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Abstract

The capture of three dimensional structure from two dimensional images has received considerable

attention in computer vision. Existing work has concentrated on use of stereo camera systems and

the reconstruction of small objects. Recently, single cameras in motion have been used to capture

sections of scenery which are subsequently reconstructed by skilled technicians with a selection of

computer vision and graphical modelling tools. However, large-scale, automated, reconstruction of

scenery is limited by the “where to look next” problem. A number of imaging systems have been

proposed to solve this problem but none have been realized.Periscopic Stereois a novel concept

which implements stereo imaging using a single camera. A rotating mirror scans the horizon while a

fixed relative geometry is maintained between the virtual stereo cameras.

This dissertation presents, for the first time, a practical design for a periscopic stereo head and

investigates the computer vision tools necessary for 3D reconstruction from periscopic image data.

It identifies two possibilities for processing periscopic image data. “Corrected”, where a two dimen-

sional rotation is applied to the image plane prior to standard stereo processing, or, “uncorrected”

which ignores the “tumbling” effect inherent in periscopic image data until the final stage of re-

construction, where the “late” correction circumvents the problem, apparent in many existing stereo

algorithms, of resolving disparity measurement in imaged scene structure which is parallel with cor-

responding epipolar lines.

Many of the existing stereo processing tools used in the course of this research require little mod-

ification, but have all revealed issues requiring resolution not immediately apparent in previous treat-

ments. This investigation stops short of the actual construction of 3D models but presents a method of

generating the sets of depth data required for large-scale scene reconstruction. Feature extraction, im-

age data correspondence, camera calibration and the generation of depth information from periscopic

image data are all covered in the context of this dissertation. In particular a new method of combin-

ing existing camera calibration techniques, termed “calibration in a box”, is presented together with

conclusions regarding the tools and techniques employed.

While periscopic stereo is still in development, it is the only imaging system, reported to date,

which is likely to be capable of large-scale, autonomous, 3D scene reconstruction, with particular

application to remote operation in hazardous environments.
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Chapter 1

Introduction

Considerable attention has been given, in recent years, to improving the techniques required to recover

sufficiently accurate three dimensional data from two-dimensional images, in order to reconstruct a

model of an imaged scene, or recognize objects within it. Finding solutions to problems of this kind

has been a central goal in computer vision for many years. However, the various image processing and

data analysis techniques required to realize functional systems are only now maturing. The complexity

of elements such as calibration, feature extraction, correspondence and registration will continue to

ensure that the design and development of robust systems capable of delivering the desired results

will remain a considerable challenge. The aims of projects in this area of computer vision research,

often referred to asthree dimensional(3D) computer vision, have been varied but generally fall into

two main groups, reconstruction and recognition. Historically they were considered the same. The

research presented in this dissertation deals exclusively with techniques related to scene reconstruction

and no attempt is made to deal with any of the issues concerning the recognition of specific objects.

The number of applications for 3D reconstruction from imagery have been steadily increasing and

Table1.1gives a broad overview of the main areas with a few examples which are used to introduce
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or support concepts discussed herein. The type of system and the level of constraints which can be

applied to simplify the problem are given together with type of reconstructed model and its accuracy.

Application Area Type of System and
Level of Constraint

Model Requirement Model Accuracy Example
Applications

and Projects

industrial
inspection

laser stripping or
precision stereo cameras,
highly constrained environment

initially none, more
recently merged with
CAD tools

none or high numerous123

aerial or
satellite survey

precision stereo cameras,
few constraints used

initially none, more
recently surface 2.5D
models

none or
medium to high

crop yield,
terrain modeling4

medical
imaging

laser/MRI scanning,
stereo cameras
highly constrained environment

surface 2.5D of
deformable objects
(tissue) and full 3D
models (tumors, bones)

very high clinical diagnosis,
surgical planning,
such as
‘Visible Human’5

virtual
reality

hand-held video camera
minimal constraints

photo-realistic surface
models (scenery)
some 3D models
(objects in local
vicinity)

low since
appearance is
more important

virtual tour guides,
interior design,
such as
‘VANGUARD’ 6

augmented
reality

stereo or single cameras with
markers, known motion TV
video cameras,
highly constrained

photo-realistic
full 3D models

very high due to
the need for
registration of
the model with
the real world

telepresence tour
guides
‘Virtual Studio’7

mobile
robotics

laser stripping, stereo cameras,
alternative stereo imaging,
some constraint possible

surface 2.5D (scenery)
and full 3D models
(local vicinity)

medium to high
depending on
application

robot navigation and
mission planning,
such as ‘Pioneer’8,
telepresence with
environment
interaction such as
‘NARVAL’ 9

Table 1.1: Application areas for 3D reconstruction from imagery.

Table1.1 is intended as a guide, not a definitive breakdown for areas of application.

1http://www.ipb.uni-bonn.de/ipb/projects/projects.html
2http://www.ndt.net/article/v05n05/saxena/saxena.htm
3http://www.terarecon.com/recon ind.shtml
4http://www.aca-net.com/
5http://www.crd.ge.com/esl/cgsp/projects/medical/
6http://www.robots.ox.ac.uk/˜vanguard/
7http://www.bbc.co.uk/rd/projects/virtual/
8http://robotics.jpl.nasa.gov/tasks/pioneer/homepage.html
9http://www.isr.ist.utl.pt/vislab/projects.html
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Initially, most reconstruction projects were concerned with the inspection of manufactured parts

or objects on the ground, imaged by aerial photography or satellites. In general the aim was just the

recovery of accurate measurement of these objects. The use of imagery, traditionally photographs, for

the precise measurement of distances or dimensions is known asphotogrammetry. This definition,

together with many others that appear herein, is given in the glossary in the preliminary section of this

dissertation. More recently the reconstruction techniques have merged with Computer Aided Design

(CAD) tools for re-engineering applications [IH98, Pra00].

The medical profession has also made effective use of reconstruction techniques for diagnosis and

surgical planning. In such applications the requirement is to produce highly accurate models with

shortest possible delay. This has generally involved highly constrained environments, applying scan

imaging techniques, and relatively small (in the physical volume sense) models.

The latest area of applications has been interested in the recovery of structure to create realistic

3D models for use in Augmented Reality (AR) or Virtual Reality (VR) systems, such as those found

in architectural planning and interior design. There have been considerable advances made in the

appearance and level of accuracy of the models for these applications. However, as with the previous

examples, the processing of the imagery and the reconstruction the 3D model data is carried out “off-

line”, prior to the intended use.

There are a number of examples with successful implementation for the applications in the first

three rows of Table1.1, some more constrained than others. However, there are only a few operational

examples of the applications in the lower three rows. The reasons for this will be explained in Chap-

ter 2. Periscopic stereo is presented in this dissertation as a possible solution for applications in these

last three areas. As will be demonstrated throughout this dissertation its unique imaging geometry

offers many advantages which simplify the processing of the image data and the recovery of the depth

and structure required to reconstruct a model of the scene. However, periscopic stereo is not expected

3



to be able to address applications in the first three areas identified in Table1.1 since its unique ge-

ometry also introduces limitations which makes it unsuitable for those areas. Again, this will become

apparent later.

The motivation for the research presented in this dissertation stems from a desire to be able to

interact with a virtual representation of the real world, where direct interaction is either impossible or

impractical. The intention is therefore to extend the boundaries of existing systems by exploring the

possibility of producing 3D models of the imaged scene “online”, innear real-time. Applications for

this project could be found in both VR and AR areas but are more in tune with the requirements of

remote exploration where the inspection and mapping of hazardous environments, such as collapsed

buildings, mines or deep water trenches and caves, is conducted by mobile robots, often in a fully

autonomous mode. An example of this is ‘NARVAL’ which is an Esprit–LTR project studying the

performance and use of ‘fully’ autonomous mobile robots [RRT01].

Apart from the external benefits gained from such data, improving robotic perception by providing

a form of “visual map” of the robot’s environment would greatly aid robotic task planning and mission

analysis. The concept of a visual map also provides a human “view-able” record of the robot’s iteration

within the environment and thus aids the design and development of robust, fault tolerant systems.

The concept of large-scale models of the real world raises questions concerning the scale and

efficiency of reconstruction. This is directly relevant to robotic applications and remote exploration.

The definition of small- and large-scale models could be open to debate, so for the purpose of the

ideas and discussion presented in this dissertation the following distinction is made.

Small-scale reconstruction applies to specific objects or parts of a scene where the imag-

ing system pans around the periphery. This is the imaging system is imagined to be on

the outside looking in.
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Large-scale reconstruction applies to large areas of the surrounding scenery where the

imaging system can be imagined as being on the inside looking out.

In some applications this distinction is obvious and in others it is more subtle. The first three

application areas in Table1.1 can be categorized as small-scale, even though the models are often

large and complex. Conversely the lower three application areas can be regarded, in general, as large-

scale. However, few of the examples in these areas could claim to perform successful large-scale

reconstruction of the surrounding scene. The reasons for this will be explained in detail in Chapter2.

