epipolar lines in both images. This constraint
does not apply if there are large relative depths on a single object or between separate objects

in the scene.

It should be noted that some of the constraints listed above act in cooperation with each other while
others tend to contradict. This is evident when considering particular sets of circumstances such as,
the greater the number of corresponding elements in close proximity the higher the possibility of
a mismatch due to the increased likelihood of feature similarity. Alternatively, the use of features
extracted from regions with high surface discontinuity would allow for more unique matching, yet
may tend to be rejected by the technigues that impose geometric similarity, disparity limit and ordering
constraints. The use of local properties can achieve reasonable results but global consistency is also
required. Ideally the final distribution of matched points should be uniform across the image and

reflect the volume of the imaged scene and/or the subsequent reconstruction. In practice this can never

88



be fully achieved. Itis clear that the application of these constraints to the particular circumstances of

the imaging system, the scene and the subsequent computer vision tasks implies a “tailored” solution.
The following section describes the stereo correspondence method employed for the production

of matched image points for use in the re-calibration of periscopic stereo in Cléaptee method

employed makes use of some of the software tools availalllena , with some modifications. This

is then followed by a section which briefly reviews the methods employé&thim for stereo corre-

spondence of both points and strings for subsequent reconstruction.

5.2 Point Correspondence for the Calibration of Periscopic Stereo

In general, correspondence algorithms are designed to process image pairs derived from a camera,
or cameras, with particular relative motion between the views. At one extreme the cameras could
have a known relative position; at the other extreme, no positional information is available and the
views are assumed to be arbitrary. The matching strategy employed must take into consideration
the particular geometry of the imaging system used. The more general the relative motion between
the views the greater the ambiguity of corresponding match, due to fewer applicable constraints.
However, excessive processing to remove ambiguous matches is an unnecessary expense if the relative
camera motion is known. This is especially true when considering that subsequent processes should be
sufficiently robust to cope with a small percentage of data that are not consistent with the current model
of the system, usually referred to astliers The image pairs, derived from sequential frames, in the
periscopic stereo system have some “known” relative motion and therefore allow for the possibility
of a simplified correspondence algorithm. The use of the term “known” here is deliberately vague
because it is not intended to infer the use of full stereo calibration data which is the more “standard”

use of the term “known” when applied to camera motion. The calibration process, for which the set
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of matched points is required, is not the initial calibration of the system prior to use, but instead, the
periodic re-calibration of the imaging while in use. Although the camera system is initially calibrated,
the calibration accuracy is reduced over time due to fluctuations in the relative camera geometry. This
is more apparent in the case where the rotational correction, identified in S8Qjdras not been
applied. The degradation of the calibration over time is covered in Ch@plieigeneral the following
applies to both rotationally corrected and uncorrected image pairs but concentrates on the latter.

The “known” relative motion between views allows for the possibility of applying the epipolar
constraint, via image plane rectification, and a disparity limit constraint. Due to the fact that the same
camera captures both images of the stereo pair and that the time difference between frames is small,
both the photometric and the geometric constraints are applied. However, these are implemented in a
relatively “loose” manner. While there is rotation of the image data, about the optical axis, between
successive views of an uncorrected image sequence, this is small and known. The application of
mutual correspondence and the uniqueness constraint are generally regarded as common-place and are
included in the algorithms described in this section. Because the correspondence data is required for a
subsequent re-calibration process corner edge elements are selected for matching. Camera calibration
using image points is discussed in ChajteBince the number of point features in an image is likely
to be comparatively low, the disparity gradient constraint is ignored. This is because its use tends to
lead to a less reliable solution if the feature distribution is not reasonably uniform across the whole
image TM91]. No assumptions are made about the structure or illumination of the scene so the
ordering constraint can not be applied.

Prior to stereo matching, corner features are extracted from both the left and right images and
stored as edge elements, Badgel’'s In Tina , edge, or feature, images consist only of pointers to
the features where they exist. The corner locations are identified to sub-pixel accuracy, using local

maxima from a 2D quadratic surface fit to the corner strength, or contrast response, and stored along
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with the peak value of the response and the corner orientation. The specific use of these characteristics
will be covered later in this chapter. The ease with which matching techniques can be implemented
is directly related to the definition and structure of the feature representation. The definition used in
Tina is particularly useful because it incorporatgwapertieslist which can be used to dynamically

store extra data associated with the feature.

The application of the epipolar constraint is possible for image pairs produced by periscopic stereo
since an estimate of the relative camera geometry between the views is immediately available. How-
ever, in practice, the application of the epipolar constraint involves image plane rectification. This is
similar to the rotational correction that can be applied to the image data in the initial pre-processing
stage described in Secti@?2 and demonstrated in Figu&5. However, a 2D transformation of the
image data about the optical axis can not achieve the canonical stereo camera configuration if the im-
ages are not originally coplanar. Only the application of a 3D transformation to a common reference
frame can yield the desired result.

The standard image rectification proce3s$93 involves interpolating the image data to form a
new image plane in the canonical configuration. Such interpolation of the image data is a degradation
that tends to reduce the performance of all subsequent processes and should be Ehai@8d |

A method of simulating image plane rectification, without modifying the initial image data, is
giveninTina . This is achieved by using a rough, initial estimate of the camera calibration parameters
and calculating a rectification matrix for each camera. These matrices are contained in a versatile
structure which models a stereo camera system with left and right cameras for both the actual and
canonical camera configurations. The matrices therefore map the transformation between the rectified
and original image planes for each camera. The source code definitianaofs camera models is
given in AppendixE for ease of reference here and more specifically for detailed use in Cléapter

Simulated image plane rectification is implemented by applying the rectification matrix to the
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position of every feature identified in the original image. The rectified position for the feature is then
stored, together with the original, image plane, position, in the ‘Edgel’s propertiesiisbnditional
statement in the access function for feature location selects either the rectified or true image position.
The use of access to ‘Edgel’ structures via their address, stored in the image array, is extended in
Tina to create aectified, row-indexedinked list of the features. This facilitates sequential raster
access via an efficient form of look-up-table.

Using the software tools identified above, the search for candidate matches in the second image
is simplified (computationally speaking). However, it is not possible in practice to reduce the search
space to a single line. The search can be constrained to a band about the epipolar line but no more.
Even if the system were fully calibrated, the concept of a perfect epipolar line is not practical because
higher accuracy calculations of a feature’s position on the line could lead to many valid matches be-
ing ignored. At best, the epipolar band should inclddk single row of pixels (simulated via the
row-indexed linked list) to allow for the maximum possibility of finding the correct match. While
the epipolar band can be widened to accommodate a less accurate estimate for the initial calibration
parameters, an excessively wide band would negate all the advantage of applying the epipolar con-
straint in the first place. This idea of a “variable width”, epipolar band is useful for a dynamic system
which automatically maintains its own calibration, but would require a heuristic measure for the initial
setting. The default width for the epipolar band, recommendédna , is +3 rows.

Although the search space has been constrained it is still necessary to select the most likely match

from a set of possible candidates that lie within the epipolar band. A weak measure of correspondence

! Apart from the other useful tools contained witAima , the simulation of image plane rectification using the rectified
position stored in the properties list and it's fast access via the row index linked list was fundamental in it's choice as the

preferred image processing framework to support this research.
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is given by the absolute contrast, or strength, values for each feature,

|Il — Ir‘
G+ G-

wherel; is the intensity of the pixels for the potential match between images thé kafid right/,..

This is not sufficiently accurate to ensure a low percentage of mismatches. However, it is useful for
the rejection of very dissimilar features prior to the next stage of processing (say rejedd.é). A

more stringent measure is necessary. The standard technique is to apply local area cross-correlation
to patches of the original image data centered on the location of the candidate match. The form used

in Tina 2 is given by:
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and wherep andq are the pixels of the candidate match with coordinates givepby p,) and

(¢z, qy), ¢ andj are the indexing coordinates in the correlation patch @rahd ;' are modified
coordinates to interpolated values for the image data covered by the patehp = 2 forab x 5
correlation patch, and the nominal value fors 3. This is explained later. If the correlation measure

(em) is high (greater thaf.98) then a match is fixed and added to an ordered list of all potentially good
matches in the epipolar band for that feature point. These are then stored in the properties list for the
feature concerned. Support measures could be added to the correlation measure at this point in order
to strengthen the match. However, this is not implementddria . In practice the list should contain

only a few potentially good matches. A large number of matches would indicate that the threshold for

the correlation measure is set too low. The whole process is repeated for every feature point identified

2The form of local area correlation useTina differs from the standard found in the literature by not normalizing to

the local image intensity function
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in both the left and the right images. The final stage of the whole correspondence process is then to
select the best match in each case. This can be achieved using a measure of the match strength already
stored or, alternatively, a rejection of all the “less than desirable” matches. The latter is often referred

to asrelaxationand covers a host of techniques that apply additional support measures. Examples of
these are the ordering constraint, disparity gradient limit or some combination of global measure that

reduces the number of competing matches until the only best remains.

5.2.1 Support Measures for Correspondence Matching

The above are largely standard techniques and examples can be found in many of referenced texts.
Of particular interest however, is work published by Thacker and MayRieMO[] and Zhanget

al [ZDFL95]. The first, because of its connection with the software tools described above and the
second because it offers an alternative approach which includes an example of a relaxation technique.
In the latter, the assumption is for cameras in arbitrary positions and the task is to recover the unknown
epipolar geometry. In such circumstances the correspondence algorithm must be particularly robust
since the search area consists of large areas of the image and the number of potentially good matches
is high. Initially, a standard correlation measure is used and lists of potential matches are constructed
similar to that described above. Then a support measure is calculated for all the matches based on a
number of constraints. These include a disparity limit and smoothness, both weighted, the uniqueness
constraint and a directional compensation. The latter is report@dWrI[95] required because the
support measure is not symmetric from left to right and right to left. This method is similar to that
applied in the PMF algorithmHMF8Y previously referenced. However, instead of employing a
winner-take-allor looser-take-nothingtrategy for resolving the ambiguity, @me-winners-take-

all” technique is applied. This correspondence algorithm is reportedly very robust but considerably

more complex than more standard approaches and far more complex than that required for periscopic
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stereo. In the method reported by Thacker and MayheWd1] the correlation measure includes a
Gaussian weighting function which allows the measure to vary between 0 and 1 (1 being) Jowd)
assumption maderM91] is that there is little or no rotation about the optical axis between the two
camera views. This does not apply to periscopic stereo as demonstrated inFteadier.

Delaying the application of the rotational correction of the image data derived from periscopic
stereo has distinct implications to the implementation of the local area correlation. If the correction is
not applied prior to this stage of the processing chain then the correlation of image patches must be
able to compensate for the distortion in the image data. Ideally what is required is a method of local
area correlation which is rotationally invariant. The standard, spatial domain, technique for correlation
between image planes does not handle rotations of the image data. However, techniques do exist in
the spatial-frequency domai€P76 AR84]. However, these are considerably more complex than is
desirable for this particular task.

Techniques that, while not rotationally invariant, are reportedly able to handle large distortions in
the feature profile in the spatial domain were proposed by Lane, Thacker andLS&&#H]. The
techniques, referred to afretch andshearcorrelation, apply correlation twarpedimage blocks in
a recursive manner until the best fit in accordance with the epipolar geometry is achieved. However,
a good estimate of calibration is required for the initial image rectification defined by the epipolar
geometry. This is not necessarily available, depending on the level of degradation of the calibration
accuracy for which the correspondence data is required. Error in the calibration accuracy is effectively
passed to the rectification of the image plane and therefore the localization accuracy of the features.
Since these are matched and passed to a re-calibration process a feedback loop is created which can
lead to either positive of negative effects. These algorithms also incorporate the disparity gradient

constraint, in order to reduce the possibility of mismatches to a minimum, and therefore incur higher

3More standard forms (there are a number of alternatives) of correlation give a measure ketween
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computational costs. These algorithms, unmodified, are not optimal for correspondence matching for
subsequent re-calibration considered in this section. They are however revisited in Settion

An alternative, approximation to the concept of warped image patches can be found in the source
code forTina . This method is not referenced and does not appear to have been published. The
idea appears (without reference this is an assumption on the part of the author of this dissertation)
to attempt to simulatshearcorrelation by using the orientation of the corner feature to guide the
warping of the image patches. This idea has some merit since, in general, the profile change of a
feature between views is proportional to the change in orientation. Another alternative approximation
to shear-correlation, offered by the author of this dissertation, combines the idea of guiding the amount
of warp to apply to the interpolated images patches withpseudd calibration provided by the
inherent camera geometry of periscopic stereo. Using the image position of a candidate match as
the centre, a warped (rotated about the centre position) 5x5 patch is constructed from the image
plane by applying quadratic, surface fit, interpolation to positions determined by eith€rratation

dependent on a either a left-to-right or right-to-left match, as shown in Figdre

/ﬁ direction of shear direction of shear 4-\

5 x 5image patch 5 x 5image patch

left hand image right hand image

Figure 5.1: Simulated shear correlation with fixed rotation.

“The relative camera geometry can be calculated, as described in Chaguterprovides a good initial estimate of the

epipolar geometry.
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Apart from these two ideas of extracting warped correlation patches, a third, more obvious, option
is apparent. Due to the fact that the vergence angle between frames is small and the frame capture
rate is almost constant, as discussed in Chapterarping the image patches for correlation may not
be necessary for an acceptable percentage of mismatches. The number of acceptable mismatches, as
discussed in Chapté; is open to debate. Not attempting to model the change in feature profile is a
guestionable premise. In summary, Figbt2 shows the pseudo-code for the point correspondence
algorithm discussed in this section. The algorithm applies equally to for all three correlation patch

techniques, however, the rotated patch is quoted.

initially: from a set of corner Feature$,,) for m; images,
wherej =1, 2.
preproc: for( m; ){

Simulate image-plane rectification (by constructing
arow indexed LUT of pointers td@;)
from the “known” relative disparate views; }
correspondence
matching: for (m; tomy ) {
for (F; inm; LUT) {
for (epipolar band imm;, LUT) {
if (! norm(I; — Iz|) > 0.6) {
Compute Corremeasure over 5x5 patches
with 2nd image patch rotated hiy4°;
if( CorreLmeasure> 0.98 ) {
Fix match and store in list with
Correlmeasure;
P by
for (mytom; ){ Repeatabove; }
for (all match lists }{
if (! mutual correspondence && unique)
throw away match;

Figure 5.2: Pseudo-code for the point correspondence algorithm
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5.3 Assessment of Image Patch Correlation Techniques

Although it is not the aim of this chapter to compare and contrast the performance of image patch cor-
relation techniques, the results presented here were acquired as consequence of testing the proposed
algorithms. This is not intended as proof to support either method and the author of this dissertation
admits that the final choice of method in this implementation is largely intuitive.

The performance of correspondence algorithms is largely subjective and there is little evidence
in the literature of statistical analysis. A notable exception was presented by Thacker and Court-
ney [TC92. However, such extensive comparative methods are beyond the scope of the research
presented in this dissertation. The following performance measure is only used to give an indication

of performance.

(M — My)

53

Pr(mi, mg) =

wherePy;(m1, mso) is the performance measure for a given stereo image Jaiis the total number

of matches Fixed plus Good or My + M,), M, is the number of bad matches. Fixed matches are
those computed to be the most preferred according to the correlation measure and good matches are
those in the list of candidate matches which fall inside the uniqueness conskgintis the lower

of total number of features in either the left or right-hand images. The maximum possible score is
1.0 since if all the possible matches were good, with no bad matches, this would Eguial The
number of bad matches was derived by inspection of the stereo pairs, examples of which are given in
Figure5.3, using a manual , “matched feature”, selection tool availablBr@a . Arbitrary epipolar

lines are shown in Figures.3(a)and5.3(c)in order to demonstrate the relatively small degradation

in the calibration accuracy at the extremes of the five stereo pairs. Each stereo pair is selected from
three different sequences with Figuse(b)being the ideal case. The smaller crosses indicate when

the matches are those labelled as “good”.
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(c) frames 38 and 39 of%8sequence

Figure 5.3: Examples of point correspondences from faft) 2'® and (c) 3¢ sequence.

Table 5.1 contains the results of five different examples where all three methods, labBlied;
warp for feature orientation guided warpingtd-patchfor standard local area image correlation and
rot-patchfor the +4°, rotated patch, were applied to three sequences (lab&kd bf stereo image
pairs. Each set of five stereo pairs simulates when the calibration accuracy is both high and low.

The frame numbers are given for reference only. The varying accuracy of calibration is achieved by
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Or-warp std-patch rot-patch
Seq Frames | Fiin Mf Mg M, Py Mf Mg M, Py Mf Mg M, Py
18:19 172 14 5 19 | 0.0 | 18 7 15 | 0.06 | 20 6 15 | 0.06
19:20 173 50 3 3 0.28 | 55 4 3 0.32 | 58 3 2 0.34
1%t 20:21 165 76 4 4 0.44 | 98 6 7 0.60 | 101 7 5 0.62
22:22 137 54 3 1 041 | 77 2 2 0.56 | 77 1 2 0.57
22:23 116 20 1 5 | 014 18 0 3 0.13| 18 0 3 0.13
20:21 166 13 3 16 0.0 11 2 13 0.0 9 3 12 0.0
21:22 139 12 3 8 | 0.05| 15 3 9 0.06 | 16 1 7 0.07
2nd 22:23 119 58 2 1 0.50 | 85 0 1 0.71| 85 0 1 0.71
23:24 106 60 2 2 0.57 | 81 0 1 0.75| 81 0 1 0.75
24:25 96 15 1 0 | 016 | 19 0 0 0.20 | 19 0 0.20
38:39 149 9 4 13 0.0 12 4 16 0.0 12 4 16 0.0
39:40 123 13 1 6 | 006 17 0 5 0.10 | 18 0 6 0.10
3 40:41 103 55 1 1 0.53 | 63 0 1 0.60 | 64 1 1 0.62
41:42 92 58 0 2 0.61 | 67 0 0 0.73 | 67 0 0 0.73
42:43 80 22 0 0 | 027 | 26 0 0 0.32| 26 0 0 | 0.32

Table 5.1: Comparative results for point correspondence algorithms applied to uncorrected periscopic

stereo images.

using a “weak” (not particularly accurate) calibration derived from a rotationally uncorrected image
sequence using only the centrignto-paralleP, stereo image pair. As each subsequent stereo pair

is selected, in either a clockwise or counter clockwise direction (in a rotationally uncorrected sense),
from this central position the error in the position of the image data with respect to the epipolar
constraint increases. Therefore the possibility of matching the corresponding image point is reduced
in proportion to the displacement through the image sequence. This simulation of low calibration
accuracy is explained further in Secti6rs.

Direct comparison of the results is not statistically significant. However, applying the performance
measure to the data presented in Tdhlkit is apparent that both the second and third techniques
perform better than the first, since their scores are higher (compare the columns laBgllgdvith
the latter marginally better overall. The fact that correlating using the uncorrected image patches

produced virtually identical results supports the concept that, in this particular situatidf rtiation

Simplies the image plane is parallel to the scene with no rotation about the optical axis, see the glossary.
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about the optical axis has a minimal effect.
A similar test was conducted on a single, rotationally corrected, image sequence, derived from
the 29 sequence, using “more” stable calibration parameters. The calibration in this case is “more”

stable due to the absence of the rotation about the optical axis. This is covered in Ghaptde5.2

Or-warp std-patch rot-patch
Frames | Fin | My | My | My | Py | My | My | My | Pu | My | My | My | Pur
20:21 174 71 3 3 041 91 8 10 | 051 | 91 6 10 | 0.50
21:22 133 62 3 3 0.47 | 76 5 4 059 | 77 5 4 0.59
22:23 102 50 2 3 048 | 72 1 3 069 | 71 0 2 0.62
23:24 85 41 2 3 047 | 61 1 1 0.72 | 61 1 1 0.72
24:25 85 36 3 3 | 039 57 0 2 | 065| 57 0 2 | 0.65

Table 5.2: Comparative results for point correspondence algorithms applied to rotationally corrected

periscopic stereo images.

contains the results for this experiment and show that while the standard and rotated correlation
patches identify more fixed matches, the number of bad matches is far greater than that for the orien-
tation guided patch and/or the previous results. The reason for this is demonstrated in Fidfaes
and5.4(b)where the silhouette image frame in Figbrd(b)creates more corner features at the inter-
face with the image data than the former. These features are naturally included by the correspondence
algorithm and processed. This leads to a distinct reduction in the performance of the standard and
rotated correlation patches but has a lesser effect on the orientation guided correlation patch. This is
due to the fact that the feature orientation is not consistent along these contrived edges.

This anomaly also demonstrates the continuing problem of dealing with the silhouette frame
throughout the remaining process chain. An obvious solution is to bound all processinmgdigra
of interest(ROI) calculated from the size of the natural image frame and the frame number within

the sequence. The concept of using a ROl is common place in many image processing environments,
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(b) standard correlation patch

Figure 5.4: Point correspondence from region correlation using (a) orientation guided and (b) flat

image patches on a rotationally corrected image sequence.

includingTina . However, the ROI must be the same for both images in the stereo pair. This restricts
the maximum ROI to always be within silhouette framh¢®, which considerably reduces the viewing
volume to aboutt1/4 of the sequence from the cardinal point. Due to this limitation such a scheme
has not been adopted.

In summary; the results of these experiments show that if the image sequence is rotationally
corrected prior to correspondence matching then the warping of the correlation patch should be guided

by feature orientation. If, however, the sequence is uncorrected the rotated patch should be used.
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5.4 Correspondence for Reconstruction

Section5.2 concentrated on solving the correspondence problem and producing a set of matched
point features for subsequent re-calibration of a periscopic stereo imaging system. There also exists
the requirement to provide a set of corresponding features for use in the estimation of the scene
depth and subsequent reconstruction. The productidemth mapsor disparity imagesis discussed
in Chapter7. Disparity images consist of either isolated point features or lines and conic sections
where the depth estimate is encoded by the pixel valiea provides a number of stereo matching
algorithms for the latter, edge string, features. These are briefly reviewed in this section, which has
been included here in order to widen the overview of stereo correspondence algorithms and aid the
discussion of future work in Sectidh5and also later in Chaptét

In Section5.2 it was suggested that a small percentage of mismatches, or outliers, were permis-
sible in the correspondence data because subsequent calibration should, in general, be sufficiently
robust to accommodate their existence. However, if the correspondence data is required for recon-
struction then no such relaxation should be tolerated. The correspondence algorithm must therefore
include more stringent checks to reduce the possibility of outliers to a minimum.

A general feature-based correspondence algorithm is giv&ima which incorporates a num-
ber of options for match and support cost functions and list ordering to yield an optimal match list.
Following image plane rectification using the row indexed method described in Séckiand the
calculation of a central disparity, a disparity window is created. This window constrains all candidate
matches to fall within a valid range of disparity set by the central disparity estimate, the image di-
mensions and an upper and lower disparity threshold, all of which are set by external, user defined,
parameters. A disparity histogram is then constructed from an initial match of edge strings accessed

via the rectified row index of the left and right images. The matches are therefore consistent with
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the epipolar constraint. The disparity is calculated between the centroids of the matched strings. A
selection of match options are available throdgma’'s tool interface. These are based on matching
either ‘Edgel’ orientation, contrast, a combination of both or can include all features in the initial
match set. The disparity histogram is then used to update the valid disparity range across the im-
age, effectively implementing a disparity gradient constraint for later use. A list of matched edge
strings is then constructed for both images based on the match function applied through the epipolar
constraint, the disparity gradient and a uniqueness constraint implemented by labelling the matched
strings. Match support structures are then added to the list of potential matches in order to keep
track of the support for each match accumulated over the number of consistent elements in a whole
string match process. Other support functions are available but the ‘whole string match’ support is
recommended iffina . The final stage of processing is the ordering of the match list to yield the
preferred match. Three options are available. A best match at the string matching leuehes
take-allscheme applied to all competing matches and a dynamic programming scheme which selects
an optimal ordered match list by applying cost functions to the original constraints of the competing
matches.

A detailed review of these methods has not been completed. However, the initial assessment of
application to both rotationally corrected and uncorrected periscopic stereo image pairs has shown
conflicting results. Figur®.5 demonstrates some of the results of applying the same feature-based
stereo algorithm to a rotationally corrected, as shown in Fi§uséa) and uncorrected, as shown in
Figure5.5(b) image pairs. In Figurg.5(a)the match performance of the algorithm is good and there
are few mismatches. However,, the inclusion of the silhouette frame does induce mismatch segments
as shown on the right hand side of the bookcase and in the top left hand corner of the right hand image.
The number of matched horizontal strings is naturally lower than non-horizontal strings due to the

increased ambiguity of matching along the same raster line. In Fig&(b)the match performance
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(b) uncorrected periscopic stereo pair

Figure 5.5: Featured based stereo correspondence of (a) rotationally corrected and (b) uncorrected

image pairs.

does not appear as good. Assuming the stereo calibration has an acceptable level of accuracy (as
demonstrated by the inclusion of the epipolar lines in the Fighrg&)and 5.5(b) and considering
that there is only a° difference between the feature orientation of corresponding edge strings, this
feature based algorithm should be able handle the uncorrected images. It should be noted that only
specific edge strings for matching since selecting every string would introduce more highlighted detalil
and make the visual comparison much more difficult. This apparent lack of performance in the case
of the uncorrected images is a concern and should be the subject of further investigation.

Itis known [QK96, MK98] that, in general, line features offer more flexibility to 3D reconstruction

than point features and lead to more detailed models of the scene. These feature based stereo matching
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techniques are therefore important to large-scale scene reconstruction.

During the discussion of possible solutions to the correspondence problem in Se2tiomtech-
niques, referred as stretch- and shear-correlatibip4], was mentioned. These techniques are able
to produce correspondence matches of features, in spite of changes in feature profile, by employing
a recursive search along the epipolar line with a range of warped correlation patches. The range of
warping, which equates to variation in the width of the correlation patch, is reportat§94] con-
sistent with enforcing a cyclopean disparity gradient limit along the epipolar line.TiM94] actual
image plane rectification is applied, by interpolating the image data at positions specified by the cam-
era’s rectification matrix, prior to correlation. The algorithm also employs edge enhancement and
filtering to pre-condition the image data prior to correlation of the warped patched. However, edge
detection, is used to generate the positional information, to sub-pixel accuracy, required to construct
disparity images based on non-horizontal edge strings. Non-horizontal edge strings are used in order
to improve the stability of the algorithm which attempts to remove all ambiguous matches by using
the disparity gradient limit.

The stretch-correlation method is, reportedly194] preferred and the technique was extended
in [CLTS97 to incorporate a temporal, feedback loop. This involves the use of the previous disparity
image to seed the matching process in the current frames. The use of this temporal information
improves both reliability and efficiency by effectively reducing the search area along the epipolar line.
Although edge strings provide the initial data set, only 3D point data is produced. No attempt was
made to fit lines, or conic sections, to this 3D data.

The application of stretch correlation to rotationally corrected and uncorrected periscopic stereo
images yields consistent results in both cases. The stretch- and shear-correlation algorithms were
designed specifically for implementation in hardware and therefore are not optimized. The original

paper LTM94] concedes that the popular PMF algorithRMF8Y is considerably more efficient. In
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the short term, use of the stretch-correlation algorithm for the production of correspondence data for
periscopic stereo reconstruction appears limited due to its computational cost. However, its implemen-
tation in hardware could lead to real-time operation that would certainly be applicable to large-scale

scene reconstruction by a mobile periscopic stereo system. The use of this temporal stereo algorithm

is demonstrated in Chaptér

5.5 Concluding Remarks

In the introduction of this chapter it was stated that while solutions to correspondence problems may
have common elements, they require “tailoring” to the particular set of circumstances relating to
the imaging system, the type of corresponding feature and the subsequent process that receives the
matched data set. This is evident in the discussion of the techniques developed for point correspon-
dence and the techniques employedimna for both point and line correspondence algorithms.

This chapter has reviewed a humber solutions to the stereo correspondence problem, applied to
both point features and edge strings, with particular attention to their applicability to both rotation-
ally corrected and uncorrected periscopic data. A simple technigue, which simulates shear correlation
using at4°rotated patch, has been presented for the point correspondence in uncorrected periscopic
stereo image pairs. Although this technique has not been conclusively tested, initial results show an
overall level of performance better than the techniques reviewed. The rotated patch technique has
therefore been adopted for the generation of corresponding point data for subsequent re-calibration
of periscopic stereo using uncorrected image data. The technique recommended for point correspon-
dence for rotationally corrected periscopic stereo image data is the feature orientation guided, warped
correlation technique found in thigna library. Further work is required to fully validate these tech-

niques.
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The review of techniques applicable to the generation of corresponding features required for sub-
sequent reconstruction has been brief. Although there is some concern about the application of the
featured based algorithm to rotationally uncorrected periscopic stereo image pairs, the techniques re-
viewed are capable of processing both corrected and uncorrected periscopic stereo image data. The
stretch correlation algorithm is an established solution which is unaffected by the peculiarities of
periscopic image data. The design appears optimal for matching corresponding features for sub-
sequent reconstruction but less so for re-calibration. Both the featured based and stretch correlation
techniques are referenced later in Chaptdfurther work is required to validate the initial assessment

of the applicability of these techniques to periscopic stereo.
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Chapter 6

Calibration of Periscopic Stereo

Camera calibration is fundamental to the capabilities and performance of computer vision systems
used for the 3D reconstruction of objects or scenes. The method of calibration directly affects the ac-
curacy of the resulting model of the imaged scene and the type of reconstruction possible, as described
in Chapter2. This chapter applies two published techniques on camera calibrage8] TM91] to
periscopic stereo and introduces a new emphasis on some of the key issues. Specifically, this chapter
presents a hew method for combining the two primary calibration techniques, grid calibration and
epipolar calibration. The prescribed calibration algorithm includes a published techiibi@d]]
suitably modified, for updating the camera model over time. These methods apply to the calibration
of both corrected and uncorrected periscopic data. This chapter begins with a review of the basic
types of calibration in standard systems. Reviews of camera calibration techniques can be found at
CVOnlineor for more detailed treatments, refer to the texts by Faugé@sof and Hartley and
Zissermaniiz0Q].

Although a scaled Euclidean, or metric, reconstruction is possible with uncalibrated image se-

quencesPKVvG9g, the cameras in a vision system should ideally be calibrated in order to achieve
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the best possible reconstruction results. In photogrammetric studies, camera calibration is referred
to as solving therientation problemsThe two basic problems differentiate between recovering the
internal (orintrinsic) and external (oextrinsig parameters of the camergisojection matrix The
third problem referred to aglative orientation, recovers the relative transformation between the two
camera views. The basic theory of the perspective camera model with intrinsic and extrinsic param-
eters, together with the geometry stereopsigtwo-view imaging) are given in Appendi&. The
terms,internal, external andrelative camera parameters will be used throughout this chapter.

The particular method employed for the solution to the orientation, or camera calibration, problem

depends on one of two possible configurations for the imaged scene.

e Known scenewhere the position of a minimum of six points in the world and the corresponding
2D image points are known. These correspondences form a set of linear equations which can be
solved and the camera parameters recovered by various forms of matrix decomposition. This is
often referred to agrid calibration because of the use of a calibration object, or grid, placed in

the scene which defines the world points.

e Unknown scenewhere nothing is know about the scene, however, the corresponding image
points from two or more views of the same world points are recovered to form a set of linear
equations. These equations can be solved by either linear or non-linear methods and the camera
parameters estimatagb to scale The termup to scalerefers to the fact that there is no prior
depth information in this configuration and therefore a normalized camera model is constructed
without any absolute scale. A number of solutions are possible, each depending on the relative

motion between the two camera positions. This motion constraint has two distinct possibilities:
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— Known camera motianwhich has three specific geometries:

1. Pure translation.
2. Pure rotation.

3. Both rotation and translation.

— Unknown camera motiorihe most general case, often ternsedf-calibration[FLM92].

Stereo calibration from an “unknown” scene can be described in geneepisar calibration
because of the explicit use of the epipolar constraint reviewed in Appéndid used in the solution
of the correspondence problem in ChagerThis term is preferred tself- or auto-calibrationin
this dissertation since it does not imply anything about the scene. The motive for this is explained in
Section6.4.

In Chapter2 it was stated that full Euclidean reconstruction is only possible if some world ref-
erence is known. Therefore, solutions to the calibration from an unknown scene, regardless of the
motion constraint, produce either restricted camera models and/or varying degrees of reconstruction
ambiguity. That is either an affine camera that models parallel projection is assumed or only an affine
reconstruction is possible. A number of solutions have been presented for the various camera con-
figurations PH95 MvGvDP93 Har94 HMDB95, MF92, ZDFL95] and types of scene and there is
some diversity in the opinion of researchers concerning the preferred solutions given particular cir-
cumstances.

The relative camera motion between the views in periscopic stereo is “known”. This allows a
useful simplification to the solution of epipolar calibration. Furthermore the use of a single camera
yields fixed intrinsic parameters between stereo views. The aim of this chapter is therefore to in-
vestigate methods capable of producing full camera calibration for both rotationally corrected and

uncorrected image pairs which will ultimately allow periscopic stereo to be used to estimate physical
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measurements of the scene.
Throughout this chapter reference will be made of the single camera and parallel camera models

defined inTina . The source code definitions of these are given in AppeBdor ease of reference.

6.1 Grid Calibration

The concept of relating 3D world points to 2D image pointssiiailar trianglesis discussed in Chap-
ter3andin AppendiA. Knowing the coordinates of a set@fBD world points and the corresponding

images points, a set of linear equations can be formed such that,
z, =PX, (6.1)

where,, and X, are the image and world points in homogeneous coordinate® amthe camera
projection matrix. The coordinates of the 3D world points are defined by the calibration target, or
grid, and referenced to some chosen world origin. The most referenced solution for grid calibration

found in the literature is that presented by TSa&487.

6.1.1 Tsai's Method

First the coordinates of all the corresponding image points are converted into their equivalent camera
coordinates as:
(z; — uo)d,

Te=-——"——" and y.= (yi—vo)dy (6.2)
Sy

where;uy andvg the coordinates of the principal point, is a scaling factor which is initially set to
one and derived explicitly lated,, is the vertical distance between two sensor elements on the CCD
array,d,, is the horizontal distance between two adjacent pixels calculateddfom d, N, /Ny,
whered,. is the horizontal distance between adjacent sensor elenténtss the number of sensor

elements in a row and/y, the number of pixels in the image row for the current resolutidf,
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andd, are often given in the camera’s data sheet but can be derived by experiment where an image
of a known square target is capturigohto-parallef and the number of pixels is divide by the actual
measurements of the square in millimeters. This is described in detail in Reg Willson’s tutorial on
Tsai’s calibratioR. This initial stage effectively defines the camera’s internal parameters, excluding

f,»in EquationsA.6 andA.7 in AppendixA and remove& from consideration in Equatiof.8.
The next stage is to construct a matix from sets of linear equations of the form given by
Equation6.1 Considering only the Euclidean coordinates, the linear equations for transformation of

3D world points to 2D image points in the camera coordinate frame is given as:

Tl yclxwl yclval yr:lZ'wl Yel _mch'wl _xclywl _Iclzwl ay
Te2 YeoXuw2  Y2Yuwz2 Ye2Zuw2 Y2 —Te2Xwz —Te2Yw2 —Te2dw2 as

T = = =MA
Len ychwn ycnY;vn yanwn Yen *zchwn *xcn}/wn *Ianwn ar

" (6.3)
whereA is the 7-vector solution, from which the external camera parameters are derivéd iaad
n by 7 matrix defining the problem space. This only applies if the calibration points are derived from a
non-coplanar calibration grid. If the calibrations points are all coplanar then the terms confajning
are removed from the problem space, as recommendedKiB9g KSK98, Wil94], thereby reducing
A to a 5-vector. The missing parameters must then be determined indirectly, as described later.

The use of more than seven points (continuing for the non-coplanar case) leads to an over-

determined set of equations which can be solved for the vetctming a number of methods:

e The pseudo-inverse technique (dioore-Penroseextension of the generalized inverse")

!see the Glossary for terms which arataics.
2Reg Willson’s tutorial and source code is available from:

http://www.cs.cmu.edu/afs/cs.cmu.edu/user/rgw/www/TsaiCode.html
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where,

A= MMMz (6.4)
is recommendetin [KSK98§].

e Single Value Decomposition (SVDWwhereM can be decomposed into the product of three
matrices such that,

M=UDVT (6.5)

whereU has orthonormal columng) is a non-negative diagonal ahd” has orthonormal rows,

is recommended inJKS95 SHB99.

e The method implementation ifina uses a&holeskyleast-square solution, which is similar to
LU decomposition for a specialized case of a symmetric, positive-definite matrix and ensures a

positive, non-singular solutioPFTV93 sect:2.9].

From the analysis inf[sa87 and [KSK9§g], the parameters of the solution vector equate to:

T18z 79S8y 73Sy teSy T4 r5 r6
3 az = 3 az = ) as = —, ag = —, ar =
ty ty ty ty

al = =
ty

(6.6)

wheret, andt, are two of three components of the translation veetor; are components of the
rotation matrixRwhich form[R | ¢], the transformation, or projection matrix, from the world to the
camera coordinate frame. Using the orthonormal properfy, 6f2 + r§ +r2 = 1) and parameters
a4, as andag a value fort, can be calculated. Initially the sign of is assumed to be positive and
r1,T9, T4, T5 andt, are calculated from Equatios6. Then the signs of the components of the most
eccentric image point in the calibration data set are compared to the signs of:

v =1 Xy + 1Y+t and Y =ry Xy +r5Y 1ty (6.7)

3This is also used in the implementation by Reg Willson.
“The theory and code for SVD can be foundNomerical RecipefPFTV93 sect:2.6]
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If the signs are the same then all the calculated parameters remain positive, if not then all the signs are
set negative.
The scaling factos,, is determined using the orthonormal propertyRoand the fact that image

scanning orientation is assumed to be from left to rightalways positive) such that:

tyr/a3 + a3 +ai = ty\/(tglsmrl)Q + (ty "sam0)? + (ty ts,73)2 = sp0 /12 + 13+ 13 =5, (6.8)

If only five parameters are available, from the use of coplanar calibration data, tieedetermined

from:

1
ty = T 7, .2, .2
Vat+ a3 +a? + a2

(6.9)

The remaining parameters are calculated as described above except for the scalirg falstcn can

not be calculated in such circumstances. It is therefore ignored until a later stage of processing. If the
scaling factor is available then the componenis,r,, ... ,rg, Of the rotation matrix are finally
calculated using Equatioi@s6. If not then the orthonormal property 8fis used again to determined

rg andrg. In either case, the last row,, of the rotation matrix is determined from the other two rows

by, r. =71, x 7

An initial estimate of the focal length and thecomponent of the translation vector is determined

from the set of linear equations:

g1 Yel h1 Ye1
92 Ye2 / h2  yeo
= (6.10)
:, : .
| 9n Yen | | Yen |
formulated fromn calibration points where,
g; = 7’4ij + 7’5ij +t, and hj = 7”7ij + rsYui (611)
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Thisn by 2 matrix is solved fof andt, as above, using the same preferred method. The estimates for

f andt, are improved by constrained optimization. This process can incorporate estimates of radial
lens distortion as described i9{S95 KSK98, SHB99 HZ00, Tsa87. The implementation given by

Reg Willson includes optimization with*order radial lens distortion. The implementation given in
Tina consists of a separate process which does not, as yet, include radial lens distortion. The separate
process does, however, allow for a “global” optimization of any or all of the internal camera parame-
ters and all of the external camera parameters using the simplex optimization nfefiodd3. The

error function used for the optimization computes the sum of the square error of the corresponding
calibration points projected onto the image plane. This is given by Equétidhand discussed in

more detail later. No weighting factors are used and all the parameters selected are optimized without
bias. The scaling factor in the original algorithm, can be “partially” compensated in the optimization
process by the selection of one of the aspect ratio parameters together with principahpointia-
belleda,, ay, ¢, ande, in Tina )°, and the focal lengttf. However, considering that all parameters

are optimized equally in simplex optimization angdapplies to some parameters and not others, see
Equation6.6. This is a source of error which impacts on the performance of this implementation and

identifies a limitation with using coplanar calibration data.

6.1.2 The Design of Calibration Grids

This section discusses the design of calibration grids. As mentioned in Séctidnthe grid cali-
bration can consist of either coplanar or non-coplanar calibration points. Examples of non-coplanar
calibrations grids are given in the referenced tekisu93 HZ00, chap.6,pp.170] Coplanar grids are

generally of the form shown in Figu&1 Non coplanar calibration grids are usually formed by two

5The aspect ratio parameters effectively scale the horizontal and vertical axis of image plane according to dimensions

of the pixel grid and the current image resolution. In practice only the horizaptal ever used.
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coplanar grids at 9@o each other. Identification of the corresponding image points requires feature
extraction to sub-pixel accuracy together with a subsedadetling procedure which identifies and
matches specific points in an ordered fashion. The result of such labelling is also demonstrated in

Figures6.1(a}6.1(b) It is essential that the techniques employed to identify the corresponding image

(a) frame 11 (b) frame 12

Figure 6.1: Successive frames of a coplanar calibration grid inside a small box.

points are invariant under the perspective distortion created by the camera. Due to the tumbling nature
of the uncorrected image data between successive frames from periscopic stereo, the techniques em-
ployed should also be rotationally invariant. This does not present a problem for the feature extraction
part, which consists of edge detection followed by line fitting; the calibration points are recovered to
sub-pixel accuracy from the intersection of the lines. However, robust labelling and correspondence
matching is more difficult.

Labelling on coplanar grids is simpler than that on non-coplanar grids. The reasons for this are
given in the next paragraph. Unfortunately coplanar grids are not the preferred choice in the refer-
enced textsFau93 HZ00, KSK9g]. The primary reason for this is that for many of the optimization
methods used in the various calibration techniques coplanar data points yield degenerate cases. The

is discussed inHZ00, sect:10.9] for the estimation of the fundamental matrix using3tpeint al-
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gorithmand herein Sectiof.1.1, pagell3 where the use of th&,, coordinates are precluded for
coplanar calibration points.

Non-coplanar calibration grids tend to be larger than their coplanar counterparts. This is due,
in part, to the desire for a greater number of calibration points for an over-determined set of linear
equations. However, more important is the increased ambiguity in labelling the corresponding image
points for both the left and right planes. One method of reducing the ambiguity in labelling the
corresponding image points is to employ the concept ottbss-ratiowhich remains invariant under
projective transformationd=pu93 HZ0Q], as described in Chapt@ron pagel8. Using the cross-
ratio, sets of four collinear image points can be matched to their corresponding set of four collinear
calibration points. By using different sets of four points an ordered and labelled list of points can
be produced. This is the method employediina and that used to derive the labelling shown in
Figure6.1

It was suggested in Chaptetsand 3 that the primary application of large-scale reconstruction
from periscopic stereo would be for remote operation in hostile environments. The idea using a
calibration grid placed in the scene is therefore counter-productive. However, by using a calibration
grid placed in the corner, inside a small small box, this apparent limitation can be over come. The
box is placed over the periscopic stereo head. This “calibration in a box” idea allows the system to be
calibrated prior to use. However, its use introduces a limitation to grid size which must be completely
visible in a single image frame. The author has made attempts to incorporate non-coplanar calibration
grid (across the corner of the box) and maintain the use of the cross-ratio. This requires a total of at
least six collinear calibration points on the grid in order to solve the labelling ambiguity. Reducing
the number of calibration points on each half of non-coplanar grid leads to an increased likelihood of
incorrect labelling especially given the tumbling image data. Figueelemonstrates that even with

grid of 8 x 8 calibration points, errors still occur. Notice the top rows in Figbr(a)and the left

118



(a) frame 9 (b) frame 11

Figure 6.2: Incorrectly labelled calibration points

hand columns in Figuré.2(b) Figures6.1(a)and6.2(b)are of the same frame using different data
files which define the location of the corners of each square on the grid in the world coordinates. The
only difference in these files is the location of the world origin from where the calibration points are
defined. This should not, in theory, affect the labelling process which computes the extended grid
lines from top to bottom and then labels the intersections from bottom left to top right as shown in
Figures6.1and6.2

At the time of writing, an optimal solution has not been found. The coplanar calibration grid, with
8 x 8 calibrations points, as shown in Figuréd and6.2is used, with specific data files known to
yield no labelling errors over these frames, for the initial camera calibration described in this chapter.
The source code for the recovery of the calibration data used in the experiments presented herein is the
same as that available Tina . The design of a non-coplanar calibration grid for use inside the box
requires further work to yield an optimal compromise between size, complexity and robust recovery

of the calibration points.
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6.1.3 Problems with Tsai's Method

Although Tsai's method is widely referenced, there are a number of limitations and sources of er-
ror which are not always conveyed to the reader. Two constraints for the use of Tsai's method are

recommended inNJKS99. These are:

1. The world origin in the absolute coordinates is not in the field of view.

2. The world origin does not project to a point in the image that is close tg #xés of the camera

coordinate frame.

Condition 1, reportedlyJKS99 decouples the effects of radial lens distortion from the focal length
and the distance to the calibration grid. Condition 2 ensures thaj, tt@mponent of the translation
vector is not close to zero and therefore does not present a problem in Eqéaiom practice
neither of these constraints present a problem since a world origin can be offset from the calibration
grid by some translation, with the data points scaled accordingly. For the experiments in this section
the world origin was chosen as the base of the corner of the box plus an offset translation vector of
[250,100,0]. The calibration data points were specified assumifirgreto-parallel condition such

that theY,, coordinates of the horizontal collinear calibration points are all the same.

In section6.1.], the review of Tsai’s method reveals that the initial phase of processing requires
the corresponding image points to be converted to the camera coordinate frame using an initial “guess”
of the principle point and the aspect ratio of the camera’s pixel grid. The initial values, recommended
by Tsai [Tsa87, assume the principal point to be at half the image width and height and the aspect
ratio to be 1:1. The initial focal length is determined by an “educated” guess, based on the lens
parameters. Although improved estimates of the principal point, aspect ratio and focal length can be
determined by subsequent optimization, as is the casaais implementation, their requirement

presents a distinct limitation if “good” initial estimates are not available. This fact has been recognized
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in [JKS95 KSK98]. However, no evidence is given in these texts to the extent of the effect of “bad”
initial guess of these parameters. What constitutes “good” and “bad” initial estimates of the principal
point, or indeed, the other internal camera parameters, appears from the literature, to be resolved
by “trial and error”. This impacts on the use of the implementation givehima . Since the final
optimization phase considers all parameters to have equal error, the result can be an optimal solution
with large accuracies in any particular parameter. In order to assess these effects a number of attempts
to calibrate the camera using the same data, associated with Eidubg were conducted while
varying the initial estimates of the principal poiat, andvy. The camera is assumed to be coincident

with the world origin such that a zero translation vector is specified and the rotation matrix is defined
by an identity matrix. The initial estimate of focal length was set to 10 and the aspectaatios

1.1, a, = 1.0. The results are given in Tabfel, wheref, is the initial value of focal length returned

by the basic Tsai algorithm aryi,,, is the estimate of the focal length after optimizatidf 2 1 P,

is the sum of the squared error function for minimizing the difference between the corresponding

image and world X) calibration points:
> @ IPnin =Y ((Xu—zu)® + (X — 7)) (6.12)

projected on to the image plane,¢). The use of the sum of squared error for optimization is a valid
measure of the accuracy of result only because the number of calibrations points remains constant
throughout this experiment. The central pixel (192, 144 - labelled ‘#’) was chosen as the origin of
an iterative search and the variationwgfandvg was chosen to form a “star” pattern in the centre of

the image. Tabl®.0(a)presents the results for a single-stage optimization process andelai

the results for a two-stage process where the central columns of show the optimization with only the
focal length included with the external camera parameters. The five columns on the right-hand side

of both Tables.0(a)and6.0(b) show the results of optimization withy, vg, a; and f,,;, included
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(a) Single-stage optimization

Guess P & Tsai f IPnin( fo, uo, vo, az)

start | wug ‘ Vo ‘ fo S €2 IPmin ‘ i ‘ Vo ‘ Gz ‘ fmin | end
184 | 139 | 1.37 11.393 2136| 104.1| 151 | 6.31 ?
192 | 139 | 1.58 12.393 161.6| 1199 | 1.25| 554
200 | 139 | 1.78 7.096 2239| 1106 | 4.03| 7.10
184 | 144 | 1.30 19.6e+08 | 187.9| 138.3| 1.09| 1.33

# 192 | 144 | 1.54 8.884 70.7 | 129.3| 1.21 | 4.56 ?

200 | 144 | 1.74 11.972 207.9| 109.7 | 1.40| 6.15
184 | 149 | 1.23 14.546 207.9| 1209 1.18 | 5.69
192 | 149 | 1.49 23.934 216.8 | 1529 | 0.85| 4.04
200 | 149 | 1.71 20.263 252.0| 134.3| 0.97 | 5.32

(b) Two-stage optimization

Guess P & Tsai f IPmin( fo) IPrin( fmin, o, vo, Gz )
start | wo ‘ o ‘ fo S €2 IPmin ‘ Fmin || S €* IPmin ‘ uo ‘ o ‘ Az ‘ Sfmin2 | end

184 | 139 | 1.37 17.368 5.12 16.090 188.5| 129.1| 1.08 | 5.18 *
192 | 139 | 1.58 17.946 5.28 16.427 196.6 | 128.5| 1.08 | 5.26
200 | 139 | 1.78 18.230 5.35 17.791 200.7 | 133.6| 1.02| 5.03
184 | 144 | 1.30 19.520 5.20 13.564 176.7 | 121.7| 1.20| 5.51

# 192 | 144 | 1.54 20.271 5.27 18.088 2142 | 1326 1.02| 5.14
200 | 144 | 1.74 20.483 5.35 17.303 222.4| 1285| 1.05| 5.38
184 | 149 | 1.23 22511 5.21 16.952 193.6| 131.0| 1.06 | 5.11
192 | 149 | 1.49 23.251 5.28 15.990 205.0| 126.4| 1.10| 5.40
200 | 149 | 1.71 23.966 5.36 16.637 199.4 | 129.2| 1.07 | 5.24

Table 6.1: Initial results for Tsai calibration with varying estimates of the principal point.

with the external camera parameters. The former produces less stable results, as indicated by a wide
variation in optimized estimates of the internal camera parameters, agfed errors and a failure

to minimize after a second attempt (labellgd ‘and there is no clear indication (labelled ‘?’) for

the best direction of the true location of the principal point. The initial optimization should therefore
always be conducted for the focal length only. The results from the second optimization, far right-hand
columns of Tables.0(b) show a range of estimates for the camera parameters, some more “stable”

than others since the final estimates of the parameters are not widely disparate, or illogical, for instance
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20> a, < 1.0.

A similar experiment was conducted for an aspect ratias,0f 1.0, a, = 1.0. The results are
not given here in order to save time and space. However, these were, in general, less stable than those
given in Table6.1 The fact that more stable results are achieved with a greater horizontal than vertical
scaling is logical since both the image and the camera’s CCD array have a greater width than height.
However, the inclusion of the horizontal scaling at an early stage in the iterative optimization process
leads to less stable results, as shown in the central columns (results lalbgltgdrable 6.1(a) The
best result achieved (combination of lowest error and most stable estimates of quoted parameters) is
highlighted (labelled#’) in Table 6.0(b)and was chosen for the centroid of a second set of calibrations
with a smaller variation of the coordinates from the estimated principal point. The experiment was
repeated twice, each time selecting the most favorable result in an attempt to converge to an optimal
result via a sort of crude gradient decent approach. Taldeontains the results from third set of
calibrations.

The results in Tablé.2 are arranged in a similar manner to Tabl& except for the inclusion of
an intermediate optimization stage ffif anda, as shown in Tabl€.1(a) Optimization of all the
parameters is conducted after (Tabl&(a), or instead of (Tabl&.1(b), the intermediate stage. A
star search pattern is used with the inclusion of two extra calibration tests at (167,139) and (168,139).
Although the “guess” coordinates of the principal point now lay withi® & 8 pixel region of the
previous “best” result, the final results of parameter optimization still yield some erratic values. For
an initial estimate of (168,139) for the principle point no minimal solution is achieved (label)ed
While for the adjacent pixel (167,139) a minimal solution with “apparently” satisfactory estimates of
the internal camera parameters is achieved. It should be noted that the implementairen ioon-
tains an escape condition if a solution is not forthcoming after a given number optimization attempts.