However, the next few paragraphs will briefly expand on this.

The more information that can be derived about the robot’s surrounding environment the greater

its ability to operate effectively within it. However, the generation of large amounts of data about

that environment has distinct implications for processing efficiency and data storage. Apart from

robotic systems, the problem of the scale is found in other applications. Recent advances in VR

techniques have allowed the television and film industry to create ‘Virtual Studio’s [TJNU97] where

actors are filmed performing in a large empty studio and the background scenery is added afterward

during editing and post production. Unlike the traditionalcroma-keytechnique of replacing the blue

background of the real studio with some other scene, where the camera must remain fixed, the virtual

studio system allows for free movement of the camera and interaction between the actor and the

virtual environment. This is only possible because the position of the camera and the actors within a

full 3D VR model of the film set, or scenery, are known at all times. This technique requires detailed,

large-scale, scenery models which are constructed manually over many hours by skilled technicians

using CAD modeling or computer graphics tools. The concept of a mobile robotic system which

could survey the local environment in order to reconstruct an accurate, photo-realistic, 3D model of

the scene, or film set, would probably be an attractive alternative. As yet, there is no evidence of a
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system capable of producing such large-scale 3D models of the imaged environment autonomously.

In all of the applications mentioned here, fast access to the reconstructed model has often been

desirable but has rarely been possible. Many of the systems that have been developed to date have pro-

duced impressive results. However, in general, these have involved the application of strict constraints

and been computationally intensive. These constraints range from static scenes with fixed illumina-

tion to known motion and/or fixed camera geometry. While the application of constraints in this area

of research is almost mandatory their use should be minimal and always viewed in the context of the

target application. Moreover, in the case of applications, such as robotic exploration, the requirement

for large-scale models of the surrounding environment suggests the need for a system which can deal

with totally unconstrained, dynamic scenes.

The two historic methods of image data acquisition for reconstruction have been laser scanning

and stereo imaging. Both these have been successful since they provide the highest possible accuracy

of any system to date. However, they have been accompanied by their own set of limitations. Laser

scanning systems are expensive, require calibration and a degree of expert use in order to gain good

overall coverage. As such, they are more suitable for scanning static objects than large-scale scenes.

Active vision systems, employing an actuated stereo head, introduce known camera geometry which

simplifies many of the problems. These system are much better for reconstructing scenes but still

suffer from the problem of “where to look next”; that is how to synchronize the camera motion for

efficient capture of the scene for reconstruction. Hence such these systems require complex control

algorithms and/or give poor coverage.

Recent advances in camera calibration [Har94] and the analysis ofhomography[PZ98, ST98] have

allowed for the relaxation of many of the constraints and a solution to the inherent cyclic problem of

feature correspondence versus camera calibration; the solution of one greatly aids the other. This

has lead to the introduction of systems which employ only a single, hand-held, video camera. These
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systems offer a major break through, since they allow for arbitrary motion of the camera and avoid the

need for the initial calibration of the camera using precision calibration objects which are placed in the

scene. However, even a simple, hand-held video camera requires some expertise in order to capture

the whole scene. There is also the question of the considerable amount of image data produced by a

video camera and how much of that data is useful for reconstruction. If the camera motion between

subsequent frames is small then the stereo effect is minimal and the frames can not be used for scene

reconstruction. This suggests a large amount of redundant image data will always be present in such

systems. Furthermore, autonomous reconstruction from such image sequences would require some

measure of minimum disparity, which, without known motion of the camera, is scene dependent.

Consequently, robotic applications for such systems are unlikely.

The introduction of the single camera reconstruction systems has given rise to the concept of

the “uncalibrated” approach and is often thought to be in competition with the traditional calibrated

approach. This is extremely misleading since the approach does include a method of calibration,

but without the need for an object in the scene. It also has an inherent limitation in that it can only

recover accurate scale of measurement, not absolute measurement. This approach can therefore only

be used to reconstruct, at best, a scaled model of the scene. The reason for this will be covered

later in Chapters2 and6. A limited but more immediate support for the above statements can be

gained for reference to Table2.1. Reconstructions from single, hand-held, cameras in free motion are

therefore only effective for VR applications where the accuracy of measurement is less important than

the visual appearance or the ease with which the scene can be captured. For most other applications,

the necessity for accurate measurement requires the “calibrated” approach. Again this is explained

in considerably more detail in Chapters2 and6 with numerous supporting references. The terms

“calibrated” and “uncalibrated approaches” will not be used in the rest of this dissertation for the

reasons stated here.

7



The obvious alternative to these imaging systems, that solves some of the conflicting issues, has

been the idea of simulating the stereo effect with single camera thatmechanicallyscans the horizon.

These will be discussed in detail later in Chapters2 and3. Several such systems have been proposed

but all of them have relied on either complicated mechanics, specialized mirrors and prisms or em-

ployed proprietary software and none, to date, have successfully demonstrated 3D reconstruction on

either scale. However, the imaging system, termed asPeriscopic Stereoby its inventors, has a unique

imaging geometry which allows for the use of many of the latest methods applicable to standard stereo

imaging. This is achieved by creating multiple instances of a conventional stereo vision system by

using a single camera with a rotating, flat, mirror and processing sets of image sequences to recover

the true, Euclidean models of large-scale scenes via incremental estimation of the observed 3D geom-

etry. Although the imaging geometry of periscopic stereo has a number of advantages its “cross-eyed”

configuration means that it can not be used withaffinecamera models to recover structure which has

a small depth compared to its size. That is periscopic stereo is effectively long sighted and can not be

used in applications requiring high accuracy of small structure.

The research presented in this dissertation draws together a number of algorithms and techniques

reported in the literature on 3D reconstruction and applies, suitably modified versions, to the image

data captured by a periscopic stereo system. While these modifications, taken as a whole, could be

regarded as the development of proprietary software, the author would argue that individually their

origin in standard, proven, stereo techniques does not justify the label of “specialized software”.
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1.1 Research Objectives and Structure of this Thesis

The aims of this research are twofold. The first is to demonstrate that periscopic stereo is more than

just a concept but is a realizable imaging system. In order to achieve this each of the individual

processes in the system that implements 3D reconstruction are reviewed. In each case the image

processing and computer vision techniques normally used in stereo imaging systems are assessed

for their compatibility with the peculiarities of periscopic stereo image data. The second aim of this

research is to demonstrate that periscopic stereo has many inherent advantages which make it uniquely

capable of producing large-scale scene reconstructions.

This thesis begins with a short review of 3D reconstruction from imagery, identifying some of

the recent influential research in this area and sources of useful information. Specific advances in

individual topics will be identified in the relevant chapters, each of which will begin with its own brief

introduction. A comment on the choice of software framework for research into image processing and

computer vision techniques is included since many of those reviewed are from established methods

contained therein.

Chapter3 reviews the concept ofperiscopic stereoand reworks the original analysis to yield a

practically realizable imaging system. The design and construction of a periscopic stereo head are

presented together with advice on operational requirements and use. The inherent nature of rotating

image data is recognized and the two possible methods of correction are identified. These competing

methods become a continuing thread throughout this dissertation. To date a functional system which

produces complete large-scale scene reconstruction is still in development. Consequently, many ad-

vantages expected from periscopic are yet to be realized. All the experimentation presented in this

dissertation has been conducted on image data captured from a “simulated” periscopic stereo head

using a suspended camera and a mirror on a turn table. A description of this system and the capture
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of the image data is included.

3D reconstruction relies on accurate, sub-pixel, localization of image features. Established, derivative-

based, methods of feature extraction suffer from an inherent weakness which has particular implica-

tions for reconstruction. That being the inherent use of filtering in derivative based methods induces

localization errors in the derived features. While this is arguably small, any induced error in the

initial stages of processing will undoubtedly be propagated and should therefore be avoided where

possible. Chapter4 briefly reviews the requirements of the feature extraction process for recon-

struction, together with the SUSAN algorithm [SB97] which is reportedly designed to address the

limitations of standard methods. Modifications to the implementation and operation of both one- and

two-dimensional, SUSAN, feature detectors are included.

Matching image features that correspond to the same feature in the world is essential for the recov-

ery of depth information. This has been a topic of considerable interest to the computer vision research

community. Chapter5 reviews the standard approach to the correspondence problem, identifying the

constraints that are often employed in the solution. An algorithm, applicable to a stereo imaging sys-

tem with small, known, relative motion between the views, is presented. This algorithm, based on

existing techniques, incorporates a practical compromise which simulatesshearcorrelation [LTM94]

with image patches warped according to the specific relative camera geometry imposed by periscopic

stereo.