Excluding these two results, all but two other (labell¢) 6f the final results in Tablé.1(a)appear
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(a) Three-stage optimization

Guess P & Tsai f IPpin(fo) IPpin( fmin, Gz, ) IPpin( fmin2, uo, vo, az )
start | wuo | ) ‘ fo S e2 1P, ‘ Fmin S e2IPy, | ag | fmin2 S e2IPy, ’ uo ) | ag | fmins | end
167 | 139 | 0.92 15.900 5.03 16.844 1.00 4.50 16.863 167.0 | 139.0 | 1.00 4.50
168 | 139 | 0.94 15.6e+09 | 11.04 16.4e+06 1.15 1.34 14.906 161.6 | 131.9| 1.08 4.89 ?
172 | 139 | 1.03 16.282 5.08 16.331 1.10 5.08 15.066 172.2 | 129.7 | 1.10 5.08
176 | 139 | 1.14 16.615 5.12 17.125 1.02 4.70 17.029 177.4 | 136.2 | 1.02 473
180 | 139 | 1.26 17.022 5.16 17.497 1.01 4.70 17.209 178.1 | 136.8 | 1.01 4.71
172 | 140 | 1.01 16.614 5.08 16.653 1.10 5.08 14.870 176.6 | 1275 | 1.12 5.21 ?
# 176 | 140 | 1.12 16.985 5.12 18.189 10.98 4.43 18.217 175.9 | 140.1 | 10.98 4.43
180 | 140 | 1.24 38.190 5.32 12.335 12.46 6.86 12.280 180.0 | 140.6 | 12.45 6.85
172 | 141 | 0.98 17.013 5.08 17.031 1.10 5.08 16.179 184.6 | 130.5| 1.07 5.09
176 | 141 | 1.10 17.322 5.12 17.244 1.10 5.13 15.053 180.5 | 127.2 | 1.12 5.25
180 | 141 | 1.22 17.761 5.16 17.575 1.10 5.17 14.481 1714 | 1274 | 112 5.19 ?

(b) Two-stage optimization

Guess P & Tsai f IPmin( fo) IPin( frmin, U0, vo, Gz )
start | wo ‘ Vo ‘ fo S e IPmin ‘ Fmin S €2 IPmin ‘ uo ‘ Vo ‘ Az ‘ fmin2 | end

167 | 139 | 0.92 15.900 5.03 15.978 178.7 | 131.4| 1.70 5.01 *
168 | 139 | 0.94 15.6e+09 11.04 11.766 90.6 | 150.5| t0.98 | 2.86
172 | 139 | 1.03 16.282 5.082 15.324 176.6 | 129.4| 1.09 5.11
176 | 139 | 1.14 16.615 5.12 15.126 168.6 | 131.0| 1.09 4.10 ?
180 | 139 | 1.26 17.022 5.16 16.428 184.7 | 131.4| 1.06 5.04
172 | 140 | 1.01 16.614 5.08 16.930 1905 131.4| 1.05 5.06

# 176 | 140 | 1.12 16.985 5.12 15.649 186.8 | 128.0| 1.10 5.23
180 | 140 | 1.24 38.190 5.32 24.242 194.2 | 152.3| 1.07 5.21
172 | 141 | 0.98 17.013 5.08 16.600 189.4 | 130.9| 1.06 5.10
176 | 141 | 1.10 17.322 5.12 16.094 180.6 | 131.3| 1.70 5.09
180 | 141 | 1.22 17.761 5.16 14.625 168.0 | 128.7| 1.11 5.10

Table 6.2: Search results for Tsai calibration with varying estimates of the principal point.

plausible. As stated above. these results appear less stable and there is no clearly “best” result from

the three-stage optimization. Although a “best” result (labelieds highlighted in Tables.1(b) the

choice is based more on the author’s own definition of “stable” rather than on a definitive solution.
Collectively the results given in Tabl€s1 and6.2 clearly demonstrate the fundamental problem

with Tsai's method. Although a solution can be achieved after a number of iterations, “stable” and
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logical values for the camera parameters are not guaranteed and the number of iterations is dependent
on the initial guess. It is apparent that if the initial guess is inaccurate by more than a few pixels,
the iterative optimization will yield estimates of the internal camera parameters, in particular the
coordinates of the principle point, that oscillate about the optimal result. This is partially compensated

in the implementation iffina with the inclusion of maximum error bounds in the error function of

the simplex optimization process which effectively enforces a slow, steady convergence to the result.
However, the question of how many iterations are required for an optimal solution, or the validity of
values in that solution, is still ambiguous. This is not the fault of the simplex optimization process.
Even if the camera parameters were weighted, or bounded, in some way, a poor initial guess would
still be liable to yield the sort of instability demonstrated here.

Given the less than desirable nature of the results from these experiments, it is difficult to see how
the optimal conditions could be modelled in order to generate a cost function which could be used
to automate the search process conducted in these experiments. The inclusion of Tsai's algorithm in
an automated calibration process is therefore highly unlikely. It should be noted that the results also
show that the coordinates of the principle point for the camera used in these experiments are some
considerable distance, in pixels, from the assumed centre of the image. In fact, the best results were
recorded in @ x 3 pixel region surrounding an initial estimate of the principle point at (162, 138).
This is not uncommon in low-cost CCD camer®éiP4] but far greater than expected here. In spite of
the shortcomings of Tsai's method an initial, user assisted, calibration is possible for both rotationally

corrected and uncorrected periscopic stereo image pairs.

6.1.4 Alternative Method of Grid Calibration

Recently, an alternative method for grid calibration has arisen. This method appear88q and

is covered in detail in HHZ0Q]. The following is a brief outline of the method.
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From Equatior6.1, the3 x 4 projection matrix is parameterized such that,

— - — - Xw - -
AT P11 P12 P13 Pla P11 Xw + p12Yw + D132y + P14
Y
Ayi | = | p21 p22 P23 P = | p21Xw +p22Yw + p23Zy + poa (6.13)
Ly
A D31 P32 D33 P34 P31 Xw + D32Yw + P332y + D34
L i L i . L i

whereA is the arbitrary homogeneous scale and is removed to yield two linear equations:

x; (P31 Xw + p32Yw + P332y +p34) = p11Xw + p12Yw + P13Zyw + P14 (6.14)
Vi (P31 Xw + p32Yw + p33Zy +p3a) = paXw + p22Yy + p23Zy + poa

For n calibration points @n x 12 matrix is constructed such that:

X1 Yw1 Zw1 10 0 0 0 —zuXer —zaYur —Talwr —Ti P11

0 0 0 0 Xu1 Y1 Zwn 1 —yaXwr —vaYwr —vYanZw —Yi D12
ps | =0
Xwn Yun Zun 1 0 0 0 0 —ZinXwn —TinYwn —TinZuwn —Tin

0 0 0 0 Xwn Ywn an 1 _yiann _yanwn _yinan —Yin D34
(6715)

orAP = 0.

A minimum of six corresponding calibration points are required to solve Equétitih More
calibrations points lead to an over-determined set of linear equations which can be solved using a
robust least-squares method, subjecti| = 1. Singular Value Decomposition (SVDPEFTV93
is recommended inHZ00] for the solution Equatior6.15 whereA = UDV”, with the positive
diagonal ofD arranged in descending order, thEhis given by the last column of. In [HZ0Q]
further recommendation is given to use data normalization, proposetid@9, to precondition
both the world and image points thereby leading to more stable solutions when using SVD. The

normalization does not affect the accuracy of the result and is reversed after a satisfactory result is
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achieved. The result from this linear solution can then be used as an initial estimate for an iterative
optimization of P using Levenberg-MarquardPFTV93, or an alternative method, while minimizing

the geometric error given by Equati@l2 Correcting for lens distortion can be included in the
optimization process, as mentioned in Sectioh 1

The external and internal camera parameters are recoveredroyrexploiting the fact that:
P =[KR| — KRt]| =[M |b] (6.16)

whereM = KR is a3 x 3 sub-matrix and the translation vector is giventby —M~'b.
Since the rotation matriR is orthogonal and the camera matixis upper triangular, as shown in
EquationA.8 of AppendixA, both can be recovered usi@R matrix factorization PFTV93.
This grid calibration method, referred to agald standardalgorithm in [HZ0Q], is worth fur-
ther investigation, especially into its use with a periscopic stereo system and is referenced later in

Section6.5.

6.2 Epipolar Calibration

The concept of camera calibration without the use of a calibration target or some other known world
data, referred to as self-, or auto-calibrati¢iL192], is based on the deterministic nature of the
relative geometry between the two views of stereo imaging system. An introduction to two-view,
or epipolar, geometry is given in Appendix. This section briefly reviews the popular methods
recommended in the referenced texts.

The epipolar geometry between two views is defined byfuhdamentamatrix such that:

jTF”:[% Yi, 1]F y, | =0 (6.17)
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whereF is a3 x 3 matrix which can only be determined up to scale. Multiplying out and rearranging,
Equation6.17can be written in the form of a vector inner productnl€orresponding images points

are available, the vector inner product can be expanded to form a set of linear equations in matrix

form:
r 1| fun
. / . / . . / ) / 3 / / 1
TilZy  Ti1Y; Tl Y%y Yo Yl Ty Ui
fi2
Af : ; =0 (6.18)
Tin®hy  TinYhm  Tin YinThy, Yinlin Yin Ty Yim 1
) Tl f33

Since f can be determined, at best, up to scale, a unique linear solution is possible for eight cor-
responding, error free, image points. If error exists in the positional estimates of the data then a
least-squares solutions is required. This is referred to as the 8-point algorithm. The basic concept of
computing the fundamental matrix is accredited to Longuet-Higdirt8[]. However, the original
implementation was applied to calibrated cameras, thereby yielding the essential matrix, as described
in AppendixA.

The recommended{Z00, SHB99 solution for Equatior6.18is to use SVD, minimizing|A f||
subject to|| f|| = 1. This is similar to the use of SVD mentioned in Sectéh.4 only with a reduced
problem space. An important property of the fundamental matrix is that it is singular and of rank
2 [HZ0Q]. The initial solution derived from SVD does not enforce this constraint. However, niatrix
can be replaced by a mattiX that minimizes the Frobenius noiff —F’|| subject tadet F' = 0. This
is achieved by applying SVD tB. The recommended algorithm, incorporating data normalization,
as described inHZ00Q]. A minimum case solution, requiring only seven corresponding image points,
is possible using the constraitét F = 0. This is also described ifHz00].

The 8-point algorithm yields a direct solution but is sensitive to positional errors in the data, which

was the motivation behind the inclusion of data normalizatiorHiarpPg. The algorithm will also fail
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if there areoutlierspresent in the data. A number of robust optimization methods are possible together
with a number of possible error function$1200] recommends the Levenberg-Marquardt method of
optimization, minimizing with either an algebraic error function or a ‘Maximum Likelihood’ (ML)
estimator that minimizes the geometric distance of the re-projected points on the image plane. The
latter is referred to as their ‘gold standard’ algorithm for estimaling

An alternative approach to, or in support of, robust non-linear orthogonal regression algorithms is
to attempt to remove the outliers from the data. Two competing methods are currently supported by
the computer vision community. The Random Sample Consensus (RANSAC) algorithm, originally
proposed by Fischler and BolleSB8]] (reprinted FB87]), randomly selects the minimum data set
for the parameters required to compute the model (in this case the fundamental matrix) fit to the
data and then computes the support for the postulated model across the whole data set. This method
partitions data into outliers and inliers and eventually selects the minimum data set with the maximum
support. The alternative is the Least Median of Squares (LMS) estimator which selects the model
with the least median distance to all the data in the problem space from a limited selection of models
computed from the minimum data set required for that model.

The above methods have been reviewed here in order to give an overview of the subject. Two
excellent papers that review and compare all these methods are by Torr and Mivtay] [and
Zhang Zha9g. While these methods are recommended in the referenced texts they are, in general,
applicable to arbitrary stereo views and are, especially in the case of the latter examples, more com-
plex than is required for periscopic stereo. Since the relative camera geometry is already known,
the requirement in the case of periscopic stereo is for improved estimates of the internal camera pa-
rameters while minimizing the projected error of the corresponding points, subject to the constraints

imposed by the epipolar geometry. The next section reviews a technique which performs this task.
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6.2.1 The Variational Principle and Epipolar Calibration

The epipolar calibration method usedTina is based on th&/ariational Principle proposed by

Trivedi [Tri87]. Trivedi's technique for estimating the fundamental matrix was presented as a more
stable alternative to the SVD solution prior to its use with data normalization. It requires no external
variables or use of heuristics and is compatible with the generation of a covariance matrix that mod-
els and propagates the error in the camera’s internal parameters and relative motion. The use of the
covariance matrix is covered in Secti6rB. The following is a brief review of the method, as im-
plemented by Thacker and MayheW\91], together with the modifications necessary for use with
periscopic stereo.

The basic idea of the variational principle is to obtain the smallest shift, or variation, in the ob-
served data necessary to make that data fit the prescribed model which is defined by a set of param-
eters. To obtain the minimum shifte; andéac;. required to make the corresponding image points
consistent with an estimate of the fundamental matrix TM91] makes use of the Lagrange method
of optimization by minimizingg, the error, subject to:

n n
€= (6z]S ox; + 0x S~ ox)) + > N (Fj + VF dx; + V'F;ox)) (6.19)
j=1 j=1
whereV is the vector differential operator arilis the error given as a diagonal matrix with the
componentsr? ando—g for the image plane andy directions andr-2 which is set to zero, since the
error is defined in terms of the image plane.

Analytically this is achieved as follows. From,

o€ Te—1 oE S
2oz, 20x;S™" +AjVF; =0 and Foa; = 202TS™ L+ A V'F; =0 (6.20)
rearrange to yield:
—\;SVFT ~\;SV'FT
x; = # and da’; = —2 SR (6.21)



Expanding the epipolar constraint equatién:,;T Fjéx; = 0, about the pointe; , for Equation6.19

2F; + VFA;SVET + V'FA;SV'ET =0 (6.22)

rearrange to yield:

Aj F|
4= _— - (6.23)
2 VF\SVET + V'F;)\SV'F]

Substituting in Equations.21,

F;SVFT F;
&Bj = T /j landh and (5ij = T : / w7
VFj)\jSVFj +VF]')\]'SV Fj VFj)\jSVFj +VF]')\]'SV Fj

(6.24)

F;=2'] [t|,Rz; VF;=2; [t|,R and V'F;=[[t],R] z;  (6.25)

Effectively the data shifts are created by variations in the estimates of the fundamental matrix created
by optimizing the relative camera parameters.

The implementation given ifiina uses simplex optimization, minimizing the sum of the squares
of error in the corresponding image points, subject to the epipolar constraint, as given in Equiion
The camera parameters passed for optimization can be any of the internal camera parameters and the
six parameters defining the relative camera transformation. Three for the translation and three for the

rotation given in quaternion forffnsee Appendi¥. In fact there are only five free parameters since,
G=1-d¢—¢—q; and F=1-13-1 (6.26)

The implementation iMina was originally written for a stereo camera system with two real
cameras and therefore two sets of internal camera parameters. However, by including a new “reg-

ister” (temporary result storage for optimization process) function and a conditional statement the

5A Quaternion is a four component vector, originally defined by Hamilton 184866, which can be used to encode

3D rotations.
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source code has been modified to optimize a single set of camera parameters, as shown i6.Bigures

and6.4. The original error functiontriv. _camerror(...) , computes an estimate of the fun-

[* cam_error.c */ .......
double triv_camerror(int *n_data, double *x,
Camera * caml, Camera * cam2, List * world3d,
Vec2 * (*pix_getl) ( /* 2?22 */ ),
Vec2 * (*pix_get2) ( /* ??? */ ), double accuracy)
{...../* original Tina source code */

double scam_stereo_reg(Covar * incov, int mask, double *a)
{ I* new stereo_reg for single_camera stereo. used in
* pixchisq_scam() for cam_cal_triv_simplex()., Added May 2001, by Ed.
*/
Matrix *delta, *dprod;
double chisq = 0.0;
int i, n_par = 0;

if (incov == NULL) return (0.0);
for (i = 0; i < 16; i++) if (mask & (1 << i)) n_par++;

delta = matrix_alloc(1, n_par + 6, matrix_full, double_v);
for (i = 0; i < n_par + 6; i++) {
delta->el.double_v[0][i] = a[i] - VECTOR_DOUBLE(incov->vec, i);
}
dprod = matrix_prod(delta, incov->mat);
for (i = 0; i < n_par + 6; i++) {
chisq += dprod->el.double_v[0][i] * delta->el.double_v[O][i];

matrix_free(delta); matrix_free(dprod);
return (chisq);

Figure 6.3: Modified source code for error storage function for epipolar calibration with a single set

of camera parameters

damental matrix and sum of square error of the projected corresponding points for every iteration of
the simplex optimization algorithm. The new register functeggm_stereo _reg(...) , updates
the covariance error matrix and the estimates of the camera parameters from the previous covariance
error matrix. The source code for the simplex optimization algorithm is unmaodified and not included
here.

The main advantage of this method of epipolar calibration is that it is simple, fast and the accuracy

of the estimates reportedlyii87, TM91] improves over time. This is achieved by the use of error
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static double pixchisq_scam(int n_par, double *a)
{ I* New function */
double chisq = MAXDOUBLE, *f = NULL;
(void) store_camera_int(cal_mask, a, cal_caml);
(void) store_camera_int(cal_mask, a, cal_camr);

if (store_camera_rel(a + n_par - 6, cal_caml, cal_camr))
{
int n = MAXINT;
chisq = triv_camerror(&n, f, cal_caml, cal_camr, cal_data,
cal_get_pixl, cal_get_pixr, accuracy);
chisq += scam_stereo_reg(cal_in_cov, cal_mask, a);

return (chisq);

static double pixchisg_stcam(int n_par, double *a)
{ [*** AS ABOVE ***/
(void) store_camera_int(cal_mask, a, cal_caml);
(void) store_camera_int(cal_mask, a + n_par / 2 + 3, cal_camr);
if (store_camera_rel(a + n_par / 2 - 3, cal_caml, cal_camr)) {
int n = MAXINT;
chisq = triv_camerror(&n, f, cal_caml, cal_camr, cal_data,
cal_get_pixl, cal_get_pixr, accuracy);
chisq += stereo_reg(cal_in_cov, cal_mask, a);

return (chisq);

}

double cam_cal_triv_simplex(Camera *caml, Camera *camr, int mask, Bool single_cam,
List *data, Vec2 *(*getpixl)( /*???*/ ), Vec2 *(*getpixr)( /*???* ),
Covar *inv_cov) /* inverse covarience */

double *a, chisq, chisg_old;

double  (*pixchisq)( );

int n_par, n_parms, i;

if (data == NULL || caml == NULL || camr == NULL) return (0.0);
cal_mask = mask; cal_data = data; cal_caml = caml; cal_camr = camr;
cal_get_pixI = getpixl; cal_get_pixr = getpixr; cal_in_cov = inv_cov;

for (i = 0, n_par = 0; i < 16; i++) if (mask & (1 << i)) n_par++;

if (single_cam ) { [rwxxx MODIFIED *vvvex
n_parms = n_par + 6;
pixchisq = pixchisq_scam;

}

else {
n_parms
pixchisq

= 2 * n_par + 6;
= pixchisg_stcam;
a = (double *) ralloc((unsigned) n_parms * sizeof(double));
(void) conv_camera_int(mask, caml, a);
(void) conv_camera_rel(caml, camr, a + n_par);
if ( !single_cam )
(void) conv_camera_int(mask, camr, a + n_par + 6);

chisg_old = pixchisq(n_parms, a);
for (i = 0; i < 5; ++i) {

chisq = simplexmin(n_parms, a, scale_init, pixchisq, c_testl,
(void (*) ()) format);
if (chisq_old - chisq < c_test2)
break;
chisq_old = chisq;
}
(void) store_camera_int(mask, a, caml);
(void) store_camera_rel(a + n_par, caml, camr);
if ( !single_cam )
(void) store_camera_int(mask, a + n_par + 6, camr);
else
(void) store_camera_int(mask, a, camr);
rfree((void *) a);
return (chisq);

Figure 6.4: Modified source code for optimization of a single set of camera parameters, subject to the

epipolar constraint
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covariance and is discussed in Sectio® An initial estimate of the error covariance is required by the
implementation and is derived from a weak model derived from the initial guess values of the chosen
internal and relative camera parameters. The implementation also includes error bounds which limit
image plane errors, in pixel units, and ensures a slow and steady convergence to the desired result.

Section6.1.3identified that the error in the location of the principle point was considerable for
the particular camera used in these experiments. This leads to the question of whether the variational
principle for epipolar calibration can reduce this initial error and if so how many iterations of the
optimization process are required. In order to answer these questions an experiment similar to that in
Section6.1.3was conducted.

Beginning at the centre of the image, (192, 144), a number of initial calibrations were computed,
each time initializing the covariance matrix so that the result in always independent.6Tablows
the results using the two left hand images in Fighide The corresponding image data was constructed
using the labelled points on the calibration grid which are, in general, accurate to less than a pixel.
It should be noted that only the corresponding image points are used, not the world data points.
The use of this data is discussed further in Seceh An initial estimate of the relative camera
transformation, calculated from Equati@ in Chapter3, was included via thdina’'s camera
parameters window The initial value of focal length wag = 10.0 and the horizontal scaling was
a; = 1.1 in each case.

Table 6.3 is arranged with the initial estimates of the coordinates of the principle paint()
in the far left columns and the results of the optimized internal camera parameters in the right hand
columns. " 2 Epinn is the sum of the square error given by Equationh9 for all the calibration
points. The results in Tab&3demonstrate several things. Firstly, the estimated value of the horizon-

tal scaling is erratic and yields illogical results (labelléd in cases where the initial principle point

"The calibration tool ifTina effectively allows any of the camera parameters to be initialized prior to calibration
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Guess P Epimin( f, vo, vo, az)
start | wo ‘ o S €2 Epimin ‘ U ‘ Vo ‘ Qg ’ fmin | end

176 | 139 0.6169 176.0| 139.0| 1.116 | 10.01| ?
184 | 139 0.6138 184.0| 139.0| 1.082 | 10.00| ?
192 | 139 0.6791 192.0| 139.0| 1-1.92 | 10.00
200 | 139 0.6893 199.9| 138.9| 1-1.96 9.99
184 | 144 0.6204 184.0| 144.0| 1.354 9.99

# 192 | 144 0.7687 192.0| 144.0| 1-2.23 | 10.00
200 | 144 0.7880 200.0| 1440 t-2.31 9.99
184 | 149 0.7924 184.0 | 149.0| 1-2.29 9.98
192 | 149 0.7489 192.0| 149.0| 1-2.19 9.98
200 | 149 0.7027 200.0| 149.0| -1.861| 9.96

Table 6.3: Initial results for epipolar calibration with varying estimates of the principal point.

is grossly inaccurate. However, when the initial estimate of the principle point is closer to the true
value more sensible results are achieved and the sum of the square error is reduced. Secondly, there
is little change in the optimized estimates of the principle point or the focal length. This situation is
maintained even when the horizontal scaling is removed from the parameter list for optimization. This
is not surprising since a reasonably accurate initial estimate of the relative transformation is supplied
in the parameter list for optimization. With only small changes in the relative camera parameters there
is little opportunity for the simplex algorithm to optimize the coordinates of the principle point. This
is further compounded by two facts. Firstly, the internal camera parameters are the same for both
cameras, as determined by the modification for periscopic stereo use. Second, the principle point cre-
ates an relative shift of the data point and not a scale change. This is evident from the camera to image
transformation given by Equatios5 andA.6 of AppendixA. Therefore any change in estimates
of the principle point will have less effect than that of the horizontal scaling of focal length on the
projected image points.

Although the variational principle can not aid the search for better estimates of the coordinates of

the principle point, its use for recovering the relative camera geometry and therefore maintaining the
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calibration accuracy of an already calibrated system is evident. Figusés)and6.5(b) show the
effect of deliberately changing the initial estimate of the relative camera transformation by varying

the incremental rotation angle of the periscopic head from the stad@iand®°® and8°. Figure6.5(a)

(a) before epipolar calibration

(b) after epipolar calibration

Figure 6.5: The effect of varying the relative camera transformation on epipolar calibration.

shows the effect on the epipolar lines before calibration and Figubi) after. No visible change is
apparent in latter, even though the variation in the relative transformation between the virtual cameras
is far greater than would ever be apparent in a real system, excluding catastrophic failure. The differ-
ence in the sum of the square error was less th@hof the figure for the (192,144) entry in Tat8e3,

which was the principle point of the default parameters used for this particular test.
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The ability of the variational principle to maintain the accuracy of calibration over an extended
period of time far outweighs the inability to locate the principle point. The reason for including the

apparently negative result, of the latter, is explained further in Se6tibn

6.3 Maintaining Calibration and Propagating Error

All of the camera calibration techniques mentioned in this chapter include some form of iterative
optimization, either directly or as a recommendation for their use. The requirement for iterative op-
timized solutions implies a need to assess and monitor the accuracy of the estimated results. The
error, or uncertainty, in such results can be given by the error covariance and modelled by the inverse
covariance matrix. The computation of the error covariance also allows for the optimal combination
of two estimates of the parameter sets that define the optimized function. An introduction to covari-
ance estimation and optimal combination by Thacker and Co®te8€ can be found aCVOnline
Alternative treatments on the computation of uncertainty are giverdn93 and [HZ00Q]. A detailed
description of the computation of error covariance is not included and the following is given without
qualification.

Given an error metrig from an optimization cost functioffi(a) for a set of parametess, the

expected change ig?, or error covariance, for a small change in model parameters is given by:
Ax? = Ad’C ' Aa (6.27)

whereC~! is the inverse covariance matrix. This is based on the form giveRQ9§.

The inverse covariance matrix is computed from the partial derivative, or Jacobian, &ifaifix
of the original cost function used in the optimization of the parameters. The computation of the error
covariance is implemented ifina using the Jacobian matrix technique. This is used to derive an

estimate of the error and fed back into the optimization processes used in $e2titand mentioned
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later in Sectior6.4. In keeping with the modification to the source for epipolar calibration described

in Section6.2.1, the source code for the computation of the covariance matrix has been modified for
a single set of internal camera parameters in a stereo system. The modification is almost identical, in
practice, to that given in Sectidh2.1and is therefore not included here.

The use of the error covariance in the optimization loop effectively allows previous estimates of
the parameters to be combined with the new estimates. This propagates the error and produces a
robust maintenance of the calibration accuracy over time. The requirement for a robust epipolar cal-
ibration algorithm is particularly useful with Trivedi’s variational technique, since the method does
not incorporate any form of outlier detection or removal. Any outliers in the correspondence data are
incorporated in the optimization and can lead to the degradation of the calibration accuracy with each
subsequent optimization. The inclusion of the error covariance estimate tends to reduce the effect of
outliers in the data over time, assuming their occurrence and effect have a uniform distribution. How-
ever, a large percentage of gross outliers in the correspondence data would have an instant and longer
lasting effect. Such an occurrence is unlikely during the initial calibration since the possibility of out-
liers in the data set is low (not withstanding catastrophic failure of the grid labelling algorithm) when
using the calibration grid. However, for the continued re-calibration of the system, using naturally
occurring correspondence data from the image scene, the probability of the existence of gross outliers
increases. The performance of correspondence algorithm depends of the epipolar constraint and the
re-calibration of the stereo cameras, defines the epipolar geometry. The two processes are therefore
inextricably linked.

Chapters included some simple experiments comparing the performance of correspondence algo-
rithms applied to both rotationally corrected and uncorrected stereo images. In Ghdqgenalysis
of the relationship between the image data and the rotating mirror identified that the image data is

subjected to rotation in sympathy with the mirror and assumed that the centre of rotation is coincident
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with the optical axis. It was stated that the experiments with the uncorrected images, in Segtion
allowed for the simulation of degraded calibration accuracy and examined the effect on correspon-
dence matching. The reason for this degradation in calibration accuracy is due to the fact that rotation
about an axis through the image plane which is not, in fact, coincident with the optical axis of the
camera. This translates to an error between successive relative camera transformations which accu-
mulates over half a cycle of a complete scan by the periscopic head. The error then decreases over
the other half cycle, returning the relative camera transformation to the original state. This effectively
induces an oscillation, relative to each camera, about the horizontal centre line of the image, such
that there is a variable, vertical shift between any selected stereo pair. Bigusbows an image

pair ten frames ahead of the currently calibrated pair. The epipolar line, computed from the current
calibration, clearly demonstrates the vertical shift induced by the displacement (compare both ends of

the epipolar line and objects in the scene). This is discussed further is S@&itn

(a) leftimage (b) rightimage

Figure 6.6: Vertical shift induced by the displacement of the axis of rotation from the optical axis.

In order to assess the ability of the epipolar calibration, using the variational principle, to maintain
calibration accuracy over time and also the effects of this vertical shift error, the following experi-

ment was conducted. Starting with a pre-calibrated system, as described in $edtian image
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pair was selected from a periscopic sequence, approximately one frame prior to the currently cali-
brated alignme#it The epipolar calibration was computed for the pair using the corresponding image
points extracted from the scene as shown in Figétgand6.8. Four internal camera parameters,

(f, uo, vo, ag ), areincluded in the optimization. The error covariance was then computed, combined
with current covariance and saved for the next iteration together with the new estimate of the calibrated
parameters for the camera models. The sequence was advanced by one frame (old right hand image
becomes new left hand image) and the corresponding points computed using the rotated patch algo-
rithm with the simulated image plane rectification, as described in SestibnThe rectification is

derived from the last estimate of the epipolar geometry. The epipolar calibration is computed using
the new correspondence data and the whole cycle repeated until insufficient data points are recovered
to compute the calibration.

Figure6.7(d)shows the images where the calibration is most accurate. This is due to the similar
relative image alignment with the image frames from the grid calibration. The epipolar lines shown
indicate the alignment of corresponding structure in the images. F&@ydrehows the first half of
the image sequence with frames before this starting point and Fig8ithe second half of the im-
age sequence with frames after this point. The results of this “calibration tracking” experiment are
given in Table6.4 and the order in which each image pair was process is indicated. The reason for
selecting images pairs in the forward and back sequence is to maintain the calibration accuracy as
long as possible for the purposes of demonstrating the effects which are the subject of interest in this
experiment. The horizontal and vertical disparity, given in the second column, are computed from the
estimated camera centre coordinates subject the rectification matrix in the parallel camera model (see

AppendixE). F,,;, is the lower of the total number of features in each image and the epipolar band

8There is no correlation in image frame numbers when switching from the calibration image sequence to a sequence of

the imaged scene. Therefore the geometric alignment between frames of different sequence is only approximate
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(c) frames 22:23

141
(d) frames 23:24

Figure 6.7: Results from calibration tracking experiment - part 1; (a) frames 20:21, (b) frames 21:22,



142
(d) frames 27:28

Figure 6.8: Results from calibration tracking experiment - part 2; (a) frames 24:25, (b) frames 25:26,



order | frames (l:r) | disparity (h,v) | Fi.in | e-band | matched| 3 &2 Epimin | 3. €? Radasi(l,7)
7 20:21 20.62, -1.53 166 6 20 89.74 1965, 272.1
5 21:22 18.80, -1.71 139 5 30 197.8 750.6, 89.63
3 22:23 17.68, -2.56 119 3 72 78.50 23.50, 89.63
1 23:24 17.57,-2.43 106 3 89 10.29 5.62, 31.48
2 24:25 17.72,-2.24 96 3 78 57.31 26.49,9.11
4 25:26 17.80, -2.34 82 4 33 168.4 62.0, 323.9
6 26:27 19.23,-1.23 69 5 21 139.3 803.4, 1625
8 27:28 20.62, -1.53 53 5 13 123.6 5430, 409.4

Table 6.4: Results of calibration tracking in the presence of vertical shift error.

width (labelled &-band) is the width, in pixel units, of the search band about the epipolar lines, as
described in SectioB.2 This was used in an attempt to compensate for the vertical shift error and
allow the correspondence algorithm a greater opportunity to produce sufficient data for calibration.
At the limits of the calibration sequence the width of epipolar band has already exceeded a sensible
limit. Refer to the discussion on setting the width of the epipolar band on @&geSection5.2 for

the qualification of a “sensible limit”. The sum of the squares error for the epipolar optimization, for
the parametersf;, ug, vo, az ), IS the the same as that used in Tabld from Equation6.19 This

gives a measure of the total error of the corresponding points perpendicular to the respective epipolar
lines. This gives a reasonable guide but not a particularly accurate measure of the overall accuracy
of the calibration since it does account for horizontal error due to changes in the location of the prin-
cipal point (g, vg) and horizontal scaling factor.{) during the successive optimization. Although

no actual lens distortion parameters are included in the model a measure of the radial lens distortion
(labelled " &2 Radgs(1,7)’) is included in Table5.4to give a better overall indication of accuracy.

This error measure is computed between the corresponding image and Xonaint as:
1 1 2
> et Radgg = Y (X2 = X2)% + (a2 —22)?) (6.28)
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on the image planéu, v) where the world points are back-projected from the images points via the
camera models and the computed disparity and then re-projected back on the image plane. This may
seem convoluted but the image plane is the only place where accurate measurement can be made and
the double projection ensure all the model parameterized are included in the error measure. It should
be noted that the figures do not give an absolute measure in themselves since they are the sum of the
squared error over all the data points. The best measure of the calibration accuracy is the distribution
of the the radial lens errors, as shown in Figarg together with the computed values of both the

epipolar and radial distortion error measures. Since there is a limit to the amount of data, especially
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Figure 6.9: Examples of distributions of radial lens distortion errors and their indication of calibration

accuracy.

across multiple images of error distribution patterns, the reader is requested to use the same subjective
assessment as the author. That is, if both error measures are low in value and the left and right radial
distortions are similar then the calibration accuracy is high. If the figures rise or become unbalanced
then the accuracy is falling.

The increase in vertical shift error is evident from both the disparity figures in the second column

of Table6.4 and Figures.7(a)and6.8(d) Although the numerical difference in vertical disparity
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appears small it should be noted that these are for the principle point near the centre of the image. The
relative distortion created by the axial offset between the centre of rotation and the optical axis is not
uniform across the image. Apart from the induced vertical shift there is also an equivalent yaw error
component which equates to an extra rotation in the image data. This is evident from the fluctuation
in the horizontal disparity and by comparing the displacement in the corresponding structure about
the epipolar lines in Figure®.7(a)and6.8(d) The displacement is greater at the edges of the image
than it is in the centre. The reason for this is described in Se6t&a

Although the algorithm makes a valiant attempt (the sum of the squares error for the optimization
is small in global terms) to track the change in the relative camera transformation it is incapable
of maintaining calibration accuracy for more than a few frames. In Seétidr the ability of the
variational principle to estimate the relative camera transformation was found to be rather good, even
in the presence of a large difference between the initial estimate and the apparent, imaged, geometry.
However, the accuracy of the correspondence data was extremely good, since it was derived from the
calibration grid. Here, the correspondence data contains both localization noise and gross outliers.
Some of these are induced by an attribute of experiment which, in reality, would not exist; namely the
camera’s support stand which appears in the centre of the image. This creates invalid features from
points of occlusion. Given the limitations of the experimental apparatus and the fact that the change
in the relative camera transformation is severe the performance of the algorithm is not as bad as the
results suggest.

Maintaining calibration accuracy autonomously could be achieved by keeping track of the per-
centage of data points recovered using the measure, or something similar, discussed in %£hapter
If the number of “fixed” correspondence matches compared to the potential number correspondence
matches falls below a certain threshold, a re-calibration could be initiated. The requirement to re-

calibrate for every successive frame is not envisaged for rotationally uncorrected image data from a
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real periscopic system and certainly not necessary for rotationally corrected data as demonstrated in

Figure5.4in Chapters.

6.3.1 Modelling the Axial Error

The large offset error between the centre of rotation and the camera’s optical axis identified in Sec-
tion 6.3 would not exist in an accurately manufactured periscopic stereo head. This type of error is
extreme and only induced by the rotationally uncorrected, captured from the turn table implementa-
tion of periscopic stereo described in Sect It should be noted however, that while the rotational
correction eliminates this error by interpolating across the whole image, it does so at the expense of
localization accuracy of the corresponding data. The offset error is effectively transferred to positional
error of the imaged structure and therefore would be incorporated in the reconstruction of the scene.
A model of the system and the axial offset can be created using the analysis in Setti@y
replacing the zera,,, andz,, components o€, in Equation3.4with ju anddv (for a displacement

of the image plane) yields:

ou sin @ sin ¢ ou — bsin 26 sin ¢
Co=| b | —2bcost cosf = —bcos 26 (6.29)
v sin @ cos ¢ dv — bsin 260 cos ¢

Introducing the same components to Equati®is3.8, 3.9and repeating the derivation, a new version

of the transformation matrix in Equatiéhl13is derived, where:

2sin? 0 sin? ¢pdzdu 2sin? 0 sin ¢ cos pdzdv

L+ (1-éz)déu —sin20sin ¢ (1-62)dov
T(éu,év) = sin ?fj;l;;ﬁéixziu (COS 20) sin (fogz)qf;izév (6.30)

25in? @ sin ¢ cos pdziu 25in? @ cos? pdzdv

(1-déx)du —sin26cos¢ 1+ (1-02)d0v

The denominators in the first and third columns of Equad@0demonstrate the compound nature

of the distortion induced by an axial offset.
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Selecting the assumed principle pop)f = [ imagewidth/2, imageheight /2] and an arbitrary
image point toward the periphery of the frame = [3 imagewidth/4, 3 imageheight /4] and con-
verting to the mirror coordinate frame yielgs, = [0, b, 0] andx,,, = [z, piz, b, x, piz | where
piz is the assumed pixel size. Transforming these points with Equatidio the virtual image plane
creates a reference line defined By, and X .. Note that the new subscript+” defines “virtual”
and is different from the nomenclature used in Chapter

Repeating this process for an offset principle point and the chosen image point, offset by the same
translation, with the transformation matrix given in Equatto80creates a second line on a distorted
virtual image plane defined h#/, and X,.. The absolute difference between these points and the
reference is given by:

X0 = Xl and [Py, — Pyl (6.31)

and effectively yields a point measure of the image plane error, in pixels, induced by the axial offset.
Assuming perfect calibration and the rotational error witnessed in Figurés)and6.8(d)is approx-
imated by the absolute difference given in Equatiosy, then a rough estimate of the maximum axial
offset (2D translation of the image plane) was found by iterative testing until the error in the localiza-
tion of the peripheral point falls below the sensible limits of the epipolar band given in Sécfion
across two frames separated by the 4°.

While this is not a particularly accurate model of the system, an estimate of the maximum allow-
able axial offset was found to be approximatelg pixels from the central position. The calibrated
principle point for the camera used in these experiments was found to be approximately (162, 138),
which is acceptable in vertical direction but not in the horizontal. Although such errors are common
in low-cost CCD cameras higher, precise localization of the principle point is certainly possible with

modern manufacturing and factory calibration techniques. It is recommended that a camera with a
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principle point of with a maximum limit of:5 pixels be used in a periscopic stereo head. The cam-

era’s optical axis can be aligned to the axis of rotation by using a calibrated jig during manufacture.

6.4 Combining Grid and Epipolar Calibration

The rationale behind the experiments in Sectiéris3 6.2.1and6.3is that the calibration process
should, ideally, be an autonomous process. It can be argued that this is desirable for any camera system
used for 3D reconstruction. However, the target applications of remote operation and large-scale
reconstruction requires that an automated calibration, or at least re-calibration, scheme is mandatory.

The concept of “calibration in a box” was introduced in SecBah2and essentially allows for the
possibility of applying grid calibration to the periscopic stereo system prior to use. However, the use
of the grid data is not exclusive. Assuming the failure modes (when block mismatches occur, as shown
in Figure6.2) are identified and defensive techniques applied, the set of corresponding points from
the imaged calibration grid, is very accurate. It is therefore logical to make use of this information for
initial epipolar calibration, as shown in Secti6r2.1

In Sections6.1.3and6.2.1limitations are identified with both the currently available techniques
in deriving the initial calibration of an unknown stereo camera system. Without prior knowledge of
the internal camera parameters, the initial calibration is laborious process consisting of the iterative
estimation of the parameters and gradual modification of the camera model. While other techniques
may improve the situation and ultimately lead to a more autonomous calibration procedure, there still
remains the question of combining these two calibration techniques in order to achieve a full calibra-
tion model for the system. Epipolar calibration can not recover absolute scale and grid calibration, on
it's own, can not recover the epipolar geometry of a stereo system. The latter is the most important

constraint applied to both the acquisition of correspondence data and subsequent 3D reconstruction.
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Initially it was thought, by the author of this dissertation, that the “optimal” solution to stereo
camera calibration was to calibrate for absolute scale first, using a grid calibration method. Then
improve the estimates of the camera’s internal parameters and derive relative transformation from
updated estimates of the fundamental matrix acquired by epipolar calibration. This idea is suggested
in [JKS93 and implemented by Zhanrgt alin [ZFD97. The sequence of operations for the method

given in [ZFD97 is as follows:

¢ Point the cameras to toward the calibration apparatus and match the corresponding world and

image points.

e Point the cameras toward the environment, extract points of high curvature in both images and

perform robust correspondence matching of these points.

o Estimate the epipolar geometry by using the two sets of matches (reference + environment).

e Reconstruct in a projective basis from the points of reference.

e Estimate the projective distortion in order to recover structure in Euclidean space.

The problem with this approach is that if the initial grid calibration is not particularly accurate,
the subsequent epipolar calibration may, depending on the technique employed, require a number
of iterations before sufficiently accurate estimates of the internal camera parameters are achieved.
Furthermore, any error in the absolute scale of the world to camera transformation can not be improved
by epipolar calibration. Zhanget al [ZDFL95], recognizes that linear solutions for estimating the
fundamental matrix are sensitive to noise in image point localization and from mismatches. This factis

supported inlHZ00, SHB99 Har95 TM97]. In [Zha9§, Zhang explores in detail robust methods for

%An outline of Zhang’s method is given on their web pages at:

http://www-sop.inria.fr/robotvis/personnel/zzhang/CalibEnv/CalibEnv.html
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estimating the fundamental matrix in the presence of noise, yet fails to make use of the more accurate
data available from the calibration grid in the initial phase. The following method of calibration was
derived for use with the concept of “calibration in a box”. However, it is equally applicable to any
stereo camera system that identifies and labels the calibration grid points in an ordered fashion.
Instead of initially calibrating to recover the external camera parameters and then recover the
relative transformation between the cameras, the sequence is reversed and extra epipolar re-calibration
performed at the end. A summary of the algorithm for “calibration in a box” is given in Figl@

and the description proceeds as follows.

1. Initial Epipolar Calibration :
Using the corresponding image points from a calibration grid,
compute the epipolar calibration, assuming the left optical centre is
coincident with the world origin. Optimize all the camera parameters
for minimal epipolar error and save error covariance.
2. Grid Calibration :
Compute the grid calibration for the left camera.
a If using Tsai’s grid calibration optimize the initial estimate of
the focal length only.
b: Copy across the internal parameters and computer the external
parameters for the right camera.
c Optimize all the parameters for minimal error between the
projected calibration and corresponding image points.
Combine the error covariance with previous estimate.
3. Final Epipolar Calibration :
Repeat epipolar calibration and optimize all parameters.
Computer final error covariance and store in case of re-calibration.

Figure 6.10: Summary of the Calibration in a box algorithm

Firstly, using the calibration grid described in Secttoh.2 compute the epipolar calibration using
the variational principle, as reviewed in Secti®2.1 This yields an accurate estimate of the relative
camera transformation. An initial estimate of the horizontal scaling factor is also achieved, assuming
the initial guess of the coordinates of the principle point is not in gross error. The initial guess values

for the internal camera parameters used for the calibration results achieved in this sectioffi were;
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10.0, uwg = 161, vg = 139, a, = 1.05. The initial guess of the focal length is unimportant, as
described in SectioB.1.], but is necessary for the initialization of the covariance matrix for the desired
number of internal camera parameters prior to the epipolar calibration, as described in 6&ction

The initial values the external parameters are determined for right hand camera from the calculation of
the relative transformation given by Equati®d. The optical centre of the left hand camera s initially
assumed to be coincident with the origin of the world coordinate frame, as described in $eztlon

After the epipolar calibration is computed, the covariance matrix is derived for the estimated internal
and relative camera parameters and stored for later use.

The next stage is to compute the grid calibration to recover the external camera parameters and
improve estimates of the internal camera parameters. This is achieved in three phases; Firstly, using
Tsai's method with subsequent image plane optimization, as described in S&dtihran estimate
for the focal length is derived. No other parameters are included in the optimization. An alternative,
possibly more robust (see Secti6éril.4, grid calibration method could equally be applied at this
point. The second phase addresses the fact that both the left and right virtual cameras in a periscopic
stereo system have the same internal parameters. In a conventional stereo system the first stage would
be conducted twice and following phase ignored.

There are two approaches which could be adopted. The focal length and the external camera
parameters can be recovered for the second camera as above and the internal parameters combined
with those from the left camera to yield an average. This should, ideally, reduce the overall error by
averaging over both sets. However, the optimized estimates from Tsai’s method are not that stable
(as shown in Sectiof.1.3 and the extra computational cost seems, in the opinion of the author of
this dissertation, to outweigh the minimal advantage for such a naive combination at this time. An
alternative grid calibration method may make this option more attractive.

Since the virtual cameras have the same internal parameters it seems unnecessary to compute
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them twice. The internal camera parameters can be simply copied across from the left to the right.
However, the external camera parameters for the right hand camera are still required. This can be
solved by using the following geometrical relations. With reference to Fi§urgé given any two of

the 3D transformations relating to a stereo camera system the third can be derived directly from the

combination of the other two such that:

[R|t], =[RIt]." [R]t],, or [R[t],=I[R[t], [R|t],

wl —

or [RIt].'=[R|t], [R|t],, (6.32)

In this particular case we have the relative transformatidd|¢]. and the left world to camera

Figure 6.11: Relating the transformation in epipolar geometry.

transformation[R |¢],, so the right world to camera transformations is given by:

In practice this is computed using the ‘product of transformations’ function givdiina's math

library. The code segment for this is given in Figird2for ease of reference. It should be noted
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that, since the initial epipolar calibration defined the two sets of external camera parameters, in terms
of the initially assumed world origin which is coincident with the left camera’s origin, the external

transform already stored in the right camera is in fact the relative transformation.

...I* compute the third transformation */
transfR = trans3_prod(*(rightcam->transf), *(leftcam->transf));
*(rightcam->transf) = transfR;

.[** from Tina's source library **/
Transform3 trans3_prod(Transform3 transf2, Transform3 transfl)

{

Transform3 prod = {Transform3_id};

prod.R = mat3_prod(transf2.R, transfl.R);
prod.t = vec3_sum(transf2.t, mat3_vprod(transf2.R, transfl.t));
return (prod);

Figure 6.12: Computing the third transformation associated with the epipolar geometry of a stereo

imaging system.

With the three transformations defined, the last phase of this second stage is to optimize the in-
ternal camera parameters while minimizing the errors between the projected world calibration and
corresponding image points in both the left and right cameras. This is achieved using the same op-
timization used with Tsai's grid calibration method except that the algorithm is applied to both the
left and right cameras simultaneously. This involves adding the sum of the squared error from the
optimization error functions, applied to both the left and right camera models, on every iteration. This
algorithm is already included ifiina but has been modified for use with a single set of internal
camera parameters, as described in Se@&idrilon pagel32 This algorithm makes use of the pre-
vious error covariance from the epipolar calibration during the optimization. This is then updated by
computing the full covariance matrix for all the camera parameters.

The simultaneous optimization of both the left and right cameras includes the relative camera

parameters in its own parameter list. Since the accuracy of the relative camera parameters is much
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higher than all the other parameters at this stage the tendency in the simplex optimization algorithm
is to sacrifice the accuracy of these for improvement in the rest. The final stage is therefore; to repeat
the epipolar calibration, minimizing the errors in the corresponding image points and improving the
estimates of the relative camera parameters. It should be noted that the restoration of the level of
accuracy reported by the algorithm is not complete since the original guess values for the first epipolar
calibration were calculated from the ideal and are therefore all consistent with each other.

Table6.5 contains the results from each phase of the three stage “calibration in a box” algorithm.

The left hand column of Tablés4(a)and6.4(b)show the stage of the calibration algorithm for which

(a) Internal camera parameters

Optimization errors Internal params
stage 252 Epi ‘ |Ejm| ‘ 252 Rad st Uo ‘ Vo ‘ Az ‘ f
0: initial 162.0 | 138.0| 1.20 | 10.00
1: Epimin 0.617 4.9e-07 161.9 | 138.0| 1.17 | 9.997
2: fo e o “~" | 0.986
2a: I Ppin 14.51 221.7| 129.9 | 1.07 | 5.471
2b:[R|t],, e o e e
2¢c: SIPnin 13.72 6.9e-04 | 18.17 | 23.84 || 161.9 | 137.8 | 1.18 | 5.453
3: Epimin 7.413 -2.4e-04| 19.24 | 22.39 || 162.4| 138.5| 1.18 | 5.468
(b) Relative camera parameters
Relative camera parameters

stage Q1 q2 q3 t1 t2 t3

0: initial 0.012 | -0.035| 0.035 0.0 0.034 | 5.233

1: Epimin 0.003 | 0.071 | 0.036 | 2.5e-07 | -0.099 | 5.233

2: fo -0.203 | -0.010 | 0.005| 0.519 0.226 | 356.8

2a: I Ppin -0.027 | 0.066 | 0.045| 0.366 | 0.777 | 519.9

2b:[R|t],,. || 0.003 | 0.022 | 0.039 | -6.4e-06| -0.088 | 4.734

2¢: SIPnin 0.003 | 0.023 | 0.040 0.0 -0.078 | 5.251

3: Epimin 0.003 | 0.021 | 0.040 | 6.2e-06 | -0.078 | 4.894

Table 6.5: Results from the “calibration in a box” algorithm for (a) the Internal camera parameters

and (b) the Relative camera parameters.
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the results apply. This begins with initial parameters (labelledri@iial’). The internal camera pa-
rameters in Tablé.4(a)are as described in previous experiments. Those in Tabl®)are derived

from the “known” relative rotation and translation parametéts & 0°, R, = —4°, R, = +4°

andt, = 5.2331, t, = 0.0, t, = 0.18mm from a combination with the baseline distardea the
periscopic stereo head) and mapped onto the equivalent quaternionic parameters described by Equa-
tion 6.26earlier. The relevant optimization errors are given for each stage in Gatfl®)and include

an estimate of the radial distortion error projected onto the image plane, as described in &8ction

on pagé44, together with the sum of the squared error for the perpendicular distance between all the
corresponding image points and their respective epipolar lines (lab&Mled £pi ) and the normal-

ized mean epipolar (labelled Epi|’) error. The latter is included here to demonstrate the balanced,
positive and negative, epipolar errors which is a good secondary indication that the calibration is likely
to be accurate and stable. Visual confirmation of the calibration accuracy for the parameters of the
full perspective camera models for both cameras is given in Figi& The small crosses represent

the world calibration data projected onto the image frame using the calibrated camera models.

(a) leftimage (b) rightimage

Figure 6.13: Visual confirmation of calibration accuracy.

This “calibration in a box” method produces accurate, stable calibration for full perspective cam-
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era models. This can be applied to both initial laboratory calibration during manufacture and prior to
use in the operating environment. Subsequent re-calibration during operation is computed using the

variational principle or an alternative epipolar calibration technique.

6.4.1 Comparing the Order of the Combined Calibration Methods

In order to make a subjective comparison between the two methods of combining grid and epipolar
calibration the tracking experiment described in Sec@was conducted for both on the same se-

quence of uncorrected periscopic image data. Tél#eontains the results of this experiment. As

(a) ‘Calibration in a box’ method

order | frames (:r) | disparity (h,v) | Fi.in | e-band | matched| 3 &2 Epimin | 3. €? Radas:(l,7)
7 20:21 20.34,-1.27 166 5 35 129.5 201.9,346.4
5 21:22 20.30, -1.32 139 4 28 82.44 31.11, 94.69
3 22:23 19.52, -1.40 119 3 59 59.94 39.35, 24.49
1 23:24 20.38, -1.27 106 3 87 16.28 10.68, 9.410
2 24:25 20.26,-1.31 96 3 69 66.62 51.23, 46.27
4 25:26 19.81, -1.30 82 4 24 100.1 23.45, 32.33
6 26:27 20.08, -1.26 69 5 14 64.96 46.69, 12.38
8 27:28 20.25,-1.19 53 6 9 87.54 107.7,72.51

(b) ‘Grid plus epipolar’ calibration

order | frames (L:r) | disparity (h,v) | F.in | e-band | matched| 3" &2 Epimin | 3. e? Radas:(1,7)

7 20:21 17.90, -2.64 166 5 17 40.31 16.30, 272.1
5 21:22 17.61, -2.97 139 5 24 147.6 66.58, 36.82
3 22:23 17.19, -2.77 119 3 22 49.75 23.82,7.35
1 23:24 18.69, -2.57 | 106 3 86 1.963 6.92, 3.38

2 24:25 17.34,-1.95 96 3 73 43.42 30.54, 12.28
4 25:26 17.39, -2.46 82 4 39 146.4 52.84,57.94
6 26:27 17.87,-2.54 69 5 13 63.63 16.03, 14.63
8 27:28 17.81, -2.60 53 6 3 14.72 0.29,0.18

Table 6.6: Comparative results of calibration tracking for (a) the ‘calibration in a box’ against (b) the

standard ‘grid plus epipolar’ calibration methods.