All practical 3D reconstruction systems require some form of camera calibration. The ability to

calibrate an imaging system and to maintain some measure of its continued accuracy is fundamental

to its validation and acceptance. The research presented in this dissertation therefore pays particular

attention to the calibration of periscopic stereo, specifically for the purpose of large-scale reconstruc-

tion. Chapter6 reviews the most widely referenced techniques for camera calibration and introduces

a new technique, essentially applicable to periscopic stereo but valid for standard stereo camera sys-
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tems. This method, termed “Calibration in a Box”, combines the epipolar calibration of a stereo

system with standard grid calibration in a novel method that accommodates autonomous calibration

prior to, and re-calibration during, operational use. Chapters4, 5 and6 contain the results of a number

of experiments with the individual techniques.

Chapter7 completes the process of generating 3D structure from images with a brief review of re-

construction of multiple depth images. The generation of large-scale models of the scene is discussed

and the advantages of delaying the correction for the rotating image data, inherent in periscopic stereo,

is presented. Chapter8 summarizes the major points presented in this dissertation and concludes that

periscopic stereo is a viable imaging system for large-scale 3D scene reconstruction. A discussion of

the future direction of research into large-scale reconstruction is also given together with recommen-

dations for the implementation of the reviewed software techniques.
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Chapter 2

Review of Relevant Work and

Background Information

A person’s ability to estimate depth stems from the simple fact that they have two eyes. However,

humans also use secondary cues from the imaged scene to estimate structure. Artists have used depth

in pictures to convey the concept of structure in two dimensional (2D) representations of three dimen-

sional (3D) objects for centuries. Getting a machine to estimate 3D information from 2D images in

order to discover something about the structure of the imaged world, is not exactly a new concept ei-

ther. Marr [Mar82] proposed various ideas about 3D, scene reconstruction in the late 1970’s and early

1980’s which are still referenced today. A paper by Tenenbaum proposing scene modelling using var-

ious “shape from X” techniques appeared inImage Modeling, edited by Rosenfeld in 1980 [TFB80].

The background to research in this area is therefore considerable. To carry out an exhaustive review

of all the work in this area would be excessively time consuming and not particularly productive,

since much has been superseded by later work. Most of the following review will therefore be con-

strained to the last decade or so. However, a good collection of general papers covering the major
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achievements in computer vision between the late 1970s and mid 1980s can be found inReadings in

Computer Vision[FF87]. Included there is the noted paper by Brooks onVisual Map Making for a

Mobile Robotwhich has been an inspiration of many projects, including this one.

This chapter begins with a brief overview of 3D scene reconstruction and continues with the basic

concepts that are encountered within this dissertation. Some of the influential research connected with

3D reconstruction projects in recent years are also identified. An introduction to 3D reconstruction

and the associated computer vision techniques can be obtained from a number of comprehensive text

books on computer, and/or machine, vision [Dav97, JKS95, SHB99]. More specialized texts which

give an excellent review of 3D Computer Vision are by Klette, Schlüns and Korschan [KSK98] and

Faugeras [Fau93]. Another excellent text, by Hartley and Zisserman [HZ00], has just been published.

The book includes an extensive review of many techniques, particularly from the viewpoint of imaging

geometry, and extends their earlier work [MZ92] which provided a thorough examination of the classic

mathematical treatment of projective geometry by Semple and Kneebone [SK52]. In addition to

these publications, an excellent resource for computer vision research is the collection of on-line

tutorials and references maintained by the Computer Vision Laboratory of the Department of Artificial

Intelligence at Edinburgh University.1

2.1 Overview of Scene Reconstruction

The process of image formation in a camera, as in the human eye, can be explained with the use of

pinholecamera model. Rays of light reflected from the scene pass though a single point, called the

centre of projection, and project on to a flat plane some distance behind. This spatial transformation

of light from 3D objects onto a 2D image plane is known asperspective, or central, projection. This
1The CVonline website can be found at:http://www.dai.ed.ac.uk/CVonline/
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geometrical relationship between the camera and objects in the scene can be modelled in terms of

their respectivecoordinatesystems. The basic theory of perspective projection via the transformation

across these coordinate frames is provided in AppendixA.

In reality, the image on the plane at the rear of a camera is inverted. However, by moving the centre

of projection back behind the image plane a geometrically equivalent model is produced without the

inversion. In this configuration the various concepts of projection are easier to visualize. This model

will, therefore, be used throughout this dissertation. Although some estimation of depth is possible

with a single image, it requires a number of related cues within the image data and is often, only a

rough approximation. The obvious method of recovering depth is to employ two views of the same

scene and estimate depth from the disparity between corresponding features in the two images. The

geometry of two cameras, referred to asepipolargeometry, is also covered in AppendixA.

From an overall “systems” viewpoint 3D reconstruction can be divided into three distinct process-

ing stages;

1. Image Pre-processing.

2. Shape fromX.

3. 3D model construction.

This is a bottom-up approach to reconstruction was proposed by Marr [Mar82] in the early 1980’s

and assumes little or no prior knowledge is given. This is still the basis of many systems including

periscopic stereo. The alternative top-down approach assumes a priori knowledge of the scene or

the objects within it and attempts to recognize elements based on models. This model-based approach

has considerable merit in applications where the recognition of specific objects is paramount and there

are a number of practical examples [Goa86, NFJ93]. However, the difficulty in defining models for

14



arbitrary scenes or objects tends to make this approach less attractive for 3D reconstruction [SHB99,

chap.9].

In the bottom-up approach the pre-processing stage involves the detection of basic features in

the image such as points, lines and curves in order to estimate some useful geometrical cues about

the structure. Once these features, orimage tokens, have been identified they can be processed by

one of a number of techniques that estimate some measure of theshapeand/or depth of the objects

in the scene. Using this “shape” terminology, the concept of using two corresponding views could

be described as “shape from stereo”. However, this is almost always referred to, simply, asstereo

matchingin binocular vision systems. Unfortunately, recovering depth for stereo is not as simple as

it sounds. There are two inherent problems, explicitly related to each other, which must be solved

in order to extract accurate estimates of depth. The first is to identify and match thecorresponding

features in the left and right images. The second is the calibration of the camera system itself. This

involves estimating the internal camera parameters, which define the image formation, and the spatial

relationship between the two camera positions. Both of these continue to be the subject of major

research effort.

The remaining, “true”shapetechniques calculate depth indirectly by first estimating the surface

orientation from the image data and then integrating over a local area. These techniques have been

grouped into:

• Shape from Motion (SFM), similar to stereo but with either a single camera or the scene in

motion (usually the camera). This is the most widely used method.

• Shape from Shading (SFS), exploits the change in image intensity between corresponding im-

age points of objects with known reflectance properties. This relies on fixed illumination and

accurate reflectance properties of the objects within the scene, both of which are not usually
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known.

• Shape from Texture (SFT), uses the change in either the size or density of texture elements to

determine orientation, either directly or by first determining the ‘vanishing point’. This is only

useful if there are sufficient areas of regular texture.

• Shape from Focus (SFF), relies on the fact that only objects at a certain distance from the

camera, depending on the ‘depth of field’, will be in focus. All other points will be blurred in

proportion to the distance from that point.

• Photometric stereo, is similar to SFS but uses images with different scene illumination, captured

by a static camera. Relies on knowing the surface reflectance of all objects and requires a static

scene, so has limited use.

All these methods rely on knowing the depth of at least one point on any object in order to recover

metric structure. Apart from SFM, these techniques are generally used to yield secondary cues about

the structure of the scene and are often combined with the more direct, stereo based algorithms. The

use of shape techniques, is beyond the scope of the research presented in this dissertation.

Having obtained depth estimates and/or some basic information about the geometry of the scene, a

disparity image(often referred to as a range image, 2.5D sketch, or depth map) can be produced in or-

der to display the inferred structure. At this stage some form of texturing could be used to improve vi-

sualization of the recovered scene. Such representation is stillview-centeredand notobject-centered,

which is required for fully interactive 3D representations, such as those used in most 3D CAD mod-

elling tools. The final, 3D modelling stage therefore attempts to determine such object-centered de-

scriptions from the basic depth information and secondary cues by employing eithermodel-based

recognitionschemes orimaged-based reconstructionalgorithms. The representations of 3D objects

are largely dependent on which of these methods is chosen and there are now a number of possible

16



alternatives which, themselves, fall into two distinct classes,volumetricandsurfacemodels. This last

stage of the reconstruction process is often considered to be outside the remit of Computer Vision and

relies heavily on techniques developed for Computer Graphics. An excellent, well-referenced, text

covering this discipline is by Foley, van Dam, Feiner and Hughes[FvDFH97]. Again, the subject of

modelling 3D data is beyond the scope of the research presented here.

This provides a cursory overview and does not consider the “type” of 3D reconstruction required

or the precise nature of image data captured from the scene. Both of these facts are closely related

and fundamental to any further consideration.

2.2 Review of Influential Work in Scene Reconstruction

3D scene reconstruction depends a great deal on the type of imaging system employed. The use of

single images, stereo pairs, triplets or image streams from video, all require a different approach.

These, in turn, depend on the amount, or lack, of camera calibration information available. It has been

shown [Fau92, HGC92] that,

“in the absence of any constraints, structure can only be recovered up to a projective

ambiguity (which differs from true,Euclidean, structure by some unknown 3D projective

transformation) from a pair of uncalibrated views”.