156



before the order the calibration sequence is given together with the relevant frames numbers. The
horizontal and vertical disparity is given as a guide to the vertical shift error discussed in Se8tion

and F,,,;,, is the lower of the total number of features in each images. The width of the epipolar band
(labelled e-band) is increased as the calibration sequence advances in order to allow the correspon-
dence matching algorithm to recover more data as in the previous experiment. Both the sum of the
squares for the epipolar and radial distortion errors are given in the right hand columns. It should be
noted that the absolute values are not a good comparative measure since they are computed across all
of the points, especially those of the last row in Ta®lg(b) which are from three mismatched data
points. However, the balance between the radial distortion errors and the generally lower epipolar
error with an increased number of matched corresponding image points at either end of the sequence
demonstrates that the calibration in a box method is more stable overall than the standard method, even
though the latter appears to be more accurate (has lower absolute error values for a similar number of

matched points).

6.5 Concluding Remarks and Future Work

The research represented in this chapter covers both grid and epipolar calibration and a number of
techniques have been reviewed.

The popular Tsai method of grid calibration was found to have a number of limitations in its
use and the accuracy of its results was found to be worse than expected. Although this method has
been used here, it not recommended for inclusion in a robust calibration algorithm. The alternative
method reviewed in Sectio.2 is reportedly more accurate and stable, assuming the inclusion of
data normalization. This method accommodates coplanar calibration data, but is not advised. The

implementation of this method using a non-coplanar calibration data is therefore recommended, by
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the author of this dissertation.

The application of the variational principle to epipolar calibration offers a quick and simple
method of maintaining calibration for small changes in the relative camera transformation. How-
ever, it's inability to estimate the internal camera parameters, up to scale, is a limitation. The current
implementation makes use of all the supplied corresponding image points. Any errors, in the form
of positional noise or gross outliers, in the correspondence are therefore transferred to the camera
model. Although the inclusion of error covariance reduces the effect of such error over time, short
term stability is a concern. Given all these facts it is recommended that the use of SVD method of
computing the epipolar calibration, reviewed in Secttf be investigated for the initial estimate
and the variational principle used to improve the estimates and maintain the error covariance for sub-
sequent re-calibration. However, the variational principle should be subject to the use of improved
correspondence algorithm with the inclusion of the disparity gradient constraint, as in the PMF algo-
rithm mentioned in Chaptés, or a case deletion method such as RANSAC mentioned in Segon

The accuracy of the calibration of a stereo imaging system is improved by the use of both grid and
epipolar calibration. The “calibration in a box” method presented here combines both in an apparently
novel way. Simply reordering the application of grid and epipolar calibration yields accurate and
stable results even with the use of less than preferred base techniques. The “calibration in a box”
method involves the elementary computation of the third transformation matrix associated with the
epipolar geometry of a stereo system. The author has identified that reordering the calibration and the
use of elementary theory concerning the geometrical relationship between the 3D transformations do
not appear to have been reported before.

Maintaining the calibration accuracy of a periscopic stereo system requires periodic epipolar re-
calibration during operation. The need for re-calibration should, in theory, be low for both the rota-

tionally corrected and uncorrected images since the relative geometry between the views is known.
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However, axial offset error between the axis of rotation and the optical axis in the uncorrected data
increases the need for, and reduces period between, re-calibration. In practice this error would be
minimized during the manufacture. However, for the image data captured using the turn table imple-
mentation periscopic stereo head used in the course of this research such correction is not possible.
In spite of complications it is possible, using the “calibration in a box” method and subsequent
epipolar re-calibration, to compute and, in theory, maintain calibration accuracy for both rotationally
corrected and uncorrected periscopic data. Both can therefore be used for scene reconstruction as

discussed in Chaptét
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Chapter 7

Reconstructing the Scene

In Chaptersl and?2 it was stated that the main advantage of a periscopic stereo imaging system is
that it has the capability of reconstructing large-scale 3D scenes. The long-term aim is to construct
Euclidean models from which real world measurements can be derived. In order to achieve this im-
aged features are projected, using the camera model, to form 3D descriptions of geometric primitives
such as points and lines. The type of projection and class of reconstruction depends on the type and
accuracy of camera model, as described in Cha@ensd6. The full perspective camera and par-

allel camera models for the stereo system, derived in Chéptarables Euclidean reconstruction of

the imaged structure. However, this does not constitute a “model” of the imaged scene. A visually
recognizable model of the scene requires extra processing which includes various techniques from
triangulation to surface modelling. These techniques are beyond the scope of the research presented
in this dissertation. Therefore, this penultimate chapter limited to a discussion of the concept of how
disparity imagesgenerated from periscopic stereo, are related to each other and they can be used to

interactively reconstruct large-scale models of the scene.
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7.1 Multiple Disparity Images

In Chapter3 the analysis of the virtual camera motion revealed that each subsequent image pairs se-
lected from a periscopic sequence should, in theory, have the same relative geometry. In theBChapter
the discovery that the location of the principle point, for the camera used, was displaced from the cen-
tre of the image and the axis of rotation by a considerable margin (calibrated location estimated at pixel
coordinateg162, 138) ) represents a distinct departure from the theory for all experiments. However,
the ability of the calibration tools to recover and maintain the epipolar geometry over extended peri-
ods, not withstanding the limitations of the rotationally uncorrected experimental data, supports the
basic concept. The constant, deterministic, nature of the virtual relative camera geometry is compat-
ible with the use of the temporal stereo algorithBLTS97, based on stretch correlatiohTM94],
discussed in Sectiob.4. Using this stereo algorithm, sets of disparity images can be generated for
each image pair in the scan sequence as demonstrated in Figuréhe disparity images in Fig-
ures7.1(e}-7.1(g)are derived from the periscopic images in Figurega)-7.1(d) working from left
to right in pairs. The disparity is derived from the corresponding edge data by subtracting the horizon-
tal coordinate of the right matched feature point from that of the corresponding left feature point at
the intersection of the common epipolar lin€ST[599. The disparity image is then constructed from
the coordinates of the left image matches with disparity encoded in the pixel value.

On their own these disparity image convey little about the structure of the scene. It is possible to
recognize certain features from the corresponding images, see Figlifies7.1(c)and7.1(f). How-
ever, this is more connected with the ability of the human mind to resolve structure by interpolation
rather than the accuracy or content of the projection. The disparity images consist largely of vertical
structure. This is due to the predilection for the use of non-horizontal edges in the temporal stereo

algorithm. Horizontal edges can not be used to derive a measure of the disparity since the error is
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Figure 7.1: Sequential disparity images (e)—(f) from uncorrected periscopic image data (a)—(d).

inversely proportional to the angle between the edge and the common epipolar line created by the
image plane rectification for the stretch correlation techniqtieg9g, as shown in Figurg.2 It
should be noted that the diagrams in Figérg(b)are not entirely accurate since the structure should
be “warped” in sympathy with the image plane and a more accurate definition of the problem is that
scene in the scene which is parallel to corresponding epipolar lines can not be used for disparity mea-
surement. This is a distinct limitation to the reconstruction of large-scale models since a considerable
percentage of the structure in the human engineered world is horizontal as well as vertical. However,
this limitation is addressed in Secti@r2.

Each disparity image is projected from the left camera, which is taken to be the reference coor-
dinate frame. The camera frame, either left or right, is the only frame of reference possible at this

stage. However, using knowledge of the sequence number of the original images, the disparity images
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Figure 7.2: Lost of the disparity measure for horizontal structure.

can be projected on to an absolute coordinate frame centered on the periscope system origin. This is
defined as the intersection of the optical axis and mirror plane in Setlomhe origin for the recon-
structing coordinate frame is therefore given by the preset distaheéwveen optical centre and the
mirror plane as defined in Secti@nl, see Figure8.3and3.7. The transformation to this coordinate
frame is effectively a rotation followed by translation into the scene along the optical axis such that
each projected 3D point is therefore given by:

cosm¢p 0 sinme

X'=RX+t where R= 0 1 0 (7.1)

—sinm¢ 0 cosmao

t = [0, 0, b] , mis the frame number and = 4°, from the mirror rotating at6.6 rpm with a

163



capture rate oR5fps, as described in Sectidgh4. R is a 3D rotation about th¥-axisof a right
handed coordinate frame. This effectively forms a panorama of over lapping disparity images as

demonstrated in Figuré.3
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Figure 7.3: Panorama of projected disparity images.

With approximatelyl® separating each image there are 90 images in each horizontal scan of the
surrounding environment. Using successive images yields 90 disparity images for each scan. Each
successive image pair produces a disparity image which is consistent with every other, since they
are projected using the same camera models. This assumes “reasonably” stable internal and relative
camera calibration but not absolute accuracy or stability. This statement is explained 3iater.

Each projected cloud of 3D data is therefore related by a Euclidean transformation. Knowledge of this
transformation could be used in some form of data fusion algorithm which combines the over lapping
sets of projected 3D data.

The creation of this panorama of projected data assumes that each of the disparity images were de-

rived from fronto-parallel images. The mirror rotation about the optical axis in uncorrected periscopic
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data will however be transferred to the disparity image and the projected data, as evident in Fig-

ure7.1(f). The rotational correction of the periscopic data must therefore be taken into consideration.

7.2 Late Correction of the Periscopic Rotation

The concept of rotationally corrected and uncorrected periscopic data has continued throughout this
dissertation. The reason for this is due to three aspects, two of which have already been discussed
in Sections3.2and5.3. To summarize; the first was that interpolation of image data for correction
induces positional error in the feature localization. The second concerns the complexity of processing
through the rotating silhouette frame. This is evident in Figurewhere the silhouette frame ap-
pears in the projected data in the disparity images shown in Figudés)and7.4(f). Figures7.4(a)
and7.4(b)show images from corrected periscopic images, processed for re-calibration. The images
in Figures7.4(c)and7.4(d)are produced by the stretch correlation algorithm and are therefore dis-
torted (the ball appears oval) from the application of the image plane rectification, as discussed in
Section5.4.

Processing the rotationally uncorrected periscopic data has presented its own problems, as dis-
cussed in Chapters and6. However, using this data has an extra hidden bonus. Since the image
data is constantly rotating all horizontal structures will at some instance in time be imaged as non-
horizontal lines. The use of uncorrected periscopic data can therefore compensate for the limitation
in the temporal stereo algorithm previously discussed in Seétibn

The rotational correction can be combined with rotation matrix in Equatiband applied to the
projected data in 3D. Alternatively rotational correction can be performed in 2D as demonstrated in

Figure7.5. This rotation shown is deliberately excessive in order the convey the concept. This was

The distortion caused by the image plane rectification has been included here for reference only and has no special

significance to the discussion in this chapter.
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Figure 7.4: Disparity images from rotationally corrected periscopic data with: (a) and (b) the cali-

bration corners, (c) and (d) a temporal stereo pair after stretch correlation and matching and (e)—(f)

sequential disparity images from the image pairs (a):(b),(b):(c) and (c):(d).

(a) matched features overlaid on left image (b) rotated geometry list from matched features

Figure 7.5: Rotating the list 2D geometry, create from the matched features, before projection to 3D.
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created by applying a 2D rotation matrix, of the form:

cosm¢  sinmao
Ry, = (7.2)
—sinme¢ cosmao
to the geometry shown in Figui®e5(a) It is not suggested that re-projection into the right hand image
is necessary or correct; this only demonstrates the concept of correctiof.in 2D
Although the panorama has been projected into an absolute coordinate frame the accuracy of the
reconstruction, regardless of the data fusion and modelling techniques employed, will still have poor
accuracy. This is due to the small baseline inherent in the design of the periscopic stereo head. It is
well known the accuracy of depth estimation is inversely proportional to the baseline distance between
two views HZ00Q]. Even if every second or third frame is used to form an image pair and the disparity

images produced were combined with the original panoramic data, the accuracy would still be poor

compared with a conventional stereo reconstruction. However, this is addressed in the next section.

7.3 Multiple Periscopic Scans

The single panorama of projected data described in Sectidnsnd 7.2 does not constitute large-
scale reconstruction. It does not yield a navigable map of the local environment, nor does it allow for
accurate measurements of world structures.

In Chapterl it was stated that the target application for periscopic stereo is for autonomous mo-
bile robots. Therefore, the periscopic head can be relocated in a new position displaced by some
distance and a second scan of the local environment captured. The sketch in7fFéglemonstrates

two successive scans of a local environment. The relative displacemettuld be recovered from

2A list of 2D geometry is constructed ifina using conic and line fitting techniques applied to the edge strings in the

left hand image
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odometers on the robot. However, this is not essential since the relative camera positions can be recov-

ered by epipolar calibration between corresponding image data across the two sequences. Computing

projected T scene |
disparity images structure
T -
IL% — 7
[RIt]  —7
1st scan ~_ = 2nd scan
count back
D / ~

Figure 7.6: Registration of projected disparity images from different scans.

the epipolar calibration across different scan image sequences allows for the reconstruction of a third
set of projected data. This, together with the data from each scan, can be combined to form more
accurate reconstruction of both depth and structure. Subsequent scans of the local environment would
recover yet more data and a large-scale model of the scene is produced incrementally over time. For
each subsequent scan the epipolar calibration is also used to transform the data from the first absolute
coordinate frame to the second, as shown in Figuée This effectively creates a transitional world
origin which is updated by every new position. Using the last position of the periscopic stereo head
as the origin of the coordinate frame, navigation back through the world model and absolute scale
measurement are both possible.

Registration of the corresponding images can be achieved by initially using a crude “count back”
method of the frames and then subsequently by using the feature matching techniques described in

Chapters. This is possible since each scan is captured from the same cardinal point, as described in
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Section3.4. The number of frames to count back in the second scan, relative to the first, as shown
in Figure7.6, is proportional to the baseline distance between the scans and the mean depth of the
scene. Both of these can be recovered from the data computed thus far. A secondary support for the
registration can be derived from the percentage of corresponding image points similar to the measure
used in Sectiok.3.

Figure7.7 demonstrates the generation of a disparity image from widely disparate views. Again,

(a) frame.22, seq.2 (b) frame.24, seq.1 (c) dispimage

Figure 7.7: Disparity image from registered images across different periscopic sequences.

this makes use of the temporal stereo algoritf@1$99. The original images in Figureg.7(a)
and7.7(b)show the corresponding points used for re-calibration and two arbitrary epipolar lines are
given to convey the calibration accuracy. Using the variational principle for epipolar calibration with
the error covariance was found to give accurate and stable results after the initial phase. However, the
initial calibration for a unknown transition of the periscopic head is largely dependent of the validity

of the correspondence which is inversely proportional to the distance moved by the head.
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7.4 Closing Remarks

This chapter has presented the outline of an iterative method of reconstructing large-scale models
of the surrounding scene. It is based on the projection for disparity images onto a common world
coordinate frame which is updated by the transition of the periscopic head to subsequent positions in
the local environment.

The proposed method makes use of the temporal stereo algorithm since it is compatible with
the consistent relative, virtual, camera geometry inherent in periscopic stereo. The use of the stretch
correlation technique has distinct advantages for widely disparate views from subsequent scans. How-
ever, from the discussion in Sectidr®, the use of the stretch correlation technique for the individual
scans may not be necessary or desirable. Although the use of successive images is described, there is
sufficient overlapping in the image data of every second frame. This allows for the possibility of the
inclusion of disparity images from a wider baseline and therefore improved depth estimation and the
possibility of processing across three views using recently developed techniques involving the use of
tensors. This reportedIyHZ00, chap.16—18] increases both depth accuracy and structural content.

The final advantage of the late correction of the rotation about the optical axis in periscopic data
directly addresses the limitation in the temporal stereo algorithm for reconstruction of horizontal
structure, or more accurately, structure in the scene which is parallel to the corresponding epipolar
lines. With subsequent scans from disparate viewpoints, accurate reconstruction of horizontal struc-
ture would increase over time. This would naturally lag behind accuracy and volume of non-horizontal
structure.

Much of the discussion presented in this chapter is conjecture on the part of the author since proof
of the construction of large-scale 3D models can only really be given by their existence. However,

this conjecture is based on “known” theory from computer vision and robotic navigation using tri-
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angulation. The initial experiments have shown the methodology to be correct. However, the large
errors induced by the offset of the centre of rotation from the optical axis for the system used make
the reconstruction of large-scale models difficult with the current data. Final proof of the ability of
periscopic stereo to reconstruct large-scale models of the imaged scene is therefore the of subject of

ongoing research.
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Chapter 8

Conclusions and Future Work

The research presented in this dissertation has taken the concept of periscopic stereo through to the
design and construction of a realizable imaging system. The capability of periscopic stereo for large-
scale 3D reconstruction of the imaged scene has been demonstrated via the examination of each stage
of the reconstruction process.

In Chapter3 the analysis of the virtual camera geometry revealed that, assuming rotation about
the optical axis, relative motion between the views is consistent. The virtual baseline distance de-
pends on the size of the head and the choice of camera lens. Synchronization of the speed of rotation,
the camera shutter speed and the image capture rate is recommended since it ensures constant rela-
tive motion of the camera. The induced “tumbling” motion inherent in periscopic stereo image data
presents two distinct approaches for processing the image data. One consists of initially applying a 2D
rotation to the image plane in order to remove the tumbling effect and then processing the data using
standard stereo algorithms. However, this “corrected” approach induces a rotating “silhouette frame”
into the image sequence which creates it's own problems for bounding the region of interest during

correspondence matching, calibration and reconstruction processes. The second, “uncorrected”, ap-
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proach makes no attempt to initially correct for the tumbling effect and processes the image data using
suitably modified stereo algorithms in order to implement rotational invariance or compensate for it.
In most cases, the modifications are relatively minor since the amount of relative rotation between the
frames is small. In either case, the tumbling effect has been central to the consideration of each stage
of the overall scene reconstruction process.

The positional accuracy of the reconstructed scene points is dependent on the accuracy of the
camera projection matrix and the localization of the corresponding image points. Feature detection
to sub-pixel accuracy is necessary for positional accuracy since localization error leads to the fracture
of edge strings and to the possibility of mismatched correspondence data. In Chime3USAN
algorithm for feature detection was found to be an efficient and effective alternative to derivative
based methods. The implementation of SUSAN edge and corner detection reveals complications.
Identifying possible edge errors near junctions lead to the concept of “tuning” the output response
for connected, or segmented, edge strings. Modifications to the implementation of the SUSAN edge
detector have been evaluated. The results show that the optimal threshold for the secondary “edge-
type” condition, defined by the magnitude of the centre of gravity vector of 0.65, improves efficiency
of the algorithm without incurring any degradation of performance. The inclusion of an additional
parameter, valid over a limited range, effectively allows for the binary selection for edge connectiv-
ity. However, the integration of SUSAN feature detection with subsequent processing is not seamless
since the definitions of feature contrast and orientation are different from derivative based equiva-
lents. A proper statistical analysis is required to fully validate the modifications made and assess the
accuracy of sub-pixel localization.

Matching corresponding features in two or more images is an ambiguous problem with the pre-
ferred solution dependent on the particular set of circumstances regarding the imaging system, the

scene and subsequent processing requiring the match. An optimal solution for all cases does not exist
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since the application of particular constraints is not the same in all cases. Given the requirement for

matched point features from periscopic data for subsequent re-calibration, the preferred solution em-

ploys the correspondence algorithm availabl&@iima with the choice of two correlation techniques.

In the case of uncorrected periscopic data4] rotated correlation patch is marginally preferable to

a standard correlation patch. In the case of corrected periscopic data the warped patch, guided by
feature orientation found ifiina’s  library of source code, is recommended since it is less affected

by the induced silhouette frame.

These “patch-warping” correlation techniques are preferred to the proven stretch-correlation tech-
nique since no actual rectification of the image plane is required. Preference, in this particular case,
is based on the use of simulated rectification of the image plane which does not distort the localiza-
tion of the point features. Therefore, the accuracy of the epipolar calibration is partially decoupled
from the collection of accurate data for which it is required. However, in the case of the matching
correspondence data for reconstruction, the use of stretch-correlation in the temporal stereo algorithm
is preferred since the reduction in mismatched data, from the use of temporal disparity gradient in-
formation, outweighs the degree of localization error induced. The assumption in this argument is
that occurrence of mismatched data in the correspondence data set does not unduly affect the calibra-
tion accuracy. This is a questionable premise since the reported stability of the variational principle
for epipolar calibration in the presence of outliers is not been supported by the results presented in
Section6.3.

Currently two schools of thought exist on the question of outliers and calibration. One suggests
that all outliers should, as far as possible, be removed from the correspondence data prior to calibration
regardless of the optimization strategy used. The other claims that correctly constrained optimization
negates the need for computationally intensive case deletion methods. The author of this disserta-

tion prefers a compromise approach where the correspondence algorithm is sufficiently constrained
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to reduce the number of outliers without the need for further case deletion methods and the calibra-
tion algorithms are sufficiently robust in the presence of a small number of outliers. The use of the
term “sufficiently” here is deliberately vague since an accurate measure in either is impossible due
to the inability to predict the number, or degree of error, of outliers in the general case. The author’s
preference is merely an observation and unsubstantiated here.

The inadvertent inclusion of outliers in the correspondence data from uncorrected periscopic data
highlights the need for a disparity limit constraint, based on the known relative camera parameters,
and/or a disparity gradient limit. However, the latter is known to be unstable for point correspondence
data since uniform distribution of the data across the image is unlikely. Modelling the axial offset error
induced in the periscopic data by the limitations of the simulated system has produced a recommended
estimate of the maximum allowable alignment errot-6fpixels. This is within current manufacturing
capability.

A number of calibration techniques were reviewed in Chapteklthough Tsai's method of grid
calibration is widely referenced, the results from experiments with a coplanar grid found it to be
unstable and inaccurate, especially when the initial guess for the principle point is in error by more
than a few pixels. Assuming a reasonably accurate estimate of the principle point, Tsai's method
is more stable with an iterative approach to the optimization phase. The preferred sequence begins
with optimization for the focal length only, followed by the inclusion of the principle point with the
horizontal aspect ratio. However, the accuracy of the results is still questionable and in general Tsai's
method of grid calibration is unsuitable for an autonomous calibration system.

Epipolar calibration using the variational principle was shown to yield accurate stable estimates of
the relative camera parameters. However, its ability to derive estimates of the internal parameters from
an initially uncalibrated state is poor since it is constrained to achieve an optimal result by gradual iter-

ation. Stability in the presence of outliers can not be concluded at this time. In the case of uncorrected
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periscopic data, the apparent performance is good considering the prevailing experimental conditions.
However, calibration accuracy can not be maintained for more than six successive image pairs. In the
case of widely disparate views, when registering images from different scans, the ability to acquire
and maintain calibration is more apparent with the variational principle. However, this has not been
formerly confirmed. The inclusion of an initial estimate of calibration using the linear, closed-form,
solution given by SVD may lead to more stability in the both epipolar and grid calibration.

A novel combination of epipolar and grid calibration for initial calibration, prior to use, referred
to as “calibration in a box” has been presented. The use of a self contained system does not invalidate
the concept of remote operation and the concept of scaling the grid calibration data for the intended
scene depth is possible. Calibration in a box switches the traditional order in which grid and epipolar
techniques are applied. Instead, a three stage process that begins and ends with epipolar calibration,
via optimization using the variational principle, is used. This algorithm relies on an elementary ge-
ometric combination of the three transformation matrices inherent in a stereo camera system, where
the third is derived from knowledge of the other two. Although not extensively tested, this algorithm
yields stable calibration results at the first attempt since it reduces the error in the initial camera pa-
rameters for the focal length and aspect ratio. However, the accuracy is largely dependent on “base”
methods for the grid and epipolar calibration either now which were found to give reliable estimates
of the image plane coordinates for the principal point. Although the external parameters of the right
hand camera are calculated directly, a final optimization stage is essential to return the accuracy of the
relative camera transformation and ensure stability for subsequent epipolar re-calibration during oper-
ational use. Improved results are achieved by allowing multiple scans of the periscopic head inside the
box with successive optimization for the relative and external parameters. Each of which should be
accompanied by an appropriate error covariance estimate. Re-calibration of the system is conducted

in the normal manner using corresponding image data and epipolar calibration. Control of periodic
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re-calibration could be given either by a correspondence performance measure and/or some random
event within a maximum period (say once every scan on a randomly selected pair of images).

The theory of large-scale scene reconstruction using disparity images from periscopic data has
been presented. Using knowledge of the frame number and the calibrated camera projection matrix
allows for the transformation of the disparity image data onto the world coordinate frame defined
by the system origin. Successive disparity images from a periscopic scan can be projected to form
a panorama. On their own panoramas of projected disparities images are not particularly accurate.
However, the generation of disparity images from periscopic images registered across separate scans
yields more accurate depth estimation. The combination of separate panoramas and “cross-scan”
disparity images should enable accurate reconstruction of the surrounding scene in an efficient manner
that directly addresses the problem of “where to look next”. The late correction of the tumbling
motion, inherent in periscopic data, has a number of advantages. It removes the need for initial
interpolation of the image data together with the induced feature localization error. It simplifies image
processing by circumventing the need for processing through the silhouette frame. The apparent
complexity of processing tumbling image data was shown to be unfounded and in the case of the use
of the temporal stereo algorithm directly addresses the limitation of reconstructing structure in the
scene which is parallel with corresponding epipolar lines. In other stereo systems this limitation is
given as structure which is horizontal in the scene. Apart from improvements in the calibration and
correspondence algorithms, future work on large-scale reconstruction will undoubtedly concentrate on
the fusion of overlapping structure in the panorama from adjacent projected disparity images, cross
panoramic depth and structural information.

Most of the techniques employed in the course of this research are based on, existing stereo
vision techniques. However, virtually all have required some extension or modification in the context

of periscopic stereo. Individually these techniques offer little which could be regarded as “new”
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theory, with the possible exception being the “calibration in a box” concept. However, in combination
the techniques presented make periscopic stereo practical for the extrication of 3D structure and an
effective compromise compared to existing imaging systems, by simplifying many of the problems
inherent in scene reconstruction. Periscopic stereo is the only system proposed to date which could
be capable of producing autonomous large-scale scene reconstruction, efficiently. However, the lack
of a complete demonstration of registered panoramas of disparity images means that this conclusion
can not be fully substantiated at this time. It is suggested that the addition of periscopic stereo head to
a robot’s sensor array may, for example, not only allow for increased robotic perception by supplying
an “awareness” of the surrounding environment but subsequently allow telepresence exploration of

remote mapped environments.
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Appendix A

Perspective Projection, Coordinate

Systems and Epipolar Geometry

This tutorial briefly describes the basic theory of the perspective projection performed by a camera
in terms of the transformations across the relevant coordinate systems. It also covers the geometry
between two cameras which form a stereo imaging system. Alternative tutorials can be found via
CVOnline™.

The imaging system of a camera performs a perspective projection (also called central projection)
on the world such that all points along a line from the optical centre out into the scene are projected
to a single image point. The effect is more apparent when viewing two parallel lines in the 3D
world which appear to converge to a point at infinity, known asviégishing point This projection
is essentially a linear transformation of a 3D projective spa8,(the world, to a 2D projective
space P?), the image plane. However, if the points in these spaces are represented with normal,

Euclidean coordinates the expressions, that are used to define the transformations, become non-linear.