The “type” of reconstruction can, therefore, be classified according to the ambiguity of the resulting

model from the true, Euclidean structure. Mundy and Zisserman [MZ93] showed that the overall

accuracy of reconstruction is related to the groups of projective,planar transformations [SK52] and

developed a framework for specifying the ambiguity resulting from various types of imaging con-

straints and projective invariants. Table2.1, has been reproduced from that shown in [HZ00] and lists

the four groups of projective transformations:
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Group and dof Matrix Invariant Properties

Projective, 15 dof

[
A t
vT v

]
only thecross-ratioof lengths and a few geometrical

relationships such as intersection, tangents, inflections
and the sign of Gaussian curvature.

Affine, 12 dof
[

A t
0T 1

]
parallelism, ratios of areas and lengths

on collinear and parallel lines.

Similarity, 7 dof
(or metric)

[
sR t
0T 1

]
all of the above and the ratio of length and angle.

Euclidean, 6 dof

[
R t
0T 1

]
inherits all the above plus volume.

Table 2.1: Hierarchy of Projective Transformations.

whereA is an invertible3 × 3 matrix, R is a 3D rotation matrix,t = ( tx, ty, tz )T is a 3D

translation,v is a general 3-vector,v a scalar and0 = ( 0, 0, 0 )T is a null vector. It should be noted

that, while the subsequent transformations in the table inherit the invariants from those preceding

the converse is not true. These four groups of projective transformations define the stratification of

3D geometric structure [Pol00] where Projective is the most general form and Euclidean the most

constrained. These terms are also used to describe the type of reconstruction or its ambiguity, except

for similarity which equates tometric, or scaled-Euclidean, reconstruction. The cross-ratio of four

collinear points is defined as:

cross(x̃1, x̃2, x̃3, x̃4) =
|x̃1 − x̃2| |x̃3 − x̃4|
|x̃1 − x̃3| |x̃2 − x̃4|

(2.1)
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wherex̃i are the vertices on a line in homogeneous coordinates for either 1D, 2D or 3D space, thereby

making it projectively invariant.

Table2.1clearly demonstrates the complexity of the problem. The camera, assuming the pinhole

model2, performs the most general projective transformation, yet the ideal result is the construction

of a full, Euclidean, model from which real-world measurements can be extracted. Projects in this

area of computer vision research therefore aim to reduce the ambiguity of the reconstructed model as

far as possible, given a set of constraints imposed by the particular imaging system employed and the

nature of the imaged environment.

Applying constraints to the problem of 3D reconstruction is an inherent part of any solution. Over

the last decade, the most obvious constraint, the calibration of the camera, has been studied in great

depth. If a camera system is uncalibrated, then the observed structure, from any given image pair, can

only be recovered up to a projective ambiguity, as quoted above. However, if additional constraints

are available, this projective ambiguity can be reduced so that an affine or a metric reconstruction

becomes possible. Luong, Maybank and Faugeras [FLM92] showed that an affine reconstruction can

be achieved if three or more views of a static 3D structure are acquired by the same camera in general

motion with arbitrary pose and introduced the termself-calibration. The concept of camera calibration

without capturing an image of a calibration target placed in the world was presented at the same

time by Hartley [Har92]. Subsequently this technique has been refined for stereo image pairs with

known relative motion, or separation, between the views and is often referred to asepipolar or auto-

calibration. Examples with pure translation [MvGvDP93, PH95], pure rotation [Har94] and known

general transformation [HMDB95, HC98], have been reported and reviewed [But97, Zha98, TM97]
2There are a number of possible camera models - the parallel projection, oraffine, camera model assumes parallel light

rays, not necessarily orthogonal to the image plane (as in orthographic), where the projection centre is at infinity. This is of

particular use when the objects and/or scene depth are very small
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in some depth.

All of the techniques mentioned above approximate the camera projection matrix by first estimat-

ing theFundamental Matrix, that defines the epipolar geometry between two views, as described in

AppendixA. However, without the addition of other constraints, these techniques can only recover

sufficient information for reconstructionup to scale. They can not yield the true, Euclidean, struc-

ture of the scene. Only with the inclusion of some “known” data, in theworld coordinate frame can

Euclidean reconstruction be achieved. It should be noted, however, that Euclidean reconstruction is

not always required and projective reconstructions are often adequate for many applications. The de-

sire for a Euclidean reconstruction requires calibration by the more traditional method of using some

knowncalibration pattern, or grid, placed in the imaged scene. The most popular implementation

of this was reported by Tsai [Tsa87] but various refinements have since been made [Fau93, HZ00].

Unfortunately, these methods suffer from the obvious limitation of requiring a calibration object and

therefore require some “off-line”, “prior-to-use” processing. They are often applied to each camera,

of the stereo pair, separately and therefore fail to make use of the strict epipolar constraint of two view

geometry which is the most fundamental aspect of stereo processing.

Most, if not all, of the reconstruction systems developed to date are intended for a particular ap-

plication which dictate the choice of imaging system and subsequently the reconstruction techniques

employed. Historically, there were only two basic options for the image capture system; calibrated

stereo heads, or a monocular camera in motion. The choice of which to use was governed to a large

extent by the cost of the hardware or the complexity of calibration. In general, the earlier systems

concentrated on the reconstruction of specific objects or scenes, using images captured from positions

surrounding the point of interest. These can be referred to as “small-scale” reconstructions, as defined

on page4 of Chapter1 . The limitation to small-scale reconstruction stemmed partly from the pro-

cessing capacity of the systems but also, more importantly, from a lack of efficient coverage of the
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scene, except in cases where large, expensivescanimaging equipment is used.

In the last decade, or so, a third type of imaging system has emerged which attempts to address the

problem of “where to look next” by scanning the entire scene, effectively to “look every where”. Some

of these “alternative” stereo imaging systems createomni-directionalstereo by creating panoramic

views, or mosaics, using special mirror systems, or prisms [MYI89, YK90, GG93, PBEP01]. Others

form a “virtual” stereo system using a monocular camera rotating on a turn table [IYT92, MB92,

KS97]. The specific imaging geometry of these systems will be discussed in Chapter3. It is the

author’s opinion that these systems are, in general, either “too complex”, “too expensive”, or have not

completely solved all of the extra processing problems incurred by such systems. This opinion is not

unsupported by the referenced author’s themselves who claim that the analysis of some methods of

omni-directional stereo (fish eye lens, spherical mirror) “are rather local, in the sense that they have

concentrated on the problem of acquiring 3D information based on the motion stereo method and

much attention has not paid to how we plan the next observation”[IYT92]. This view is supported

in [MB92] who insists that “the change in viewpoint must involve a translation of the optical centre.”

However, [PBEP01] claims that “capturing panoramic omni-stereo images with a rotating cameras

makes it impossible to capture dynamic scenes.” The author of this dissertation disputes this last

claim since, if the angular velocity of the rotating camera is kept constant, then any structure with an

appropriate motion vector is static whereas any structure with a greater motion vector is obviously in

motion. The capture and reconstruction of dynamic scenes with a camera in motion is therefore not

only possible but has already been demonstrated in [TM93].

Unlike most of these previous examples of alternative stereo systems, periscopic stereo does not

concentrate on producing a full panoramic view, it simply uses the inherent geometry of a panoramic

scan of the surrounding environment, acquired as the natural consequence of rotating a periscope, at

a fixed velocity, above a central optical axis. As stated earlier, one of the advantages of periscopic
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stereo is that it is able to make use of many existing techniques with “relatively” minor modifications.

Now that most of the basic concepts have been identified, the following is a brief review of three

major projects, two of which are directly relevant to this area of research. These projects have been

chosen because they are, in the opinion of the author of this dissertation, most responsible for extend-

ing the boundaries in this area of computer vision research and will continue to be the primary source

of reference in the future.

2.2.1 Review of Major Research Projects

There have been a number of recent international workshops devoted specifically to the techniques

associated with scene reconstruction and 3D computer vision. The most notable were;

• 2nd Joint European–US Workshop on “Applications of Invariance in Computer Vision”, Ponta

Delgada, Azores, October 1993. [MZF93]

• Int. NSF–ARPA Workshop on “Object Representation in Computer Vision”, New York City,

NY, USA, December 1994. [HPBG94]

• Int. Workshop on “Object Representation in Computer Vision II”, Cambridge, U.K., April

1996. [PZH96] (in conjunction with ECCV96).

• European Workshop on “3D Structure from Multiple Image of Large–Scale Environments (SMILE’98)”,

Freiburg, Germany, June 1998. [KvG98] (in conjunction with ECCV98).

• IEEE Workshop on “Multi-View Modeling and Analysis of Visual Scenes”, Colorado State

University, Fort Collins, USA., June 1999. [KS99] (in conjunction with CVPR99).