The CVonline website can be found at:- http://www.dai.ed.ac.uk/CVonline/
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In order to keep the geometry simple, yet allow for the mathematical definition of primitives such as
points and lines at infinity, projective coordinates, often calechogeneousoordinates, are used

for the analysis of projective transformations. The vector defining a normal point represented in
homogeneous coordinates has an extra component, which can take any non-zero value. This is often
setto ‘1’ and a one-to-one mapping from Euclidean sp&:8 (nto projective spaceX") is therefore

given by:

[xl,...,xn]T—>[ac1,...,azn,1]T

Points at infinity, often referred to @deal points have no Euclidean representation, but are defined
in homogeneous coordinates py , ... ,z,,0]”. Two homogeneous points are equivalent if one is
a scalar multiple of the othefz; , 22, 1)T = (Az1, Axg ,)\)T. A collineation or projective transfor-
mation, is any mapping?” — P", which can be defined by am + 1) x (n + 1) matrix A, such
thatp = A g wherep andq are the mathematical shorthand for homogeneous coordinates given by
(n + 1) vectors.

Figure A.1 demonstrates the geometry for the perspective projection performed by a camera.
Three coordinate systems are used to model the projection of a point in the world, defined by a 3-
vector (X,,) in the world coordinates, to a point on the image plane, defined by either a homogeneous

3-vectorX; = [X;,Y;, Z;]7T, orits 2D equivalent given by
x; = [u, 0]’ = [X;/ Z; Vi) Z;)F (A.1)
The three coordinate systems are:

1. The World coordinate systerfsubscript,,) describes the position of objects in the world with

respect to a defined origin,.

2. TheCamera coordinate systefsubscript.) describes the position of objects with respect to its

own optical centr®., sometimes defined as the focal pdiht

180



3. Thelmage coordinate syste(aubscript;), which has its axis aligned to the camera coordinate
system, describes the position of the imaged point in terms of the pixel coordinates in the image

plane.

It should be noted that an extimage affine coordinate systémsometimes used to distinguish
between the ideal coordinates and the actual coordinates when imperfections in the geometry of the
pixel grid are taken into account.

The scene point, in the world coordinate system, can be translated into the camera coordinate
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| system
|

|

|

Focal pointc\[0, Yo -7
/I Camera co—ordinate system
(&

|
| )
i Optical ray
|
Image 7
co—ordinate
system

Image plane

Figure A.1: Basic geometry for perspective projection.
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system by a translation vectat) (followed by a rotation matrixi) such thatX. = R(X,, — t) as
shown in FigureA.1. These are often known as thtrinsic or external, camera parameters and can

be given in the form,

ri1 ri2 T3 iy

Tl T2 T3ty R t
- ~ [R|¢] (A.2)
T3 T3z T3z s 0" 1
0O 0 0 1

where the delimitef | | is used to denote that the matrix is composed of two sub-matrices, or, in this
case, a matrix and a vector.

The world pointX ., given in the camera coordinate system, is projected on to the image plane
as pointU,. where thezx,. andy. coordinates can be derived from similar triangles, as shown in

FigureA.2, such that:

T
X 1% ] A3

U, —

C |: Zc ) Zc b
where f is thefocal lengthbetween the optical centre of the lens and the image plane. This projec-
tion can be represented by a linear mapping between homogeneous coordinates using the normalized

projection matrixM as:

— - — - XC
Zc 1 000
Ye
Uc=|y. |=2l0 100 =M X, (A.4)
Ze
f 0010
-7 ) ) 1

where) (A = f/Z,.) is the scale factor.
The focal pointC is the centre of the camera projection and the origin of the camera coordinate

system0.. In FiguresA.1 andA.2 the focal point appears in front of the image plane, which is its
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actual physical position. However the focal point is often shown behind the image plane in order to
simplify the explanation of projection. In that case the veé&fgrdiffers only by the sign off.

The final translation is from the camera coordinate system to the image coordinate system as
shown in FigureA.3. Theprincipal point, at coordinatesy, , v,), defines the point where the optical
axis intersects the image plane. The origin for the pixel coordinates is however defined as the top

left-hand corner of the image plane. The translation is therefore given by,

kyTe = U — U, and kyYe =00 — v (A.5)

where the units of are in pixels/length as shown in Figuke3.

Combining withf from EquationA.4, EquationA.5 can be expressed in matrix form by,

u fky 0 Uop Ze e
Li = v - 0 _f kv Vo Ye =K Ye (A6)
1 0 0o 1 f f

whereK is known as the&amera calibration matrixand is a3 x 3 upper triangular matrix. This is

Figure A.2: Derivation of image point from similar triangles.
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Figure A.3: Conversion to image coordinate system.

more usually defined as:

K=10 a w (A7)
0 0 1
wherea,, = f k, anda,, = — f k, define the scaling in the imageandy directions and as such the

aspect ratio o, / vy, Of the pixel elements. If the pixel grid is assumed to be perpendicular, the above
is satisfactory however sometimes an extra tefig; X is shown in the top row, centre column which
describes ahearfactor. The components of the camera calibration matrix are collectively known as
the theintrinsic, or internal, camera parameters.

Combining all three translations above yields the 4 projection matrixP which models the

transformation from 3D Euclidean space to an image.

_ - — - — - Xw
U oy 0w, 1 0 0 O
R ¢ Y,
zi=| o |=| 0 a v 0100 =KM [R|t] Xy
o7 1 Zw
1 0 0 1 0010
-0 - - - 1

(A.8)
This is often simplified tag; = PX,, whereP = KM [R | t] as shown. Often only the form of

(P) is important and not its actual decomposition. However, decomposition can be achieved using
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a matrix factorization method such@R decomposition which can be found Numerical Recip-

ies[PFTV93.

Two-View Geometry

Using two cameras to form a stereo imaging system, the 3D coordinates of any world point, viewed
in both cameras, can be computed from the intersection of the image rays projected from the optical
centers of each camera. The geometry that relates the two views of a stereo camera system is known

asepipolargeometry and is shown in Figurte4.

Figure A.4: Epipolar geometry for a stereo camera system.

The abstract, or conceptual, plané ) is defined by the optical centers of both the left and right
camera and the world point of interest and is known agflipolar plane This plane, intersects each
image plane creating an abstract line, calledepgolar line Each epipolar line, in turn, defines
two points; an image point coincident with the projected image ray angpigpole The epipoles
(eande’), are the projection of the optical centers, viewed by the other camera, in both the right

and left images respectively. These points are not necessarily on the image plane, as is the case with
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parallel cameras. Two cameras with coplanar image planes and parallel optical axis are referred to as
thecanonical configuratiomnd produce collinear epipolar lines.

Any two image points corresponding to the same 3D world point are constrained to lie on the
epipolar line in the other image. This forms the basis of solutions to stereo matching, calibration and
subsequently 3D scene reconstruction. The epipolar geometry of a stereo camera system is uniquely

described by th&undamentamatrix such that:

aETFiz’:[x y 1] F y | =0 (A.9)

wherez andz’ are corresponding, homogeneous image pointsFaisch3 x 3 matrix.

Proof that the epipolar geometry of a stereo system is described by the fundamental matrix is
derived as follows. Consider the image Xy(\), back-projected fromx, on the left image plane in
FigureA.4, by the projection matri®. This is obtained fron& = PX by considering two points
of interest on the image ray; the optical centre of the cangravherePC = 0, A = oo, and
the pointP*x, whereA = 0 andP is the pseudo inverse d&f such thatPt™ = P7(PP7)~! for
which PPT = I. Assume that the world origin is coincident with the left camera centre such that
P =K|[I|0]andP’ = K'[R|t] The image ray is then line formed by the two points and given by:

K'la C
X(\) =Ptz 4+ AC = + A (A.10)
o’ 1

Consider these two points imaged by the second camera such that:

0
z\_, = PPC ~ K'[R|t], =Kt =¢ (A.11)
1
K'lz
zh_y = PPtz ~ K'[R|t], = KRK 'z (A.12)
0
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where~ denotes the equivalenop-to-scalee’ is the epipole andiR | ¢ ].. is the transformation from
the world origin at the left camera centre. The ray is imaged in the second camera as the epipolar line

and can be computed from the vector product
! = €& x o (A.13)
= [PC] PP x
= K't x KRK 'z

= KT[t], RK 'z (A.14)

where| ], denotes the skew-symmetric matrix form of the translation vector given by:

0 —t, t,
(tle=1]t 0 —t, (A.15)
—~t, ty O

A similar algebraic manipulation is made &' |, = [P'C],, .

Sincex’ lies onl’ andx'"1’ = 0, which, substituting foA.14 can be written as
' (K’*T t], RK—l) =0 (A.16)
This defines the epipolar geometry of the stereo system, where the fundamental matrix is given by
F=K"[t], RK! (A.17)

Computation of the fundamental matrix allows for the following calculation of the epipolar lines
I!=Fx andl =FT & sincex”l’ =0 andl’z =0 andthe epipole¥Fe =0 andF7e’ =0.
The two cameras are related by a rotat®®@and a translation, collectively given asR | ¢], such
that
' =Rx+t (A.18)

187



Taking the vector product with, followed by the scalar product with' yields,
- (t x Rx)=0

which returns to Equations.9.
If the cameras are calibrated then the image point, in pixels, can be expressed in the camera
coordinate system such that= K . andx’ = K’ «/.. Substituting these arffd = [¢],, R, whereE

is known as th&ssentiaimatrix, in EquatiorA.16 yields
z Bz, =0 (A.19)
Comparing with Equatio’.17, the essential matrix is related to the fundamental matrix by
F=K TEK! (A.20)

and defines the epipolar geometry for a stereo system with calibrated cameras.
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Appendix B

People and Projects in 3D Scene

Reconstruction

Some of the people associated with the three main projects at SMILE98 :

e VANGUARD : Visualization Across Networks using Graphics and Uncalibrated Acquisition of Real
Data.

European project based at the Visual Geometry Lab., Uni.of Oxford.
P. A. Beardsley, G. Cross, A. Fitzgibbon, D. Forsyth, R. Koch, J. Mundy, M. Pollefeys, P. Pritchett, I.
Reid, P. Torr, L. Van Gool, and A. Zisserman.

e PANORAMA : ACTS PANORAMA Project.
Consortium of 14 European partners from various universities, research institutes and industry.
R. Buschmann, L. Falkenhagen, R. Koch, A. Kopernik, T. Riegel, and D. Tzovaras.

e CUMULI : Computational Understanding of Multiple Images.

European project with, INRIA Sophia-Antipolis, Lund Uni., INRIA-IMAG Grenoble, Fraunhofer IGD,
IMetric.

K. Astrom, O. Faugeras, A. Heyden, R. Mohr, L. Quan, G. Sparr, P. Sturm, B. Triggs, and Z. Zhang.

A comprehensive list of poeple in Computer Vision has been compiled by Margaret Fleck at the and can be
found at:http://www.cs.hmc.edu/ fleck/computer-vision-handbook/vision-people.html
Other projects of interest are:

e CAMERA : CAd Modelling of Built Environments from Range Analysis.
Euro Project partners are: Fraunhofer IGD (Germany), IST (Portugal), IEC-JRC (Italy), Kungliga Tekniska
Hogskolan (Sweden), LAAS-CNRS (France), UK Robotics (UK) and Uni.of Edinburgh (UK).
Project Coordinator: R. Fisher, Uni.of Edingburgh.

Aim: Automatically create architectural CAD and VR models of existing buildings from range and in-
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tensity images.
Website:http://www.dai.ed.ac.uk/daidb/people/homes/rbfi  CAMERA/

RECCAD: (Copernicus) 3D surface Reconstruction for CAD modelling:

European Research project partners are: VAGG, CS at Uni.of Cardiff., GML, CAR Inst. Budapest.,
CVL, Uni.of Ljubliana, Slovenia., CMP at Fac.Eng, Czech Tech.Uni.

Aim: Produce complete and detailed boundary representations of geometric models.

Website: http://ralph.cs.cf.ac.uk/reccad.html

COMORI and REC3D: Construction of Complete 3-D Models from Range Images and a MathLab
Toolbox for 3D Reconstruction from Uncalibrated 2D Views.

CMP at Fac.Eng, Czech Tech.Uni.

T. Werner, T. Pajdla, M. Urban, J. Burianek, J. Cernik and V. Hlavac

Aim: Develop existing methods for registration of surfaces and fusion of surface measurements into
consistent geometrical models.

Website:http://cmp.felk.cvut.cz/cmp/demos/Recx.html

RESOLV: Reconstruction using Scanned Laser and Video.

European research programme, partners are; VERS Assoc., IST, JRC, Robosoft, ZGDV and Comp.Vis.Group,
SCS at Uni.of Leeds.

Project Manager: David Leevers of VERS.

Aim: Full environment reconstruction by an autonomous mobile robot for telepresence applications,
specifically surveying hazardous environments. Webbite://www.scs.leeds.ac.uk/resolv/

REVEAL : Reconstruction from Video of Environments with Accurate Lighting.

Advanced Interfaces Group, Dept.of CS at Uni.of Manchester.

R. J. Hubbold, T. L. J. Howard, A. D. Murta, S. Gibson, A. J. West, D. Oram and J. Sinnott

Aim: Construction of fully interactive virtual environments that faithfully represent real-world scenes.
Website:http://aig.cs.man.ac.uk/research/reveal/

Temporal Sterea Electronic and Electrical Engineering Dept., at The University of Sheffield. S. Cross-
ley, A. J. Lacey, R. A. Lane, N. L. Seed, N. A. Thacker and R. B. Yates

Aim: Improving the accuracy and consistency of depth information for iterative 3D reconstruction using
previous estimates of disparity images.

Website:http://www.shef.ac.uk/eee/ecs/index.html

VECTOR: Model-based Visual Surveillance.

Computer Vision Group, CS at Uni.of Reading.

G. Sullivan, S. Maybank, T. Tan, P. Remagnino, A. Worrall, J. Ferryman and J. Anderson

Aim: Tracking of vehicles and people in urban scenes for security purposes and reconstruction of room
interiors.

Website:http://www.cvg.cs.reading.ac.uk/Research.html

VIRTUOUS : Autonomous Virtual World construction.

European research programme, partners are; CVSSP, EE at Uni.of Surrey., Inst. CTR Slovak Acad., UTIA
CAS Prague IST Uni.of Lisbon.

Aim: Registration of 3D surfaces to build 3D Models for a VR environment.
Website:http://www.ee.surrey.ac.uk/EE/VSSP/3DVision/virtuous/virtuous.html
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And in the US:

e Facade
Computer Vision Group, CS at Uni of California at Berkeley.
P. Debevec, C. Taylor, J. Malik, G. Levin, Y. Yu
Aim: Creation of photo-realistic models for the entertainment and the construction industries.
Website:http://www.cs.berkeley.edu/ debevec/Research/

e (MBV) Modelling By Videotape:
Robotics Inst. at Carnegie Mellon Uni.
T. Kanade, C. Tomasi, C. J. Poelman, D. Moris, M. Han and L. Quan
Aim: Autonomous 3D model construction via SFM.
Website:http://www.vasc.ri.cmu.edu/ mbv/

e Pioneer. Remote reconnaissance system for structural analysis of the Chernobyl reactor.
US Dept.of Energy lead consortium which includes NASA JPL and NREC.
Aim: To design and build a tele-operated mobile robot capable of exploring the Chernobyl nuclear
reactor and recovering detailed inspection of the interior.
Website:http://robotics.jpl.nasa.gov/tasks/pioneer/homepage.html
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Appendix C

General Considerations when Choosing a
Framework for Image Processing

Software for Computer Vision Research

Before any useful results can be obtained from research into image processing and/or computer vi-
sion techniques a software framework, or environment, for the tools being used, and/or developed,
is essential. Even if this framework amounts to little more tham@occollection of processing

and display programs, their interaction constitutes some form of framework and as such the following
considerations will still apply.

The following describes, in brief, some of the considerations pertaining to an “informed” choice
of a software environment, or framework, for image processing (IP) and computer vision (CV) tools.
These considerations were applied to the choice of environment for work on large-scale 3D scene
reconstruction but are equally valid for all areas of machine vision research. Use of the terms “frame-

work” and “environment” are completely interchangeable in the context of this guide. It is hoped
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that this “alternative” guide, which is not intended as a review of frameworks currently available, will
be of benefit to readers new to computer vision research and save valuable time for more important

matters.

Acknowledgment: The author would like to thank his colleagues, Mike Lincoln and David Johnson,

for their invaluable input to the formulation of ideas conveyed in this guide.

Off-the-Shelf Options - What to look for!

It seems that there are almost as many IP frameworks as there are applications. Much of this is due
to the gradual evolution of CV techniques over the years and the increase in the number of machine
vision applications but a great deal is also due to personal preference and the beliefithabase

system will be better in some way. In a few cases the later may be true but attempting to design a useful
IP environment is by no means an easy task and can be a costly, albeit educational, exercise. There
has been so much written about all the various IP environments that it is extremely difficult to offer a
good reference from which to begin a review of the options available. However a useful collection of
papers covering many of the important considerations can be found in ‘Experimental Environments
for Computer Vision and Image Processiigd94d’. A list of the most popular environments can

be found through CVOnline together with an excellent reviéy Dr Adrian Clark [Cla9g, written
originally for the EPSRC Summer School for Computer Vision. There are a number of similar reviews
available on the ‘Internet’, some supporting specific environments, others more general. Therefore,
yet another review is unnecessary. However, apart from the review referenced above, few, if any, give
advice on what to look for and how to make an “informed” choice. The following hopes you address

this issue without bias, so no judgments will be made about any specific frameworks. Regardless of

lalso available fromhttp://www.dai.ed.ac.uk/CVonline/environ.htm

193



all the “hype” surrounding particular frameworks, none should be automatically regarded as the best
option. In general, IP frameworks are initially written with a target area of research, or application,
in mind and then adapted for more general use as they are developed. As such they may be ideally

suited for the original task, but not necessarily ideal for others.

Image formats

The multitude of image formatsare a testimony to the complexity of the requirements of IP environ-
ments. At one end of the scale, a simple image format with just the height, width and number of bits
per pixel is all that is required to carry out basic IP tasks. At the other, a comprehensive description of
the data type, colour model, spectrum band, region of interest, history of processing and a whole host
of other information may be required. There has been much debate over the year on the complexity
of image formats and which ones an IP environment should support. However, a large proportion of
the argument is ultimately dependent on the CV techniques being investigated. For example, work
on multi-spectral (e.g. colour) images is greatly simplified if the data is stored in a single composite
file rather than across several single band image files. However, processing is often performed on the
separate image bands so efficient data management becomes an important issue. An image format
with it's own compression might be good for data storage but adds a considerable overhead when
attempting to process individual bands of data. There are a large number of format conversion tools
freely available but most of the more popular environments already support an increasing number of
image formats. It is advisable to become familiar with, at least, a couple of different image formats
and choose the most appropriate for the work in hand. Try not to become preoccupied by one partic-
ular format. Saving and displaying results is paramount to all research work so choose image formats

that are supported by a large number of processing, display and conversion tools.

2image format specifications can be foundhitp://www.dcs.ed.ac.uk/home/mxr/gfx/
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Component parts

If a software framework is considered as a set of co-operating “modules”, each can be analyzed in
terms of its components. These modules can consist of any number of similar tools but there are

essentially only a few distinct modules for certain types of software environment. These could be:

e Libraries of standard and/or task specific tools such as; mathematical, geometric, image pro-

cessing, computer vision, simulation.

e A data management and process control core consisting of standard and user defined data types,

data storage structures, memory management, process pipelining or scheduling, etc.

e User interfaces to provide data I/0, data visualization, which could include both 2D and 3D for
images and data plots, and other analysis and prototyping tools to simplify algorithm develop-

ment.

These types of “modules” have also been describeédakits or servicesn some environments, but
they amount to the same thing. Most, if not all, the popular environments have extensive libraries of
the processing tools but, unfortunately, not all are organized in a user friendly way. Some of the larger
environments are accompanied by list generating, or look-up, tools to help you find what you are
looking, others seem to rely on poor descriptions and a considerable amount of user patience. Many
environments also have extra toolkits for specific vision tasks, such as medical imaging or character
recognition, but these are simply extensions to the basic processing libraries. “Ideally”, these more
specialized CV modules should, in the option of the author, be optional and selected by compilation.
The core of any system is obviously fundamental to its operation and use. Most environments
should be written to allow a considerable amount of flexibility for the access and manipulation of

both image data and also the various sorts of dynamic data which are created from it, such as edges,
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corners or textures, etc. There are a number of data management models which regularly appear
in IP environments, each with their own advantages and disadvantages. There is insufficient space
here to discuss the various options in any detail but the reader should be aware of metaphors such
as ‘stack’, ‘register’ and ‘blackboard’. The way in which an environment handles data processing
internally may be of little interest to many users. However, such concerns become very apparent
with increasing amounts of low-level programming within the environment. Of greater importance,
at least to many, seems to be the type of user interface employed. This is understandable as there is
little point in having an extensive library of processing tools if the effects can not be visualized in an
appropriate way in order to realize their worth. However the effectiveness of user interfaces are often
over shadowed by their appearance. Attractive features may appear to offer good functionality but
in fact offer little of practical value. Ideally an IP framework should be able to display image data
after every “distinct” process.€. those that change the image data). It should also support different
methods of highlighting, or displaying, features of interest. This should be at various resolutions
down to the pixel level. Some frameworks are able to support data plotting facilities, which also can
be extremely useful. Tools which aid the construction of algorithms, either by scripted input or some
form of graphical user interface, can be useful. However, they can also become hindrance to effective
research. This is due to the human tendency to ignore essential checks of the derived data part way
through the process chain. Discovering deep seated problems after months of looking at erroneous
results is unfortunately more common that it should be. There is often considerable value attached to
thelook and feebf most software packages and unfortunately image processing environments appear
to be no different.

In general, most of the popular IP environments have all the necessary components for an intro-
duction into CV research. The choice of which to use therefore may not have been made easier by

considering the component parts. If we assume that an IP environment has all the components required
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for research into the area of interest, then the next most important considerations are likely to be how
easy they are to use and/or modify. Reviews of IP environments often discuss general attributes such

as:

Extensibility - modify and extend to incorporate new ideas,

Generality - applicable to many areas of research by consisting of standardized tools and algorithms,

Operability - flexible interface that allows interaction at various levels of programming.

All these terms can have a number of different interpretations and are often used in impressive de-
scriptions in the framework’s accompanying documentation. Making an “informed” choice from such
descriptions is not easy so it may be worth considering the choice of framework not by “what it can

offer”, but from the point of view of the actual requirement of the task in hand.

Level of programming

The concept of “requirement” introduces the most fundamental question that should be asked by all

researchers connected with image processing and computer vision.

“What level of programming is required for the particular project or task”.

If the level is more user oriented and less development then some high level interpretation, that allows
the construction of algorithms by connecting together basic elements, may be more appropriate. This
could involve relatively simple interfaces which consist of wrappers around lower level processes that
are applied to images sequentially. Using such process wrappers, an edge detection algorithm might be
developed by sequential calls wiffx() , sqr() , diffy() ,sqr() ,add() , nonmaxsup() .

Some environments use more exotic, higher level interfaces, some graphical and some scripted. The

more popular environments allow different levels of programming access, but, unfortunately, others
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are more restrictive. The use of higher level, abstracted, user interfaces can increase understanding
and productivity. However, such abstraction can also incur a considerable overhead when developing

new code or testing new ideas, especially when manipulating data structures that were not expected
to be handled by the particular interface.

If a considerable amount of code development is envisaged then access into the lower levels of
source code will almost always be required. It seems that many researchers like to create their own, or
at least modify existing, code. This includes both the IP tools and also the interface tools that produce
the results in some particular format not normally available. Therefore, the level of programming
access is often likely to be low level and involve direct access to all the source code. Many environ-
ments are freely available from the Internet, with full source code and documentation. Undoubtedly
some of these will be written in a language which is preferred by the reader, however some may not.
‘C’ is a popular language for many mathematical and scientific software tools and there are a number
language conversion packages available, both to and from ‘C’. There are also a number of possibilities
of combining ‘C’ code with another languages. Although it is becoming increasingly less likely these
days, some vision environments may contain large sections of code written in another language, or
worse converted from some ancient library of low-level image processing functions. This is can lead
to considerable problems when implementing new techniques and it is often difficult to confirm the
suitability of the low-level processes in higher level algorithms. It is always advisable to conduct a
thorough check of the source code before use.

The use of a particular programming language in IP and CV environments should be largely
arbitrary. Unfortunately this is not always the case. The software models and structures within some
languages, or, more accurately, the libraries of data classes and access functions created by some
higher level languages, do not lend themselves to the sort of data access and manipulation required

for IP and CV techniques. The greater the level of abstraction the more constrained the programmer
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is to using the predefined models and data structures. This can be apparent in both the design of
the framework and the language it is written in. If the programming model at the required level of
interaction is too rigid then it is often very difficult to implement new ideas.

In general, it is recommended that the choice of IP framework be based on the level of program-
ming that will be undertaken. If this is at a high level, then a framework with good support tools for
algorithm construction should be chosen. However, ensure that the tools are not too restrictive for
code development. If, however, low level programming is envisaged, avoid high levels of abstraction,

both in the code and the user interface.

Summary

The following summarizes the points raised above and can be used as a simple “checklist” for the

choice of a framework for IP and CV tools. This should not be considered as absolute or complete.

e Image formats: Ensure they are appropriate for the project or task.

Library support: Select the libraries you want and where possible leave out those you don't!

System complexity: Ensure that there are appropriate image data types and dynamic data struc-

tures for the intended area of research and flexible, but consistent, forms of data access.

Data visualization: Look for flexible image and data representation. This usually requires both

2D and 3D graphics support and plotting utilities.

Productivity: Ensure that the framework design allows simple, quick algorithm generation but

beware of “flashy” user interfaces.
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Writing Your Own

Although there are some very good image processing environments, few, if any, of those which are
freely available, offer all of the attributes that are required for efficient research. This is especially true
when venturing into the higher levels of CV techniques such as those required for 3D scene recon-
struction. Consequently, it is sometimes desirable to write your own. This should not be considered
lightly. Designing and constructing a useful framework for vision research is not an easy task. How-
ever for those determined to embark on such an undertaking the following are a few pointers which
were acquired from a couple of stalled attempts at constructing a dual image processing and virtual
environment modelling framework for research use. This is not intended as a specification for a image
processing framework and will not cover every aspect of possible concern. Neither will any aspects
of the design of a framework for virtual environments be discussed.

JIVE (Joint Imaging and Virtual Environments) is an ongoing project at The University of Essex
which hoped to combine many of the IP features identified above together with an interface for Virtual
Reality (VR) modelling. Although this project had an ambitious specification, which incorporated
multi-spectral images, video stream processing as well as a VR interface, the plan was to design and
build the framework in two distinct phases. The first phase was just to construct the basic IP and CV
framework with a versatile data management model that would allow the second, virtual environment,
phase to be completed later. Unfortunately the project is still in its early stages of development but it
is expected to be revitalized in the near future.

As identified earlier, an IP framework consists, in general terms, of three separate modules, a core,
a set of processing libraries and some user interface tools. The following is considered in these terms
in order to simplify the ideas. Few of these should actually be considered in isolation and most will

impact on every component.
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The basics

Definition of the internal image format needs to be flexible enough to handle almost anything. In
practice this is almost impossible and some compromise must be made. Obvious data members for
an image object, or class, are; height, width and a data pointer, ideallydiol array of pointers to

rows in the image so that it is possible to define different data types to be used and allow maximum
flexibility for data access. This immediately introduces the choice of language. Some languages are
more strict on the specification and use of data types than others. This is both good and bad for the
development of a framework which is usually designed to handle a number of different data types an
efficient manner. Some languages are simply “non-starters” as far as image processing goes but that
is a personal opinion so the reader is free to draw their own conclusions. There is also a question
of the number of data types which should be supported. On the one hand in could be argued that
“the more the better.” However, the greater the number of data types the greater the amount of code
required to support each one. It is obvious that both integer and real data types are required and it
is sensible to use the greatest possible precision for most numerical processes. It is recommended
that both ‘complex’ and ‘pointer’ data types are also specified. The latter being particularly useful
for the construction of images of pointers to structures such as ‘Edgel’ features which could contain
useful, associated, data such as contrast, orientation, sub-pixel location, linkage and various other
user-defined properties. From the point of view of data I/O, it is far better to design flexibility into
the framework and allow for all possible data types, but then limit the internal processing to the types
with the highest precision appropriate to the numerical process. However, unnecessary casting of data
types is wasteful, especially if no useful processing takes place. Therefore the rigid definition of data
types for library functions is should be generally avoided. A sensible balance can be drawn by using

data types appropriate for the particular processing task being considered!
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Most modern computer vision algorithms require full, random access to image data so a number of
flexible methods are required. These method need to be consistent and ideally type invariant in order
to simplify subsequent use. Apart form the usual “get-" and “put-line”, methods such as “get/put-
column” and “get/put-pixel” are extremely useful. The management of dynamic structures is also
very important and the use of various type of linked-list, including ‘tree’ and ‘graph’ structures is
highly recommended. Few languages have built in error checking and those that do are unlikely to
be versatile enough to deal with the requirements of an IP framework. Considering that most of the
use this type of software will be developing new code, robust error handling should be designed into
every level from the start. Thankfully, gone are the days when such frameworks were constrained to
operate with very limited amounts of RAM so memory management can, in many cases, be left to
the operating system. However, dedicated memory management can provide a useful method finding
memory leaks and also avoiding runaway processes. The extra effort is probably worth the effort in
the long term.

The inclusion of multi-spectra/multi-band (not necessarily just colour) images adds a new level
of complexity to the problem of designing an IP framework. While a universal framework which
treats all images the same is a desirable goal, the extra complexity it places on the system can be
extremely restrictive. Historically, most multi-spectral processing were limited to single bands, ef-
fectively treated the same as grey-scale images, but advances in multi-spectral processing techniques,
not least of which beingector processing, has lead to a need for much more flexible methods of
data access. Apart from the obvious band access, full random access, down to pixel level, is often
required. It may be tempting to consider incorporating multi-spectral processing at a low level of the
core design, but this is not the best option. Although triple the amount (at best) of initial coding is
required, there are considerable advantages to designing a separate core (or more accurately, part-

core) module. Firstly it allows for multi-spectral processing to be “un-bolted” if not required by the

202



user. Secondly, the fact that flexible data access is required suggests that decisions concerning internal
storage of image data (band, line or pixel interleaved) need careful consideration. A balance between
the abstraction of the image data and the full random access via, band, line and pixel is required that
minimizes the amount on internal packing and re-packing of data. Such a requirement is difficult to
implement in practice and would have a considerable impact on the performance of a single, standard
core for grey-scale IP.

A further complication would be the inclusion of streamed image data. Again this will have
considerable impact on the core, especially with memory management issues. It is recommended
that if such a requirement is necessary it should be treated as a separate module and implemented
through a specific interface to the core. The reason for this is similar to that given for multi-spectral
images, but also stems from concerns about flexibility and speed. Unfortunately flexibility and speed
are not compatible and one is almost always sacrificed to serve the other. If flexibility has already been
designed into the core at a low level, then it seems counter productive to add constraints in order to
service streamed data at that level, especially when a dedicated interface could be designed to handle
the stream much more efficiently.

Finally, for this section, the use oi-line and/or macro functions can add considerable flexibility
however the implementation can sometimes appear more complex than necessary. Ultimately the
framework will be used by researchers with differing levels of programming ability so a number of

options should be made available for the most widely used functions.

Libraries

Libraries of math, IP and CV tools can be borrowed from a number of different sources, not least of
which is Numerical RecipefPFTV93. The use of borrowed libraries saves a considerable amount

of coding but it is dangerous to assume that all the source code is valid. Such code should be tested
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as much as possible. Flexibility is always an important issue, so offering a number of alternative
methods, especially those handling specific data types is recommended. However, trying to construct
multiples of everything should be avoided. Some versions may never be required and if they are, then
the user can generate their own from examples in the library. This last point leads to an extremely
important issue concerned with compilation. If a framework is going of any use, the addition of
new code must be quick and simple. This effectively means that regardless of the language used,
compilation must be as simple as possible, yet allow for the addition of new, or replacement, elements.
The use ofmakefilesoften helps with such concerns but it is also necessary allow for preferential
inclusion of source code files. Specification, fegader files should not however be much more
difficult to over ride. These conflicting requirements are not always possible to implement in practice.
Excessively long functions and/or files should be avoided. Break up large, or long, algorithms into
sensible blocks. This is generally standard practice and allows for the maximum amount of code reuse.
Always try and store similar code in the same place. Again the use of macro generated or in-line code
is popular in many libraries but it is often difficult to find the definitions. Sensible distribution is

recommended but the exact interpretation of this is left to the reader.

User interface tools and algorithm analysis

The creation of interface tools, which could include versatile display, data plot and algorithms analysis
tools, for an IP framework can be the most time consuming part of the whole development. Creating
good interactive tools is far more complicated than it first appears. For a start there is the obvious
complication of dealing with event handling calls to the operating system’s windowing functions. This
is usually achieved by registerirmll-back functions for all of thewidgetsis use. Even something
relatively simple can take many lines of code to implement. With so much code being devoted to

the interface tools, it is often part of human nature that the developer would like their tools to be
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as attractive as possible. Unfortunately this often leads to a distraction from the functionality. It
seems that for every good idea for a support tool and/or utility there are probably three bad ones. All
researchers have their own interpretation of what constitutes a good tool and most would claim to be
able to implement it better. The one fact that seems constant about support tools is that “the more they
offer the worse they are”. Attempting to write a tool that does everything will probably take twice
as long, be ten times more complicated and be a hundred times less likely to be used. If “similar”
functionality can be sensibly combined into a single tool then it should be included. If not, then a
separate tool should be constructed. Again, sensible interpretation of this is required.

There are a few obvious tools that are required by all frameworks. Displaying results in an IP
framework in paramount and the framework should be able to display the result after every stage
of processing. This effectively means that all the supported image data types need to be converted
into some common format for display. This undoubtedly requires different levels of truncation on
each data type and could also include logarithmic re-scaling. Highlighting image data of interest with
colours is common place, so the specification of local colour palette is fundamental. Camera style
functions, such as zoom and pan, are particularly useful for image display in IP framework but obvi-
ously involve another level of complexity on top of basic system. Data plotting tools are extremely
useful in IP frameworks but unfortunately there are very few, good, examples available. Apart from
the usual 2D graphs and charts, 3D surface plots of image data are also useful but even harder to find.
GNUnhave produced library of plotting utiliti€svhich will aid development for unix/linux compatible
framework. Algorithm analysis is often overlooked in many IP frameworks. The simple fact that the
original author is happy with the performance of some process would seem to preclude the require-
ment for anyone else making a judgment. The liberal use of ‘message’ and ‘data formatting’ methods

greatly aids the access of existing code as does and common text I/O interface. The idea of saving

Sthe library can be found ahttp://www.gnu.org/software/plotutils/plotutils.html
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comments to a console window which can then be edited and saved to file is particularly attractive.
Processing timing is likely to be unreliable in a flexible IP framework, especially if the processing
results are updated automatically (which is preferable), but the inclusion of a timer module, activated
by simple ‘start’ and ‘stop’ calls, is often a useful guide when developing large algorithms with a

number of component parts.

Design Strategy

A great deal of emphasis has been placed on the merits of object orientated (OO) design. In general,
the methodology which OO supports is applicable to all software and should be applied and all times.
However, while this is recommended for all commercial software, strict adherence to OO, by applying
complete data abstraction, imposes excessive constraints on the research programmer. The need to
ensure the stability of the lower level of a software framework is paramount. However, restricting
access to higher levels of data, especially the image data and the algorithm derived from it, is counter
productive. The researcher needs to be able to construct and manipulate data, at the outer most layer
of the framework, with relative ease without incurring the penalty of an excessive number of calls

to lower level functions. There is obviously a fine balance to be made between good object oriented
design practice and over enthusiastic implementation of abstraction. The applicationarfighe

model of the software system is a particularly useful metaphor for producing such a balance. In

essence, decrease the level of data access from the outside layers inwards toward the centre.

Closure

The above are only a few observations and are not intended as a complete specification for the devel-

opment of an image processing framework. The reader may use, or ignore, them as they see fit.
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Appendix D

Code Listing for SUSAN Edge and

Corner Detection

/* susan.h - */
#ifndef SUSAN
#define SUSAN

#define BLUTSCALE 100

#define SUSANMASK 37

#define EXPPWR 6

#define INTERCASE 600

#define ALMOST3 290

#define MINRESPNC 50

/*#define EDGE_RAW 0x00000000*/
#define EDGE_SUSAN 0x00000004

extern int *setup_blut(int **blutptr, int bth, int pwr);
extern void free_blut(int *blut);

extern void print_blut(int *blut);

extern Imrect *susan_prnc(Imrect *im, int geot, int *blut);
extern Imrect *susan_prnc2(Imrect *im, int geot, int *blut);
extern Imrect *susan_prnct(Imrect *im, int geot, int *blut);

extern Imrect *susan_corner(imrect *im, float gthresh, int *blut);

extern Imrect *susan_edges(lmrect *im, float gthresh, float cfgmagn,
float casecond, int *blut, int lengththres);

#endif

/* susan_prnc.c - This is the principle SUSAN algorithm used by
both edge and corner detection procedures.
Eddie Moxey, last update Oct 2000.

*

#include <stdio.h>

#include <math.h>

/* tina headers */

#include <tina/sys.h>

#include <tina/sysfuncs.h>
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#include
#include
#include
#include

<tina/math.h>
<tina/mathfuncs.h>
<tina/vision.h>
<tina/visionfuncs.h>

/* local headers */

#include
#include

"susan.h"
"..Itina/eds_funcs.h"

static List *timed_proc_list = NULL;

int *setup_blut(int **blutptr, int bth, int pwr) {

/* sets up a brightness look-up table for SUSAN algorithms */
/* such that the similarity measure is given by: */
I* sim(l, o) = exp((l - lo)/bth)"pwr */
I* where bth is a brightness threshold.

/* The values stored range from 0 (min) to 100 (max) only! */

/* A pointer to the start of the LUT is returned but the  */

[* origi
int i;

nal pointer given is used to access the LUT. */

float tmp;
int *blutfree;

blutfree = ivector_alloc(0, 516);
/* Only need 513 bytes for std 8-bit greyscale images */

if(pwr == 0) pwr = EXPPWR;

*blutptr = blutfree + 258; /* set pointer to centre to table */
for(i = -256; i <= 256; i++) {
tmp = ((float)i)/bth;
tmp = tmp * tmp; /* must be squared at least! */
switch(pwr) {
case 2 :
break;
case 4 :
tmp = tmp * tmp;
break;
case 6 :
tmp = tmp * tmp * tmp;
break;
default:

error("Invalid exp power in SUSAN BLUT\n!", non_fatal);

tmp

= BLUTSCALE * exp(-tmp);

*(*blutptr + i) = (int)tmp;

return(blutfree);

void free_blut(int *blut) {

ivector_free((void *)blut, 0);

}
void print_blut(int *blut) {

/* test purposes only */
int i, nout;
for(i = -256; i <= 256; i++) {

forintf(stderr, "b%d %d\t", i, *(blut + i));

if0(n
}

void form
/* test

out = i % 8)) fprintf(stderr, "\n");

at_blut(int *blut) {
purposes only */
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int i, nout;
for(i = -256; i <= 256; i++) {
format("b%d %d\t", i, *(blut + i));
if(l(nout = i % 8)) fprintf(stderr, "\n");
}
}

Imrect* susan_prnc2(Imrect *im, int geot, int *blut) {
/* susan principle 2 - as above but faster for corners */
/* because it constantly checks that the usan area does */
/* not exceed the geot limit while incrementing. */
Imrect *im_out;
int  *lineout, *im_lines[7];
int  usanA,
int *centrep, *maskp;
int Ix, ux, ly, uy;
int  maskline, i, j, maski;

ifim == NULL) {
error("susan_prnc() given NULL image", non_fatal);
return (NULL);

}

usanA = 0;
Ix = im->region->Ix;

ux = im->region->ux;
ly = im->region->ly;
uy = im->region->uy;
im_out = im_alloc(im->height, im->width, im->region, int_v);

lineout = ivector_alloc(lx, ux);

for(maski = 0; maski < 7; maski++) {
im_lines[maski] = ivector_alloc(lx, ux);

}
for(i = ly+5; i < uy-5; i++) {
im_get_row(lineout, im_out, i, Ix, ux);

0:

maskline ;
-3; maski <= 3; maski++) {

for(maski

im_get_row(im_lines[maskline], im, maski+i, Ix, ux);

maskline++;
}
/* NB: 37 cell mask shape */
I*is: L. */
I* HHHHH */
I* HitHEH */
I* HHHHEXHHH */
I* it */
I* FHEHE */
I* LHHE.. */

for(j = Ix+5; j < ux-5; j++) {

lineout[j] = O;

usanA = BLUTSCALE; /* allow for central pixel now!*/
centrep = blut + im_lines[3][j];

/* define mask centre as an offset in the simlarity table */
maskp = im_lines[0] + j - 1;

/* Calculate USAN Area. */

/* 1st line */

usanA += *(centrep - *maskp++);

/* subtract the pix value from the table offset */

/* to find the similarity measure. */
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usanA += *(centrep - *maskp++);
usanA += *(centrep - *maskp);
maskp = im_lines[1] + j - 2; /*
/*2nd line */

usanA += *(centrep - *maskp++);
usanA += *(centrep - *maskp++);
usanA += *(centrep - *maskp++);
usanA += *(centrep - *maskp++);
usanA += *(centrep - *maskp);
maskp = im_lines[2] + j - 3; [/*
/* 3rd line */

usanA += *(centrep - *maskp++);
usanA += *(centrep - *maskp++);
usanA += *(centrep - *maskp++);
usanA += *(centrep - *maskp++);
usanA += *(centrep - *maskp++);
usanA += *(centrep - *maskp++);
usanA += *(centrep - *maskp);
maskp = im_lines[3] +j - 3; /*
/* 4th and centre line */

usanA += *(centrep - *maskp++);
usanA += *(centrep - *maskp++);
usanA += *(centrep - *maskp++);

move on to next line */

move on to next line */

move on to next line */

/* check usan area early and save computation */

iflusanA > geot) continue;
maskp ++;

usanA += *(centrep - *maskp++);
iflusanA > geot) continue;

usanA += *(centrep - *maskp++);
iflusanA > geot) continue;

usanA += *(centrep - *maskp);
iflusanA > geot) continue;
maskp = im_lines[4] + j - 3; [/*
/* 5th line */

usanA += *(centrep - *maskp++);
iflusanA > geot) continue;

usanA += *(centrep - *maskp++);
iflusanA > geot) continue;

usanA += *(centrep - *maskp++);
iflusanA > geot) continue;

usanA += *(centrep - *maskp++);
iflusanA > geot) continue;

usanA += *(centrep - *maskp++);
iflusanA > geot) continue;

usanA += *(centrep - *maskp++);
iflusanA > geot) continue;

usanA += *(centrep - *maskp);
iflusanA > geot) continue;
maskp = im_lines[5] + j - 2; [/*
/* 6th line */

usanA += *(centrep - *maskp++);
iflusanA > geot) continue;

usanA += *(centrep - *maskp++);
iflusanA > geot) continue;

usanA += *(centrep - *maskp++);
iflusanA > geot) continue;

usanA += *(centrep - *maskp++);
iflusanA > geot) continue;

usanA += *(centrep - *maskp);
iflusanA > geot) continue;
maskp = im_lines[6] + j - 1; /*
[* 7th and last line */

usanA += *(centrep - *maskp++);
iflusanA > geot) continue;

usanA += *(centrep - *maskp++);
iflusanA > geot) continue;

/* skip centre pixel */

move on to next line */

move on to next line */

move on to next line */
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usanA += *(centrep - *maskp);

iflusanA < geot) {
lineout[j] = (geot - usanA);

}

/* end of row - put the mask lines back */

maskline = 0;

for(maski = -3; maski <= 3; maski++) {
im_put_row(im_lines[maskline], im, maski+i, Ix, ux);
maskline++;

}

im_put_row(lineout, im_out, i, Ix, ux);

}
for(maski = 0; maski < 7; maski++) {
ivector_free((void *)im_lines[maski], Ix);

ivector_free((void *)lineout, Ix);
return (im_out);

}
/* End of File */

/* susan_edges.c

* Smallest Univalue Segment Assimilating Nucleus(SUSAN)
* Edge detection. Code is rather lengthy but efficient!

* Eddie Moxey, May 2000.

*

static Imrect *susan_edgmnts(Imrect *prncim, Imrect *im, int geot,
float cfgmagn, float casecond, int* blut) {
/* calc the usan area moments for subsequent edge orientation */
Imrect  *maxim;

int cgx, cgy;

long cgxsq, cgysq, xycfg;

long sqsum, cfgvecmag;

int *prnclines[5], *im_lines[7];

int siml, usanA, usanR;

int *centrep, *maskp;

int Ix, ux, ly, uy;

int maskline, i, j, maski, a, b, w;
Bool do_secndmnts = false;

float cheapatan, posoff, drow, dcol;
Vec2 pos = {Vec2_id};

Edgel *eptr, *edge_alloc();

if (im == NULL || prncim == NULL) {
error("susan_edgmnts() given NULL image", non_fatal);
return (NULL);

}

CgX = cgy = cgxsq = cgysq = sgsum = xycfg = O;
siml = usanA = usanR = 0;

Ix im->region->Ix;

ux = im->region->ux;
= im->region->ly;
= im->region->uy;
maxim = im_alloc(im->height, im->width, im->region, ptr_v);

for(maski = 0; maski < 7; maski++) {
im_lines[maski] = ivector_alloc(lx, ux);
}

for(maski = 0; maski < 3; maski++) {
prnclines[maski] = ivector_alloc(Ix, ux);
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/* Only need to process the centre area of im,*/
/* so allow some spare lines around the edge! */
for(i = ly+7; i < uy-7; i++) {

maskline = 0;
for(maski = -3; maski <= 3; maski++) {

im_get_row(im_lines[maskline], im, maski+i, Ix, ux);

maskline++;
maskline = 0;
for(maski = -1; maski <= 1; maski++) {

im_get_row(prnclines[maskline], prncim, maski+i, Ix, ux);
maskline++;

}

for(j = Ix+7; j < ux-7; j++) {

usanR = prnclines[1][j];

iflusanR < 50) continue;

/* Skip if original edge no response! */
usanA = geot - usanR;

iflusanA < 200) continue;

[* Skip if original usanA was too small ! */
centrep = blut + im_lines[3][j];

iflusanA > casecond) {
/* Calculate 1st Moments for Centre of Gravity */
/* of USAN area. casecond replaced INTERCASE */
cgx = cgy = O;
maskp = im_lines[0] + j - 1;

/* 1st line */

siml = *(centrep - *maskp++);
cgx -= siml; cgy -= 3*siml;
siml = *(centrep - *maskp++);
cgy -= 3*siml;

siml = *(centrep - *maskp);
cgx += siml; cgy -= 3*siml;

maskp = im_lines[1] + j - 2; /* move on to next line */
/* 2nd line */

siml = *(centrep - *maskp++);

cgx -= 2*siml; cgy -= 2*siml;

siml = *(centrep - *maskp++);

cgx -= siml; cgy -= 2*siml;
siml = *(centrep - *maskp++);

cgy -= 2*siml;

siml = *(centrep - *maskp++);

cgx += siml; cgy -= 2*siml;

siml = *(centrep - *maskp);

cgx += 2*siml; cgy -= 2*siml;

maskp = im_lines[2] + j - 3; /* move on to next line */
/* 3rd line */

siml = *(centrep - *maskp++);

cgx -= 3*siml; cgy -= siml;
siml = *(centrep - *maskp++);
cgx -= 2*siml; cgy -= siml;
siml = *(centrep - *maskp++);
cgx -= siml; cgy -= siml;
siml = *(centrep - *maskp++);
cgy -= siml;

siml = *(centrep - *maskp++);
cgx += siml; cgy -= siml;
siml = *(centrep - *maskp++);
cgx += 2*siml; cgy -= siml;
siml = *(centrep - *maskp);
cgx += 3*siml; cgy -= siml;

maskp = im_lines[3] + j - 3; /* move on to next line */
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[* 4th line */
siml = *(centrep - *maskp++);
cgx -= 3*siml;
siml = *(centrep - *maskp++);
cgx -= 2*siml;
siml = *(centrep - *maskp++);

cgx -= siml;

maskp ++; /* skip centre pixel */
siml = *(centrep - *maskp++);

cgx += siml;

siml = *(centrep - *maskp++);
cgx += 2*siml;
siml = *(centrep - *maskp++);
cgx += 3*siml;

maskp = im_lines[4] + j - 3; /* move on to next line */
/* 5th line */

siml = *(centrep - *maskp++);

cgx -= 3*siml; cgy += siml;

siml = *(centrep - *maskp++);

cgx -= 2*siml; cgy += siml;

siml = *(centrep - *maskp++);

cgx -= siml; cgy += siml;

siml = *(centrep - *maskp++);

cgy += siml;

siml = *(centrep - *maskp++);

cgx += siml; cgy += siml;

siml = *(centrep - *maskp++);

cgx += 2*siml; cgy += siml;

siml = *(centrep - *maskp);

cgx += 3*siml; cgy += siml;

maskp = im_lines[5] + j - 2; /* move on to next line */
/* 6th line */

siml = *(centrep - *maskp++);
cgx -= 2*siml; cgy += 2*siml;
siml = *(centrep - *maskp++);
cgx -= siml; cgy += 2*siml;
siml = *(centrep - *maskp++);
cgy += 2*siml;

siml = *(centrep - *maskp++);
cgx += siml; cgy += 2*siml;
siml = *(centrep - *maskp);

cgx += 2*siml; cgy += 2*siml;
maskp = im_lines[6] + j - 1; /* move on to next line */
/* 7th and last line */

siml = *(centrep - *maskp++);
cgx -= siml; cgy += 3*siml;
siml = *(centrep - *maskp++);
cgy += 3*siml;

siml = *(centrep - *maskp);

cgx += siml; cgy += 3*siml;

/* Compare abs distance of cofg from nucleus */
cgxsgq = SQR(cgx);

cgysq = SQR(cgy);

sgsum = cgxsq + cgysq;

cfgvecmag = (long)(cfgmagn * SQR(usanA));

if( sqsum > cfgvecmag ) {
/* i.e is cofg vector magnitude > 0.? * usanA */
/* If cofg NOT too close to nucleus then can */

/* calculate edgel with 1st moments. */
/* NB: Original range from 0.5 to 0.9 but */
/* this appears to be tight. Problem with */

/* edges at sharp corners where usuaA is small */
do_secndmnts = false;
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if( cgx == 0)
/* must be horizontal */
cheapatan = 100.0; /* anything greater than 2.0 */
else
cheapatan = ((float)cgy)/((float)cgx);
[* check which sector CofG is in */
if( cheapatan < 0 ) {
cheapatan = -cheapatan;

w = -1;
}
else

w = 1;

/* each sector divided into: < 26.6 deg ( atan(0.5) )*/
/* > 63.4 deg ( atan(2.0) ), or 26.6 > < 63.4 deg. *

/* These are the only sensible args to atan which */
/* give a symetrical division between vertical, */
[* horizontal or diagonal orientation !! */

if( cheapatan < 0.5 ) { /* vertical edge, a=0,b=1 */
/* do NMS across the edge then set sub-pix pos */
a = prnclines[1][j-1];
b = prnclines[1]j+1];
if( (usanR < a) || (usanR <= b) )
continue;

posoff = (float)(a - b)/(2 * (a + b - 2*usanR));

/* 1D quadratic curve fit across the edge which does */
/* not give very accurate position for adjacent pixls */

/* with the same initial response but will do for now.*/

/* 2D quadratic surface fit would be better! */
drow = 0.5;
dcol = posoff + 0.5;
}
else {
if( cheapatan > 2.0) { /* horizontal edge, a=1,b=0*
/* NB: get pixels at 90 degree to edge! */
a = prnclines[0][j];
b = prnclines[2][j];
if( (usanR < a) || (usanR <= b) )
continue;

posoff = (float)(a - b)/(2 * (a + b - 2*usanR));
drow = posoff + 0.5;
dcol = 0.5;

}
else { /* diagonal edge (0.5 < z < 2.0) ¥/
if (w>0){/* -ve diagonal, a=1,b=1*
/* NB: edge in line with diag cofg vector */
a = prnclines[0][j-1];
b = prnclines[2][j+1];
if( (usanR < a) || (usanR <= b))
continue;

posoff = (float)(a - b)/(2 * (a + b - 2*usanR));
drow = posoff + 0.5;
dcol = posoff + 0.5;

}

else { /* -ve W but +ve diagonal, a=-1,b=1 */
a = prnclines[2][j-1];

b = prnclines[O][j+1]; /* swapped here! */
if( (usanR <= a) || (usanR < b) )
continue;

posoff = (float)(a - b)/(2 * (a + b - 2*usanR));
drow = 0.5 - posoff;
dcol posoff + 0.5;