Of particular importance is the 1998 European ‘SMILE98’ workshop [KvG98] which brought

together researchers from the most prominent projects in this area of research. The following is a brief
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description of the three main projects represented at SMILE’98 workshop. A complete description of

these projects is given in the introduction chapter of the workshop’s proceedings [KvG98].

VANGUARD - (Visualization Across Networks using Graphics and Uncalibrated Acquisition of

Read Data) aimed to automatically create realistic 3D models for use in AR and VR applica-

tions from a single “uncalibrated” video camera moving in unknown and unconstrained motion.

The applications selected for the project focused on four specific areas; ‘3D Surface Modeling’

to improve geometric modelling techniques and produce more realistic models, ‘Collaborative

Scene Visualization’ where CAD modelled objects are combined with 3D models extracted

from imagery to create dynamic virtual environments, ‘Tele-exhibitions for museums’ where

all the exhibits and museum interior are reconstructed in such a way to allow fully interac-

tive “walk throughs” over the Internet and finally ‘Stereo Visualization of objects and scenes’

from monocular image sequences to create ‘pseudo-holographic’ displays. These applications

required drawing together expertise from both Computer Graphics and Computer Vision and

were only made possible by classifying objects within the scene and extracting both geometry

and surface descriptions specific to these classifications. Three types of objects were extracted

and modelled; ‘Individual objects’ for which a full model was required, ‘room interiors’ for

which only a part models were required and ‘natural outdoor scenes’ which are largely planar

textures. The project has now concluded but some related work still continues at Oxford, where

the project’s website is located (athttp://www.robots.ox.ac.uk/˜vanguard/ ).

CUMULI - (Computational Understanding of Multiple Images) is a long term ESPRIT project fo-

cusing on multi-image geometry and its application to 3D industrial metrology. It is effectively

a follow up project to the ESPRIT-BRA project VIVA. The objectives, building on the in-

sights into the geometry of 3D perception provided by VIVA, are three-fold. Firstly the aim
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is to recover 3D structure under three different situations; ‘Unknown camera parameters and

scene’ which has been well studied but lacks unified theory, ‘Partial camera or scene knowl-

edge’ wherea-priori image cues are used to extend the range or quality of reconstruction from

minimal image data and the correspondence of ‘non point-like image features’ such as lines,

curves and planes where the stronger geometric constraints allow relaxed conditions for recon-

struction and improve accuracy. Recent advances in multi-camera geometry [HÅ97, Tri97b],

auto-calibration [HÅ96, Tri97a] and efficient reconstruction [Spa96] have all been reported.

Secondly is to study the concepts of 3D perception in terms of the image sequence and non-

rigid motion estimation. Although the same underlying theory applies, the fact that under cer-

tain circumstances the geometry inherited from the discrete case becomes degenerate leads

to a requirement for more appropriate incremental geometry to be developed. This also in-

cludes the study of multi-image matching constraints, the development of better tracking tools

and more efficient reconstruction methods for the continuous recovery of large-scale environ-

ments. Lastly the generation of automated algebraic and geometric reasoning tools which

are required for the construction of complex large-scale models for AR and VR applications.

This is a new area of research which suggests that geometric models should be more than

just textured, rigid wire frames and should be more dynamic and incorporate real-world con-

straints. This project is ongoing and more information can be found at: (http://www-

sop.inria.fr/robotvis/projects/ )

PANORAMA - ACTS PANORAMA Project consists of a consortium of 14 European partners from

various universities, research institutes and industry and concentrates on the enhancement of

visual information exchange in telecommunications with 3D telepresence. The system un-

der development makes use of a calibrated trinocular camera system, an autostereoscopic dis-
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play, real-time image processing using special purpose hardware which enables the creation

of dynamic and photo-realistic models for video conferencing. The system incorporates tech-

niques for fusing of 3D model data with image textures and computer generated graphics to

create the photo-realistic models. This image synthesis approach also generates interpolated,

intermediate views using vector coding techniques which smooths out motion effects of the

deformable 3D models. Details of the project can be found at:http://www.tnt.uni-

hannover.de/project/eu/panorama/

‘VANGUARD’ and ‘CUMULI’ are regarded as being particularly relevant to the research pre-

sented in this dissertation. The ‘VANGUARD’ project provides an insight to the level of accuracy

acceptable for 3D reconstructions for VR “walk-through” applications and has successfully demon-

strated the use of single camera systems. However, Euclidean reconstruction is not possible with this

system, as described in Section2.2. The ‘CUMULI’ project provides advances in the description

of multi-camera geometry and calibration which are more directly relevant to periscopic stereo and

mobile robot applications. ‘PANORAMA’ is not particularly relevant to the research presented in

this dissertation, but has been mentioned to complete a picture of the “state of the art” of associated

technology.

Although both the ‘VANGUARD’ and ‘CUMULI’ claim to address (directly or indirectly) large-

scale 3D scene reconstruction neither have been “fully” demonstrated. The examples given by both

projects, available via their respective web sites, are impressive but are only sections of large-scale

reconstructions. The author of this dissertation has not, as yet, found examples of navigable (in

both a VR and a robotic sense), large-scale environments. This may be due, in part, to commercial

considerations. However, the fact that neither of these projects addresses the fundamental problem of

“where to look next”, suggests that these and many other similar projects have a limited capability of
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producing large-scale, VR style, environments.

As suggested at the beginning of this chapter, there is far more literature on the subject of 3D

reconstruction than can be presented here. The above is therefore only a cursory review of increasingly

expanding area of computer vision research. A list of people, and/or collaborating institutions, on the

projects given above, together with a short list of some other notable reconstruction projects, is given

in AppendixB.

2.3 Choice of Image Processing and Computer Vision Software Frame-

work

Before any useful results can be obtained from experiments into computer vision techniques a software

environment, or framework, is required to house the various types of image processing and display

tools. Even if this framework amounts to little more than anad-hoccollection of programs, the inter-

action between them is extremely important and will have a considerable effect on the productivity.

There are two obvious choices, “off-the-shelf” or “writing your own”. The author of this disserta-

tion expended considerable time on the assessment of such frameworks and AppendixC provides an

insight to the considerations required when choosing or writing your own framework.

The software framework ultimately chosen to support the research presented in this dissertation

wasTina 3. The reasons for this choice are as follows:

Firstly, Tina is written in ‘C’ which provides, in the opinion of the author, the best compromise

between the application of object oriented design (which is possible in ‘C’) and the flexibility to

define software models and programming structures required by most, “state of the art”, computer
3The source code, complete with documentation and examples, is available for research use on public license and can

be downloaded from:http://www.niac.man.ac.uk/Tina/index.html
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vision techniques. It has a simple graphical user interface which offers the possibility of construct-

ing scripted algorithms, as well as the easy construction of button activated processing. There is a

considerable amount of functional decomposition designed into the source code at all levels allowing

for the maximum amount of code reuse and the possibility to developing new algorithms quickly and

efficiently. The central core of the system is designed around a stack memory model which allows

simple transfer of image data between various processing tools. This allows for the comparison of

algorithms with efficient ‘reload’ data and ‘undo’ functionality. Each tool is however free to create

new image data, or make copies, as required. Access to the image data is extremely flexible, allow-

ing complete random access down to pixel level, but via consistentgetandput, ‘data-type’ invariant

methods. Many of these are implemented by efficient, in-line, macro’s. The data structures are well

conceived and offer good flexibility. In particular most of the image data objects contain aproper-

ties list which allow for the dynamic extensions of, and associations between, data objects. A full

set of tools for the usual forms of dynamic data structures, such as, single-ended, double-ended and

recursive linked lists, trees and graphs, are also included. The framework contains a sufficient set of

mathematical, image processing and computer vision libraries, as well as useful graphics and display

tools, which are appropriate for 3D reconstruction tasks. Finally this framework, unlike many of its

contemporaries, is a small, lightweight package, consisting only of the more essential components.

This greatly simplifies its use.Tina is not, however, perfect and does have a few short comings.

Although the documentation is quite good, the code itself is poorly commented in places and contains

the occasional bug. In the opinion of the author of this dissertation,Tina is probably the most flexi-

ble image processing framework freely available and does not incur excessive effort before productive

research can be realized.
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2.4 Summary

This chapter provides background information for the concepts and terminology used in this disser-

tation. Using Marr’s bottom-up approach [Mar82] four processes are identified which constitute 3D

reconstruction. A pre-process, feature detection stage provides the basic information for three mutu-

ally dependent processes. These are; stereo or correspondence matching, stereo camera calibration

and the projection of disparity images or reconstruction. Aspects of all of these are covered in this dis-

sertation. A final post-processing stage, for the production of visually realistic models, is not covered

in the research presented. Technical reviews of these subjects are deferred to the specific chapters.

Two research projects have been identified which have provided both impetus for the research

presented here and a source of reference for the latest techniques in 3D reconstruction. An image

processing and computer vision framework has been reviewed since this also provides a source of

proven techniques.
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Chapter 3

Periscopic Stereo Vision

In Chapter2, the concept of implementing a stereo imaging system with a single camera, was identi-

fied as a possible solution to the problem of efficient capture of the surrounding scene. A number of

research projects have supported the concept of “alternative” stereo imaging systems in recent years

but, in general, most of the systems proposed to date have introduced as many problems as they claim

to have solved [MYI89, YK90, IYT92, MB92, GG93, Sze96, PH97, PBEP01]. Not all of these have

been directly concerned with 3D reconstruction. However, each one has attempted to capture suf-

ficient information from the image data to implement various forms of robot navigation. An early

example presented in [MYI89] used a camera with a fish-eye lens mounted on a mobile robot and

recovered depth of vertical structure in the scene from a sequence of images, captured while in mo-

tion. Apart from improving the field of view the system provided no performance advantage over a

standard single camera in motion to outweigh the complexity of image processing which required a

spherical mapping to convert the distorted image created by the fish-eye lens. Other systems have

used the reflections from a conic mirror [YK90], a split mirror [GG93] and only recently spiral (more

actually described as a dome) mirrors and spiral lens [PBEP01]. With the exception of [GG93], all
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these systems required specialized feature detection and correspondence algorithms which add con-

siderable complexity for advantage of a panoramic view which ultimately yields low accuracy depth

information due to the lack of either any translation of the camera’s optical center or small baseline.

However, one major advantage of some of these systems is that they are entirely self-contained with

no external mechanics. While these imaging systems have been applied to robotic navigation with

varying degrees of success, as yet, there are no successful application to 3D reconstruction.

The use of rotation to achieveomni-directionalstereo was first, successfully, demonstrated in [IYT92].

This work and later examples [Sze96, PH97] rely on rotating the camera on a turn table. In [IYT92]

the panoramic view is created by capturing the scene through two vertical slits mounted on the turn

table in front the of the camera, as shown in Figure3.1. This has the obvious disadvantage of requiring

object point in scene

r

C

2φ

2θ

2φ

(a) imaging geometry

rotation axis
image plane

vertical slits

r

C

(b) rotating camera

Figure 3.1: Sketch of rotating turn table camera with imaging geometry.

large, cumbersome, equipment. It also introduces a complication to camera, or system, calibration due

to a requirement for accurate positional feedback for the relative displacement of the camera. How-

ever, the recovery of depth information from these rotating camera systems is much better than the

static omni-directional systems since the baseline distance is greater and can often be varied to provide

improved performance for near or distant scenes. Apart form reference to [IYT92] and [Sze96, PH97],
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which have a similar imaging geometry, Figure3.1 has been reproduced here for visual comparison

of these systems and the genealogy of periscopic stereo. Note in Figure3.1 that these systems create

adivergentstereo view.

The merits and demerits of the omni-directional and rotating camera systems are in direct opposi-

tion. However, a system that combined the merits of both would be an attractive alternative, especially

for large-scale scene reconstruction. The idea of implementing a stereo vision system using a single,

flat, rotating mirror was first reported by Murray and Beardsley [MB92]. In their system the axis of

rotation of the mirror was perpendicular to the optical axis of the camera, as shown in Figure3.2(a).

With this configuration imaged objects would appear to move horizontally across the image plane

for a given sequence. This arrangement yields a visually (human) sensible data set but it relies on

a somewhat complicated mechanical arrangement and an accurate measurement of the angle of the

actuated mirror plane for the camera geometry. Murray and Beardsley [MB92] suggested a second,

scene
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(a) horizontal scanning mirror from [MB92]
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(b) rotating mirror from [CC94b]

Figure 3.2: Sketches of horizontal scanning and rotating cameras.
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simplified, mirror arrangement where the axis of rotation lies along the optical axis of the camera, as

shown in Figure3.2(b). However, they declared its use to be impractical due to the “tumbling” effect

induced on the image data by the trajectory of thevirtual camera which rotates in sympathy with the

mirror. Clark and Chan [CC94b] adopted this second mirror arrangement and applied simple geomet-

ric transformations on the image data to return, or “untumble”, it to a visually sensible, horizontally

scanned sequence. They concluded that this arrangement would in fact offer many advantages over

existing systems and introduced the termperiscopic stereo. Both of these configurations implement a

convergentstereo view from successive frames of the image sequence captured as the virtual camera

rotates in sympathy with the mirror.

While the difference in the imaging geometry of these systems is subtle, the implementation of

the image processing for the respective configurations is significant. In the latter case [CC94b], the

configuration proposed retains all the merits of its predecessors without, reportedly, incurring exces-

sive complexity. However, the concept of “tumbled” and “untumbled” image data is a continuous

thread throughout this dissertation and is the fundamental reason for the system and image processing

analysis contained herein. This chapter reviews the concept periscopic stereo and introduces some

practical points on the construction and operation of a realizable system. The analysis of the virtual,

relative, camera geometry has been reworked here, since the version offered in [CC94b] was for a

system which was mounted upside down and assumed a left handed coordinate system, in order to

allow for suitable alignment of the camera, mirror and world coordinate systems that would be applied

in the real system with the camera pointing vertically up.
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3.1 Virtual Camera Geometry

Periscopic stereo is essentially a system which implements a stereo vision system by using a mirror

that rotates about the camera’s optical axis, as shown in Figure3.3. This system creates a series of

virtual camera positions where any two frames from a sequence form a converging stereo view of the

scene. The origin of the system is defined as the centre of the mirror plane and aright-handcoordinate

system has been chosen in order to simplify the use of existing software within theTina framework.

The analysis for a left-hand coordinate system would be the same except for the interchange of some

elements in the vector and matrix representations.

The real cameraCr is situated at some distanceb along the axis labelledYm from the centre of

the mirror planeCm. The centre of the mirror plane is assumed to be the system origin and is labelled

Om. This choice of system origin is fundamental and its importance is explained later in the analysis

of depth estimation from periscopic stereo in Section3.3. The choice ofXm, Ym andZm axis are

consistent with a right-handed coordinate system withZm axis pointing out into the scene. This is in

keeping with with standard theory [SHB99].

With reference to Figure3.3, the basic geometry of the system can be derived by inspection. The

surface normal̂n to the mirror planeCm is given by:

[ sin θ sinφ , cos θ , sin θ cosφ ]T (3.1)

and position of the mirror plane, with respect to the camera, can be derived from,α = b cos θ (the

translation from the real camera position to the mirror plane) and its normal such that:

Cm = Cr − α n̂ (3.2)

This can be thought of as a simple perpendicular projection of the real camera onto the mirror plane.
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Figure 3.3: Basic geometry for the periscopic stereo head.

The position of the virtual camera is therefore given by:

Cv = Cr − 2α n̂ (3.3)
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Using standard trigonometric relationships Equation3.3simplifies to:

Cv =


0

b

0

− 2b cos θ


sin θ sinφ

cos θ

sin θ cosφ

 = −b


sin 2θ sinφ

cos 2θ

sin 2θ cosφ

 (3.4)

If we assume thatθ = 45◦ the respective terms in Equation3.4 disappear, demonstrating that as

the mirror rotates the position of the virtual camera tracks around behind it in the planeYm = 0. Other

reasons for eliminatingθ will be explained later in Section3.3.

Only the position of the centre of the virtual camera has thus far been determined. The analysis

must be extended to determine the behaviour of all points on the image plane. Considering some

arbitrary pointpr “near”1 which is offset from the optical centre along thex−, y− andz−axes such

that, in general:

pr = [ δx , b+ δy , δz ]T (3.5)

The virtual position of this point can be determined from Equation3.3with a new translation scalar,

αn, for the projection across the mirror plane, as shown in Figure3.4, such that:

pv = pr − 2αn n̂ (3.6)

As before,αn is determined from the origin of the point in question and the surface normal to the

mirror plane by considering thatCm · n̂ = 0 and substituting forCm in Equation3.2such that:

(Cr − αn̂) · n̂ = 0 (3.7)

Givenn̂ · n̂ = 1 , yieldsα = Cr · n̂, or, by the same argument, for the new point:

αn = pr · n̂ = sin θ sinφ δx+ cos θ (b+ δy) + sin θ cosφ δz (3.8)
1The use ofnear is to allow for a non-zeroδy which is required for the transposition of the axis due to the reflection

component as shown in Figure3.4
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Substituting for Equation3.8 in Equation3.6yields,

pv = pr − 2 (pr · n̂) n̂

=


δx

b+ δy

δz

− 2 (sin θ sinφ δx+ cos θ (b+ δy) + sin θ cosφ δz)


sin θ sinφ

cos θ

sin θ cosφ



=


( 1− 2 sin2 θ sin2 φ ) δx− sin 2θ sinφ (b+ δy)− 2 sin2 θ sinφ cosφ δz

− sin 2θ sinφ δx+ ( 1− 2 cos2 θ )(b+ δy)− sin 2θ cosφ δz

−2 sin2 θ sinφ cosφ δx− sin 2θ cosφ (b+ δy) + ( 1− 2 sin2 θ cos2 φ ) δz

(3.9)

using the double angle, trigonometric relationships forsin 2θ and cos 2θ where necessary. Equa-

tion 3.9simplifies to Equation3.4whenδx = δy = δz = 0.