}
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}

pos = vec2(j + dcol, i + drow);
eptr = edge_alloc(EDGE_SUSAN);
eptr->pos = pos;

eptr->contrast = (float)usanR;

/* determine edge orientation */
if( ABS(cgx) < MINRESPNC ) {
/* cofg is nearly vertical */

if( cgy < 0)
eptr->orient = P,
else
eptr->orient = 0;

}
else if( ABS(cgy) < MINRESPNC ) {
/* cofg is nearly horizontal */

ift cgx < 0)
eptr->orient = PIBY2;
else
eptr->orient = -PIBY2;
}
else {
if ( SAME_SIGN(cgx, cgy) )
eptr->orient = atan2(CHX_SIGN((double)cgy), (double)cgx);
else
eptr->orient = atan2((double)cgy, CHX_SIGN((double)cgx));
}

IM_PTR(maxim, i, j) = (void *)eptr;

else {
do_secndmnts = true;

}

} /* end of - if(lusanA > INTERCASE) */

else /* Must be small USAN Area, 1st momnts no good */
do_secndmnts = true;

if( do_secndmnts ) {

cgxsq = cgysq = xycfg = 0;

/* Calculate 2nd Moments */

maskp = im_lines[0] + j - 1;

[* 1st line */

siml = *(centrep - *maskp++);

cgxsq += siml; cgysq += 9*siml; xycfg += 3*siml;
siml = *(centrep - *maskp++);

cgysq += 9*siml;

siml = *(centrep - *maskp);

cgxsq += siml; cgysq += 9*siml; xycfg -= 3*siml;
maskp = im_lines[1] + j - 2; /* move on to next line */
/* 2nd line */

siml = *(centrep - *maskp++);

cgxsq += 4*siml; cgysq += 4*siml; xycfg += 4*siml;
siml = *(centrep - *maskp++);

cgxsq += siml; cgysq += 4*siml; xycfg += 2*siml;
siml = *(centrep - *maskp++);

cgysq += 4*siml;

siml = *(centrep - *maskp++);

cgxsq += siml; cgysq += 4*siml; xycfg -= 2*siml;
siml = *(centrep - *maskp);

cgxsq += 4*siml; cgysq += 4*siml; xycfg -= 4*siml;

maskp = im_lines[2] + j - 3; /* move on to next line */
* 3rd line */

siml = *(centrep - *maskp++);

cgxsq += 9*siml; cgysq += siml; xycfg += 3*siml;

siml = *(centrep - *maskp++);
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cgxsq += 4*siml; cgysq += siml;
siml = *(centrep - *maskp++);
cgxsq += siml; cgysq += siml;
siml = *(centrep - *maskp++);
cgysq += siml;

siml = *(centrep - *maskp++);
cgxsq += siml; cgysq += siml;
siml = *(centrep - *maskp++);
cgxsq += 4*siml; cgysqg += siml;
siml = *(centrep - *maskp);

cgxsq += 9*siml;  cgysq += siml;
maskp = im_lines[3] + j - 3;

* 4th line */

siml = *(centrep - *maskp++);
cgxsq += 9*siml;

siml = *(centrep - *maskp++);
cgxsq += 4*siml;

siml = *(centrep - *maskp++);

cgxsq += siml;
maskp ++;

xycfg += 2*siml;

xycfg += siml;

xycfg -= siml;
xycfg -= 2*siml;

xycfg -= 3*siml;

/* skip centre pixel */

siml = *(centrep - *maskp++);
cgxsq += siml;

siml = *(centrep - *maskp++);
cgxsq += 4*siml;

siml = *(centrep - *maskp++);
cgxsq += 9*siml;

maskp = im_lines[4] + j - 3;

/* 5th line */

siml = *(centrep - *maskp++);
cgxsq += 9*siml; cgysq += siml;
siml = *(centrep - *maskp++);
cgxsq += 4*siml; cgysq += siml;
siml = *(centrep - *maskp++);
cgxsq += siml; cgysq += siml;
siml = *(centrep - *maskp++);
cgysq += siml;

siml = *(centrep - *maskp++);
cgxsq += siml; cgysq += siml;
siml = *(centrep - *maskp++);
cgxsq += 4*siml; cgysq += siml;
siml = *(centrep - *maskp);

cgxsq += 9*siml; cgysq += siml;
maskp = im_lines[5] + j - 2;

/* 6th line */

siml = *(centrep - *maskp++);
cgxsq += 4*siml; cgysq += 4*siml;
siml = *(centrep - *maskp++);
cgxsq += siml; cgysq += 4*siml;
siml = *(centrep - *maskp++);
cgysq += 4*siml;

siml = *(centrep - *maskp++);
cgxsq += siml; cgysq += 4*siml;
siml = *(centrep - *maskp);

cgxsq += 4*siml;

maskp = im_lines[6] + j - 1;

cgysq += 4*siml;

/* 7th and last line */

siml = *(centrep -
cgxsq += siml;
siml = *(centrep -
cgysq += 9*siml;
siml = *(centrep -
cgxsq += siml;

if( cgysq == 0 )

*maskp++);
cgysq += 9*siml;
*maskp++);

*maskp);
cgysq += 9*siml;

xycfg -= 3*siml;
xycfg -= 2*siml;

xycfg -= siml;

xycfg += siml;

xycfg += 2*siml;

xycfg += 3*siml;

xycfg -= 4*siml;

xycfg -= 2*siml;

xycfg += 2*siml;

xycfg += 4*siml;

xycfg -= 3*siml;

xycfg += 3*siml;

/* must be horizontal line, 1 pixel wide */

cheapatan =

100.0;

[* anything greater than

2.0 ¥

/* move on to next line */

/* move on to next line */

/* move on to next line */

/* move on to next line */
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else
cheapatan = ((float)cgxsq)/((float)cgysq);

if( cheapatan < 0.5 ) { /* vertical edge */
a = prnclines[1][j-1];
b = prnclines[1][j+1];
if( (usanR < a) || (usanR <= b) )
continue;
posoff = (float)(a - b)/(2 * (a + b - 2*usanR));

drow = 0.5;
dcol = posoff + 0.5;
}
else {
if( cheapatan > 2.0) { /* horizontal edge */
a = prnclines[O][j];
b = prnclines[2][j];
if( (usanR < a) || (usanR <= b) )
continue;

posoff = (float)(a - b)/(2 * (a + b - 2*usanR));
drow = posoff + 0.5;
dcol = 0.5;

else { /* diagonal edge */
if ( xycfg > 0 ) { /* -ve diagonal, a=-1,b=1 */

a = prnclines[2][j-1];

b = prnclines[O][j+1];

if( (usanR <= a) || (usanR < b) )
continue;

posoff = (float)(a - b)/(2 * (a + b - 2*usanR));
drow = 0.5 - posoff;
dcol = posoff + 0.5;

else { /* +ve diagonal, a=1,b=1 */

a = prnclines[0][j-1];
b = prnclines[2][j+1];
if( (usanR < a) || (usanR <= b) )
continue;
posoff = (float)(a - b)/(2 * (a + b - 2*usanR));
drow = posoff + 0.5;
dcol = posoff + 0.5;

}
}
}
pos = vec2(j + dcol, i + drow);
eptr = edge_alloc(EDGE_SUSAN);
eptr->pos = pos;
eptr->contrast = (float)usanR;

if( cgxsq < MINRESPNC )
eptr->orient = PIBY2;
else if( cgysq < MINRESPNC )
eptr->orient = 0;
else {
if( xycfg == 0 ) {
if( (cgxsq - cgysq) <= 0 )
eptr->orient = PIBY2;
else
eptr->orient = 0;
}

else
eptr->orient = 0.5 * asin(xycfg/
sart(SQR(xycfg) + SQR(cgxsg-cgysq)));

IM_PTR(maxim, i, j) = (void *)eptr;
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}

maskline = 0;

for(maski = -1; maski <= 1; maski++) {
im_put_row(prnclines[maskline], prncim, maski+i, Ix, ux);
maskline++;

}

maskline = 0;

for(maski = -3; maski <= 3; maski++) {
im_put_row(im_lines[maskline], im, maski+i, Ix, ux);
maskline++;

}

}
for(maski = 0; maski < 3; maski++) {
ivector_free((void *)prnclines[maski], 1x);

for(maski = 0; maski < 7; maski++) {
ivector_free((void *)im_lines[maski], 1x);
}

return (maxim);

}

Imrect* susan_edges(Imrect* im, float geothresh, float cfgmagn,
float casecond, int *blut, int lengththres) {

Imrect *prnc_im, *edge_im;
int I, ux, ly, uy;
int gthresh = 0;

if (im == NULL) return (NULL)
X = im->region->lx;

ux = im->region->ux;
ly = im->region->ly;
uy = im->region->uy;

gthresh = (int)(SUSANMASK * BLUTSCALE * geothresh - BLUTSCALE);
/*(37 x 100 x 0.75)-100 = 2675, original magic num was 2650 */

/* do susan principle pass */
prnc_im = susan_prnc(im, gthresh, blut);

edge_im = susan_edgmnts(prnc_im, im, gthresh, cfgmagn, casecond, blut);
er_find_edge_strings(edge_im);

[**er_find_simple_edge_strings(edge_im);**/

er_rm_edges(edge_im, EDGE_GET_CONN_MASK, EDGE_NOLINK);
/**er_edge_strings_thres(edge_im, lengththres, upthres);NOT REQ’'D!**/
er_set_row_index(edge_im);

im_free(prnc_im);
return(edge_im);

}
I+ EOF */

[* susan_crns.c
Corner detection using the SUSAN algorithm.
Eddie Moxey, version 2.0, updated October 2000
*
/

static Imrect *susan_cnrmnts(Imrect *prncim, Imrect *im,
int geot, int* blut,
Imrect **cofgx, Imrect **cofgy) {
/* calc the usan area moments and c/o the centroid and */
/* contiguity tests for true corners */
Imrect *im_out;
int *lineout, *cgxline, *cgyline;
int cgx, cgy, cgxsg, cgysq, sgsum, cofgn;
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float cofgd = 0.0;

int  *prncline, *im_lines[7];
int siml, usanR;

int *centrep, *maskp;

int Ix, ux, ly, uy;

int  maskline, i, j, maski;

if (im == NULL) {
error("susan_cnrmnts() given NULL image", non_fatal);
return (NULL);

CgX = cgy = cgxsq = cgysq = sgsum = O;
siml = usanR = 0;
Ix im->region->Ix;

ux = im->region->ux;
y = im->region->ly;

uy = im->region->uy;

im_out = im_alloc(im->height, im->width, im->region, int_v);
lineout = ivector_alloc(lx, ux);

prncline = ivector_alloc(lx, ux);

cgxline ivector_alloc(lx, ux);

cgyline ivector_alloc(Ix, ux);

for(maski = 0; maski < 7; maski++) {
im_lines[maski] = ivector_alloc(lx, ux);
}

/* No need to process around the edge of image. */
for(i = ly+5; i < uy-5; i++) {

im_get_row(prncline, prncim, i, Ix, ux);
im_get_row(cgxline, *cofgx, i, Ix, ux);
im_get_row(cgyline, *cofgy, i, Ix, ux);
im_get_row(lineout, im_out, i, Ix, ux);

maskline = 0;
for(maski = -3; maski <= 3; maski++) {
im_get_row(im_lines[maskline], im, maski+i, Ix, ux);
maskline++;
}
for(j = Ix+5; j < ux-5; j++) {
/* NB: Zero outputs first! */
lineout[j] = cgxline[j] = cgyline[j] = O;

usanR = prncline[j];

/* Check principle response for possible corner */

/* NB: could be from combined principle response! */
if( usanR < 200 ) continue;

/* Check for noise pixels - V large org response! */
if( usanR > (geot - 200) ) continue;

/* Calculate 1st and 2nd Moments */
cgx = cgy = O;

centrep = blut + im_lines[3][j];

maskp = im_lines[0] + j - 1;

[* 1st line */

siml = *(centrep - *maskp++);

cgx -= siml; cgy -= 3*siml; /* inc cgw here ?? */
siml = *(centrep - *maskp++);

cgy -= 3*siml;

siml = *(centrep - *maskp);

cgx += siml; cgy -= 3*siml;

maskp = im_lines[1] + j - 2; /* move on to next line */
/* 2nd line */

siml = *(centrep - *maskp++);
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cgx -= 2*siml; cgy -= 2*siml;
siml = *(centrep - *maskp++);
cgx -= siml; cgy -= 2*siml;
siml = *(centrep - *maskp++);
cgy -= 2*siml;

siml = *(centrep - *maskp++);

cgx += siml; cgy -= 2*siml;

siml = *(centrep - *maskp);
cgx += 2*siml; cgy -= 2*siml;

maskp = im_lines[2] + j - 3;
/* 3rd line */

siml = *(centrep - *maskp++);
cgx -= 3*siml; cgy -= siml;

siml = *(centrep - *maskp++);
cgx -= 2*siml; cgy -= siml;
siml = *(centrep - *maskp++);

cgx -= siml; cgy -= siml;
siml = *(centrep - *maskp++);
cgy -= siml;

siml = *(centrep - *maskp++);
cgx += siml; cgy -= siml;
siml = *(centrep - *maskp++);
cgx += 2*siml; cgy -= siml;
siml = *(centrep - *maskp);
cgx += 3*siml; cgy -= siml;
maskp = im_lines[3] + j - 3;
[* 4th line */

siml = *(centrep - *maskp++);
cgx -= 3*siml;

siml = *(centrep - *maskp++);
cgx -= 2*siml;

siml = *(centrep - *maskp++);
cgx -= siml;

/* move on to next line */

/* move on to next line */

maskp ++; /* skip centre pixel */

siml = *(centrep - *maskp++);
cgx += siml;

siml = *(centrep - *maskp++);
cgx += 2*siml;

siml = *(centrep - *maskp++);
cgx += 3*siml;

maskp = im_lines[4] + j - 3;
/* 5th line */

siml = *(centrep - *maskp++);
cgx -= 3*siml; cgy += siml;
siml = *(centrep - *maskp++);
cgx -= 2*siml; cgy += siml;
siml = *(centrep - *maskp++);
cgx -= siml; cgy += siml;
siml = *(centrep - *maskp++);
cgy += siml;

siml = *(centrep - *maskp++);
cgx += siml; cgy += siml;
siml = *(centrep - *maskp++);
cgx += 2*siml; cgy += siml;
siml = *(centrep - *maskp);
cgx += 3*siml; cgy += siml;
maskp = im_lines[5] + j - 2;
/* 6th line */

siml = *(centrep - *maskp++);

cgx -= 2*siml; cgy += 2*siml;
siml = *(centrep - *maskp++);
cgx -= siml; cgy += 2*siml;

siml = *(centrep - *maskp++);
cgy += 2*siml;

siml = *(centrep - *maskp++);
cgx += siml; cgy += 2*siml

/* move on to next line */

/* move on to next line */
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siml = *(centrep - *maskp);

cgx += 2*siml; cgy += 2*siml;

maskp = im_lines[6] + j - 1; /* move on to next line */
/* 7th and last line */

siml = *(centrep - *maskp++);

cgx -= siml; cgy += 3*siml;

siml = *(centrep - *maskp++);

cgy += 3*siml;

siml = *(centrep - *maskp);

cgx += siml; cgy += 3*siml;

/* Compare abs distance of cofg from nucleus */
cgxsq = SQR(cgx);

cgysq = SQR(cgy);

sgsum = cgxsq + cgysq;

if( (float)sgsum > (0.5*SQR(geot-usanR)) ) {
/* i.e is cofg vector magnitude > 0.707 * z*/
/* If cofg NOT too close to nucleus then  */
/* must be a corner - So Check contiguity */
if(cgysq < cgxsq) {
* More Lateral */
cofgd = (float)cgy/ABS(cgx);
cofgn = ABS(cgx)/cgx; /* normalise +/-1 */
sgsum = *(centrep -
*(im_lines[3+FTOl(cofgd)] + j+cofgn)) +
*(centrep - *(im_lines[3+FTOI(2*cofgd)] + j+2*cofgn)) +
*(centrep - *(im_lines[3+FTOI(3*cofgd)] + j+3*cofgn));
/* reuse sgsum as straight line strength */

else {
/* More Longitudal */
cofgd = (float)cgx/ABS(cgy);
cofgn = ABS(cgy)/cgy;
sqsum = *(centrep -
*(im_lines[3+cofgn] + j+FTOIl(cofgd))) +
*(centrep - *(im_lines[3+2*cofgn] + j+FTOI(2*cofgd))) +
*(centrep - *(im_lines[3+3*cofgn] + j+FTOI(3*cofgd)));
}
if(sgsum > ALMOST3) {
/* To be a true corner 3 pixels in usan must be in */
/* a straight line radiating out from the nucleus */
lineout[j] = prncline[j];

coxlinefj] = cgx;
caylinefi] = cgy;
}
}
}
maskline = 0;
for(maski = -3; maski <= 3; maski++) {
im_put_row(im_lines[maskline], im, maski+i, Ix, ux);
maskline++;
}
im_put_row(prncline, prncim, i, Ix, ux);
im_put_row(cgxline, *cofgx, i, Ix, ux);
im_put_row(cgyline, *cofgy, i, Ix, ux);
im_put_row(lineout, im_out, i, Ix, ux);
}

for(maski = 0; maski < 7; maski++) {
ivector_free((void *)im_lines[maski], Ix);
}

ivector_free((void *)prncline, Ix);
ivector_free((void *)cgxline, Ix);
ivector_free((void *)cgyline, Ix);
ivector_free((void *)lineout, Ix);
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return(im_out);

}

static Imrect* check_cornim(Imrect *cornim) {
/* Test function only! */
Imrect *max_im;

int pix;

int ncnrs = O;
int Ix, ux, ly, uy;
int i, I

Edgel  *eptr;

if (cornim == NULL) return (NULL);

Ix = cornim->region->Ix;
ux = cornim->region->ux;
ly = cornim->region->ly;
uy = cornim->region->uy;

max_im = im_alloc(cornim->height, cornim->width, cornim->region, ptr_v);

for(i = ly+5; i < uy-5; i++) {
for(j = Ix+5; j < ux-5; j++) {

if( (pix = im_get_pix(cornim, i, j)) < 200 ) continue;
/* Only process non-zero responses; */

eptr = edge_alloc(EDGE_SUSAN);
eptr->contrast = (float)pix;

eptr->pos = vec2(j + 0.5, i + 0.5);
eptr->orient = P,

eptr->type &= EDGE_SET_CONN_MASK;
eptr->type |= EDGE_ISOLATED;

IM_PTR(max_im, i, j) = (void *)eptr;
}

return(max_im);

}

static Imrect* susan_locatcnr(lmrect *cornim, Imrect *prncim,
Imrect *cofgx, Imrect *cofgy) {

Imrect  *max_im;

int *masklines[5];

int *cgxline, *cgyline;

int cgx, cgy, pix;

float  dx, dy;

Vec2 pos = {Vec2_id};
int Ix, ux, ly, uy;

int maskline, i, j, maski;
Edgel *eptr;

if ((cornim == NULL)||(prncim == NULL)) return (NULL);

Ix = cornim->region->Ix;
ux = cornim->region->ux;
ly = cornim->region->ly;
uy = cornim->region->uy;

max_im = im_alloc(cornim->height, cornim->width, cornim->region, ptr_v);
cgxline = ivector_alloc(lx, ux);
cgyline = ivector_alloc(lx, ux);
for(maski = 0; maski < 5; maski++) {
/* use a 5x5 mask to identify centre of smoothed corner profile, */

222



/* i.e. centre of a banded edge! */
masklines[maski] = ivector_alloc(lx, ux);

}

for(i = ly+7; i < uy-7;
im_get_row(cgxline,
im_get_row(cgyline,

i++) {
cofgx, i, Ix, ux);
cofgy, i, Ix, ux);

maskline = 0;

for(maski = -2; maski <= 2; maski++) {
/* use 5x5 mask to isolate from other corners near by!*/
im_get_row(masklines[maskline], cornim, maski+i, Ix, ux);
maskline++;

}
for(j = Ix+7; j < ux-7; j++) {
if((pix = masklines[2][j]) < 200) continue;

/* Only process non-zero responses; */
/* find strongest corner */

if(pix < *(masklines[0] + j-2)) continue;
if(pix < *(masklines[0] + j-1)) continue;
if(pix < *(masklines[0] + j )) continue;
if(pix < *(masklines[0] + j+1)) continue;
if(pix < *(masklines[0] + j+2)) continue;
/* 2nd line */

if(pix < *(masklines[1] + j-2)) continue;
if(pix < *(masklines[1] + j-1)) continue;
if(pix < *(masklines[1] + j )) continue;
if(pix < *(masklines[1] + j+1)) continue;
if(pix < *(masklines[1] + j+2)) continue;
/* 3rd line */

if(pix < *(masklines[2]
if(pix < *(masklines[2]
/* skip centre */

if(pix < *(masklines[2]

+
+

+

j-2)) continue;
j-1)) continue;

j+1)) continue;

if(pix < *(masklines[2] + j+2)) continue;
[* 4th line */

if(pix < *(masklines[3] + j-2)) continue;
if(pix < *(masklines[3] + j-1)) continue;
if(pix < *(masklines[3] + j )) continue;
if(pix < *(masklines[3] + j+1)) continue;
if(pix < *(masklines[3] + j+2)) continue;

/* last line */

if(pix < *(masklines[4] + j-2)) continue;
if(pix < *(masklines[4] + j-1)) continue;
if(pix < *(masklines[4] + j )) continue;
if(pix < *(masklines[4] + j+1)) continue;
if(pix < *(masklines[4] + j+2)) continue;

/* pix must be the local max */

eptr = edge_alloc(EDGE_SUSAN);
eptr->contrast =
im_get_quadmaxi(prncim,(float)j,(float)i,&dx,&dy);

*new func from
eptr->pos = vec2(dx,dy);
eptr->type &= EDGE_SET_CONN_MASK;

Jimintfns.c */

eptr->type |= EDGE_ISOLATED,;

cgx
cgy

cgxlinej];
cgylinefj;

if( ABS(cgx) < MINRESPNC ) {
[* cofg is nearly vertical */

ift cgy < 0O

)

eptr->orient = PIBY2;
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else
eptr->orient = -PIBY2;

}
else if( ABS(cgy) < MINRESPNC ) {
/* cofg is nearly horizontal */
if( cgx < 0)
eptr->orient = 0;
else
eptr->orient = PI;

else {
eptr->orient = atan2(CHX_SIGN((double)cgy),
CHX_SIGN((double)cgx) );

}
IM_PTR(max_im, i, j) = (void *)eptr;

maskline = 0;
for(maski = -2; maski <= 2; maski++) {
im_put_row(masklines[maskline], cornim, maski+i, Ix, ux);
maskline++;
}
}
for(maski = 0; maski < 5; maski++) {
ivector_free((void *)masklines[maski], I1x);
}

ivector_free((void *)cgxline, Ix);
ivector_free((void *)cgyline, Ix);
return(max_im);

}

Imrect* susan_corner(Imrect *im, float geothresh, int *blut) {

Imrect *corn_im, *prnc_im;
Imrect *cofgx, *cofgy, *maxim;
int Ix, ux, ly, uy;

int gthresh = 0;

if (im == NULL) return (NULL);

Ix = im->region->Ix;
ux = im->region->ux;
ly = im->region->ly;
uy = im->region->uy;

gthresh = (int)(SUSANMASK * BLUTSCALE * geothresh);
/* should be 37 x 100 x 0.5 = 1850 */

cofgx
cofgy

= im_alloc(im->height, im->width, im->region, int_v);

= im_alloc(im->height, im->width, im->region, int_v);

/* do susan principle pass */

prnc_im = susan_prnc2(im, gthresh, blut);

/* find true corners from principle image and also find centre */

/* of gravtiy of usan areas at those max positions.*/

corn_im = susan_cnrmnts(prnc_im, im, gthresh, blut, &cofgx, &cofgy);
/* find corner position to sub-pix accuracy and its orientation */
maxim = susan_locatcnr(corn_im, prnc_im, cofgx, cofgy);

im_free(prnc_im);
im_free(corn_im);
im_free(cofgx);
im_free(cofgy);
return(maxim);

}
I* EOF */
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Appendix E

Camera Models used in Tina

typedef struct camera {

Ts id

ts_id; /* Tina structure identifier */

unsigned int type;
unsigned int label;

[** physical parameters **/

float f; [* focal length */

float  pixel; /* notional pixel size */

float ax, ay; /* x and y expansion factors (aspect ratio ) */

float  cx, cy; /* x and y image centre coordinates */

int width, height; /* image height and width for which relevant */

Transform3 *transf; [* transformation from world to camera frame */

void *distort_params; /** optical distortion **/

void *(*copy_dist_func)( );

Vec2 (*distort_func)( );

Vec2 (*correct_func)( );

Mat3 cam_to_im; [* projection from unit camera to image coordinates */

Mat3 im_to_cam; [* projection from image to unit camera coordinates */
} Camera;
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typedef struct parcam {

Ts id ts_id; /* Tina structure identifier */
unsigned int type;
unsigned int label;

float  f; /* notional focal length */
float I; /* interocular separation */
float  pixel; /* notional pixel size */

/* cameras and rectified counter parts */

struct camera *caml; /* original camera 1 */
struct camera *rcaml; /* rectified camera 1 */
struct camera *cam?2; /* original camera 2 */
struct camera *rcam2; /* rectified camera 2 */

struct mat3 rectl; /* rectification matrix for camera 1 */
struct mat3 derectl; /* derectification matrix for camera 1 */
struct mat3 rect2; /* rectification matrix for camera 2 */
struct mat3 derect2; /* derectification matrix for camera 2 */

struct mat3 e; /* epipolar colineation matrix */

} Parcam;
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Appendix F

Quaternion Encoded 3D Rotations

In Cartesian form, a quaternion is usually represented as,
g=w+zityj+zk (F.1)
wherew, z, y andz are all real and, 5 andk are the complex operators which obey,

?=42=kKk =ijk=—-1 and ij=k,jk=1dki=j,ji=—kkj=—iik=—j

(F.2)
The quaternion representation for the rotation of a 3D coordinate frame is given by:
R, = [ q0, q1, g3 from Q=1 @, @ a (F.3)
where,
qo =cos (0/2), q1 = rosin (6/2) (F.4)
and
g2 =118in(0/2), g3 = rosin (6/2) (F.5)
r is the vector defining the axis of rotation afik the angle of rotation this axis.
A rotation matrixR is parameterized as:
2 2 2 2
@G+ai—a—a  2(qg2+qa)  2(q193 — qo092)
R = 2 —q0e3) @G -G +GE -4 2(02a3+ q0q) (F.6)

2(q1q3 + qo0q2) 2(q2q3 — q0q1) G — G — ¢ — ¢
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