A comparison of the terms in the positional vectors derived in Equations3.4and3.9reveals that,

even ignoring the effect ofθ, extraφ andφ2 terms have appeared in the latter. This demonstrates
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that any point on the image plane, except the point coincident with the optical axis, will be subject

to a tumbling motion consisting of two rotational components. The first rotational component is the

circular track of the virtual camera about the mirror centre, or system origin, and the second is a

rotation of the virtual image plane about its optical axis. Both due to the effect ofφ.

Although the system is centered about the mirror plane, none of the above analysis has been

concerned with identifying a specific reflection component. While this reflection component is present

in Equations3.4 and 3.9 it has been deliberately ignored, until now, in order to simplify and aid

description of the system geometry.

In order to isolate and remove the components which induce the tumbling motion of the image

data it is necessary to analyze the 3D spatial transformation which maps any point on the real image

plane onto its corresponding point on the virtual image plane. Assigning the spatial transformation

matrix,T, and rewriting Equations3.4and3.9as a pair of simultaneous equations yields:

Cv = T.Cr

pv = T. pr (3.10)

Subtracting to giveCv − pv = T. (Cr − pr) and substituting forCv,Cr, pv andpr yields,

T ·




0

b

0

−


δx

(b+ δy)

δz




=


−b


sin 2θ sinφ

cos 2θ

sin 2θ cosφ

−
 pv




(3.11)
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which simplifies to:

T ·


−δx

−δy

−δz

 =


−( 1− 2s2θs2φ )δx− bs2θsφ+ ( s2θsφ )(b+ δy) + 2s2θsφcφδz

+s2θsφδx− bc2θ − (1− 2c2θ)(b+ δy) + s2θcφδz

+2s2θsφcφδx− bs2θcφ+ ( s2θcφ )(b+ δy) + ( 1− 2s2θc2φ )δz



=


( 1− 2 sin2 θ sin2 φ )δx− ( sin 2θ sinφ )δy − 2 sin2 θ sinφ cosφ δz

− sin 2θ sinφ δx− (cos 2θ)δy − sin 2θ cosφ δz

−2 sin2 θ sinφ cosφ δx− ( sin 2θ cosφ )δy + ( 1− 2 sin2 θ cos2 φ )δz


(3.12)

where−bc2θ − ( 1 − 2c2θ )(b + δy) ≡ −b cos 2θ − (− cos 2θ)(b + δy), switching from shorthand

notation and applying alternative double angle trigonometric relationships.

Factorizing to form the transformation matrix yields:

T =


2 sin2 θ sin2 φ − 1 sin 2θ sinφ 2 sin2 θ sinφ cosφ

sin 2θ sinφ cos 2θ sin 2θ cosφ

2 sin2 θ sinφ cosφ sin 2θ cosφ 2 sin2 θ cos2 φ − 1

 (3.13)

The factorization in Equation3.13 is derived by simply isolating the vectors components and

rewriting in matrix form. It should be noted that there was a typographical error in the first column,

third row of equation (14) in [CC94b], which should readsin 2θ cosφ and notsin 2θ sinφ.

The transformation matrix given in Equation3.13 contains a reflection and the two rotational

components identified above. It is apparent from Equation3.13that the virtual camera rotates about

the optical axis,Zm, and also about the system’s vertical axis,Ym. Removing the rotation about

the optical axis and the reflection ofXm, due to the mirror, would return a sequence of images to a

normal,fronto-parallel, scan of the horizon. Removing these components effectively “untumbles” the

image sequence.
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Combining the standard matrix for a clockwise 3D rotation aboutYm and a reflection about the

Xm = 0 plane yields:

CW Rotyφ.Rfltx=0 =


cosφ 0 sinφ

0 1 0

− sinφ 0 cosφ




−1 0 0

0 1 0

0 0 1

 =


− cosφ 0 sinφ

0 1 0

sinφ 0 cosφ

 = Tm

(3.14)

whereTm the matrix transformation due to both components.

The matrix transformation without these componentsT′ can be determined fromT′ = T−1
m T

which yields:

T′ =


cosφ 0 − sinφ

sin 2θ sinφ cos 2θ sin 2θ cosφ

− cos 2θ sinφ sin 2θ − cos 2θ cosφ

 (3.15)

Comparison of Equation3.15with equation (15) in [CC94b] shows that they have identical com-

ponents, albeit for an interchange of the first and seconds rows and columns due to the redefined

coordinate system. Again, there is a typographical error in equation (15) of [CC94b] where the sign

of sin 2θ in the first column of the third row is incorrect. Confirmation of Equation3.15can be deter-

mined by substitutingT′ back inT = Tm T′ and using the double angle, trigonometric relationships,

as in Equation3.9above.

With the squared components of the first and third rows of Equation3.13now removed and as-

sumingθ = 45◦, the relative camera geometry of the imaging system, described by Equation3.15,

has effectively been reduced to a scan of the horizontal plane about the system axisYm. In this con-

figuration any subsequent stereo processing can be conducted along single raster lines in the images,

instead of across the whole image plane.
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3.2 Removing the Tumbling Motion

In practice removing the tumbling motion from a sequence of image data is relatively straight forward.

As each image is recovered from the camera’s frame buffer, it can be stored in the images’ data array

by reading backwards from right to left, thereby implementing a reflection of the x image coordinate.

This equates to a reflection in the planeXm = 0, in Figure3.4, or alternatively a reflection in the

plane,Xc = 0, in the camera coordinate frame in FigureA.1 of AppendixA.

A rotation matrix, centered about the optical axis, can then be applied with an operator equivalent

to the angular displacement between frames. This is achieved using the computer graphics technique

of applying a translation to the rotation origin, a 2D rotation about that origin and finally applying an

inverse translation to the compensate for the first. This geometric transformation of the image data

often yields new pixel coordinates which lie between the original pixel grid. A close approximation

of the new intensity value for the pixel is therefore derived by interpolation. However, interpolation

effectively adds a re-sampling, or filter, component to this image “pre-processing” stage which is not,

in general, desirable [Moh93]. This is discussed further in Chapter4.

Figure3.5 shows three frames from the original image sequence and the same frames with the

rotation about the optical axis corrected. Correcting for the rotation about the optical axis introduces a

rotating frame into the image data, as shown in Figure3.5(b).This frame, referred to in this dissertation

as thesilhouetteframe, complicates subsequent processing. This is discussed in Chapter5. However,

it should be noted that it is not necessary to correct the virtual image plane prior to all subsequent

processing. The process of removing the tumbling motion from the image data is, in practice, similar

to image planerectification, except that the truecanonical configuration2, as shown in Figure3.6(a),

is not completely achieved. This is discussed further in Chapters5 and6 later.
2The canonical configuration for a stereo head is with parallel optical axes and coplanar image planes
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(a) original images

(b) corrected images

Figure 3.5: Sequence of original and rotationally corrected images.
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3.3 Depth from Periscopic Stereo

Recovering depth from stereo images requires the estimation of the disparity between corresponding

image points. In a canonical stereo head the distance from some 3D point in the scene is determined

by:

Z =
Ibf

(xl − xr)
(3.16)

whereIb is the interocular separation between the cameras, orbaseline, f is focal length of the cam-

era/s andxl−xr is the horizontal disparity between the corresponding images points, as shown in Fig-

ure3.6(a)(reproduced from [JKS95, chap.11] for ease of reference). The geometry of the periscopic

stereo head is not as straight forward. However a measure of disparity and hence an estimation of

depth are still possible.

Figure3.7demonstrates the situation where a scene point is imaged in two, sequential, virtual im-

age planes. First consider the situation where the system originOm coincides with a camera rotating,

horizontally, about its own optical centre (or theYm axis, “into the page”). For a single image mea-
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surement, the scene point is related, via similar triangles from the perspective, or central, projection

model of a camera system (see AppendixA, EquationA.3) to the world point by,

mx =
x

f
=
Xc

Zc
or my =

y

f
=
Yc
Zc

(3.17)

By rotating the camera by fixed, angular displacements,φ, multiple instances of this are generated

and depth is derived from the disparity of the image points and the focal length of the camera. Now

consider the virtual camera position displaced along theZm axis by Ib. Rotating the mirror now

generates a series of virtual cameras each displaced by an interocular separation determined by the

angle of rotation and the distanceIb. These parameters effectively determine the stereo baseline.

Subsequent camera positions now converge onto the system origin introducing a limitation to the sign

of the disparity. It is known that converging cameras yield an arc of zero disparity with a radius

determined by the product of the convergent optical axes [JKS95], as shown in Figure3.6(b). Only

3D points beyond the arc are valid and therefore will always generate a positive measure of disparity,

assuming a calculation using left camera to right camera’s imaged points.

Using the disparity from corresponding imaged points together with the relative orientation be-

tween the camera positions, an estimate of the 3D position of a point in the scene can be derived.

However, the position of the virtual camera is determined by the spatial transformationT′ (ignoring

the effects ofTm) and specified in terms of the system’s coordinate frame aboutOm. Applying the

change in coordinate system and the transformation, as shown in Figure3.7, a point,P , in the scene

is given by,

P cv = T′P cr = T′P cm (3.18)

whereP cv,P cr andP cm are the point in the coordinate frames of the virtual camera, the real camera

and the mirror respectively. TheY andZ components between the real camera and the mirror coor-

dinate frames are exchanged by direct comparison as shown in Figure3.7. Equation3.17can now be
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expressed in terms of the mirror coordinate system by,

mx =
x

f
=
Xc

Zc
=

T′xXm

T′y Ym − b
and my =

y

f
=
Yc
Zc

=
T′z Zm

T′y Ym − b
(3.19)

whereT′x , T′y andT′z are the respective rows of the transformation matrixT′ (ignoring the effects

of Tm).

Applying the transformationT′ for the real to virtual camera coordinates yields:

mx =
cosφXm − sinφZm

sin 2θ sinφXm + cos 2θ Ym + sin 2θ cosφZm − b
(3.20)

and

my =
− cos 2θ sinφXm + sin 2θ Ym − cos 2θ cosφZm

sin 2θ sinφXm + cos 2θ Ym + sin 2θ cosφZm − b
(3.21)

The choice of a “sensible” angle for the mirror plane simplifies the situation considerably.

Forθ = 45◦, Equations3.20and3.21reduce to,

mx =
cosφXm − sinφZm

sinφXm + cosφZm − b
(3.22)

my =
Ym

sinφXm + cosφZm − b
(3.23)

and rearranging yields:

b.mx =
[
− cosφ+mx sinφ sinφ+mx cosφ

] Xm

Zm

 (3.24)

b.my =
[
my sinφ −1 +my cosφ

]

Xm

Ym

Zm

 (3.25)

Equation3.24relates a single image measurementx to two unknownsXm andZm and Equation3.25

relates they to three unknownsXm, Ym andZm. Given fixed multiples ofφ yields multiple instances

of Equations3.24and3.25, either set of which can be used to estimate the depth of the imaged scene.
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In practice, a set of Equations3.24are used to derive depth estimates because of the greater disparity

across the image plane from the rotation about theYm axis, refer to Figures3.5 in order to visualize

this.

With reference to Figures3.5 and3.7 it should be noted that the standard configuration creates

a cross-eyed stereo. In this configuration the higher frame number of any two images selected from

a periscopic stereo sequence is defined as the right hand image in a stereo pair. This is not however

exclusive and a diverging configuration is also possible by exchanging the order of the left and right

hand images of the stereo pair. This configuration is not used in any part of this research.

In theory, a selection3 number of image frames with small4 displacements between them can be

used to improve the accuracy of the estimates of depth and/or position. However, in practice there is

a number of limiting factors which must be considered. The following section identifies these factors

and also describes the construction of a periscopic stereo head.

3.4 Design, Construction and Operation of a Periscopic Stereo Head

Figure3.8shows a sketch of a periscopic stereo head. From the analysis in Section3.3, the preferred

configuration is for a45◦ mirror rotating about the camera’s optical axis at some known distance

along it. While it is feasible to vary the angle of the mirror plane while in use, the added complexity

to camera calibration software together with the requirement for accurate measurement of the angle

of the mirror plane effectively negates, in practice, any such consideration. The motivation for this

research is the reconstruction of remote environments and these may be hostile to precision machinery.

The design and construction of the periscopic head is therefore guided by the need for an enclosed,
3The scene point must be imaged in all frames so there is a limit to the number of successive frames containing the

same point.
4The definition of “small” displacement is given in Section3.4.
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robust unit.
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Figure 3.8: Sketch of a periscopic stereo head.

The periscopic head is constructed from three tubular sections assembled around a single central

axis. The outer casing and lower, inner casing are fixed while the upper, inner section is free to

rotate. This upper, inner section is driven by a stepper motor via a ring gear system. The ring gear

assembly sits just below the shoulder of a raised section of the lower casing which houses the stepper

motor and control electronics. The raised section allows a transmission path from the central drive

gear of the stepper motor out to the ring gear, via a connecting gear mounted on the lower section
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just below the shoulder. The camera, which is chosen to have a reasonably accurate alignment of

its optical axis and the centre of the CCD grid5, is mounted on the raised section and aligned to the

central axis. The inner rotating section is opaque and has a plate at the top with an aperture to the

mirror compartment. A circular, good quality6, mirror is mounted at45◦ to the central or optical

axis. Such mirrors are standard components in small, home, telescopes. The outer casing is opaque,

except for a low-distortion glass viewing window and incorporates a transparent dome housing an

illumination compartment for use in environments with poor lighting. The wiring for the illumination

compartment runs up between the inner section and outer casing and therefore should be kept to

the minimum acceptable current rating for the illumination required. The outer casing sits on top

of a support bearing which allows the inner rotating section to float freely while offering stability.

The lower casing houses the control electronics, consisting of speed control and switching for the

stepper motor, via a Hall-effect sensor. The Hall-effect, or scan, sensor also controls synchronization

of the image capture buffer which effectively starts and stops each image sequence, or scan, of the

surrounding environment.

The distance between the camera and the mirror, together with the angular velocity, effectively

determines the baseline distance between the virtual stereo cameras. It might, therefore, be useful to

be able to vary the distance between the camera and the mirror. However, this complicates the design

and construction of the head. The baseline distance is, at present, fixed according to the viewing angle

of the lens such that the edge of the mirror plane is never in view (that is the reflected view of the

scene completely fills the camera’s field of view). This effectively equates to being proportional to the

overall size of the periscopic stereo head. There is no need for the use of a wide-angle, or zoom lens,
5The position of the optical axis is assumed to be coincident with the centre of the image plane, however, this is not

always the case with low-cost cameras. This is covered in more detail in Chapter6.
6Imperfections in the mirror will translate to the image data.
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in this context; a standard camera lens capable of focusing on the mirror is sufficient.

The accuracy of the speed of rotation needs to be “relatively” high so fine pitch stepper motors,

operating in micro-step mode, are recommended. In practice, small fluctuations in the motor speed

are negligible and are not expected to affect the performance of the image processing algorithms.

However, there are obvious limitations to the absolute speed of rotation. With the standard frame

rate for video of25 fps there is a maximum speed of rotation allowable before blurring of the image

becomes a problem. This can be offset, to some degree, by the use of a shuttered camera. However

image blur should still be taken into consideration.

At the time of writing this dissertation the prototype periscopic stereo head had not be constructed.

All experiments were conducted using a shuttered CCD camera (Hitachi KP-M1E/K) suspended

above a turntable rotating at16.66 rpm (16.66 rpm = 5997.6 dpm= 99.96 dps). Figure3.9shows the

experimental setup used for creating an image sequence similar to that expected from a real periscopic

stereo head. The angular displacement between frames was99.96/25 = 3.9984 dpf. With approxi-

mately4◦ between frames the amount of overlap on the imaged scenes allows for a large number of

corresponding features to be matched across three, four or even five frames. At this, moderately, low

number of revolutions, a shutter speed of 1/125th of second is still necessary in order reduce the an-

gular displacement while the shutter is open to an acceptable0.032◦ and thereby eliminate any image

blur. There is obviously no synchronization between the motor, the shutter and the camera’s frame

rate in the “simulated” periscopic stereo head used for the research considered in this dissertation.

A reduction in the speed of rotation in order to reduce image blur, or improve the percentage of

corresponding features across a larger number of frames, is not an available option. This is because a

reduction in disparity between corresponding image features would lead to reduction of the ultimate

accuracy of depth estimation. It is known that the use of more than three frames of image data adds ex-

cessive computation for no extra accuracy from the numerical processing for reconstruction [SHB99].
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Figure 3.9: Photograph of the experimental apparatus used to implement a periscopic stereo imaging

system.

This is discussed further in Chapter7. A speed of approximately16 rpm can be generally regarded as

an operational minimum. The alternative situation of a small increase in the speed of rotation would

allow for better measurements of disparity. However, this would also require the use of faster shutter

speeds, which effectively reduces the amount of light entering the camera and subsequently reduces

image clarity. Therefore, a practical trade off which must be made. A good initial compromise, deter-
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mined from experience, is to use only one field7 per frame and effectively capture only half the image

data. An alternative compromise is to use the same rotation speed but select every other frame for

processing. Experiments have shown this to produce a usable image sequence.

The video capture card used in all the experiments was a Brooktree Bt848 which supports full

768x576 PAL image resolutions and a number of capture formats. All image streams where captured

at 1/2 PAL using BtYUV format and later converted to greyscale PGM images. Capturing 92 (slightly

greater than 90 from4◦ separation to allow for some overlap at the end of the scan), 1/2 PAL, 32-

bit images requires at least 40.7Mb of storage space. Even running on a 200MHz Pentium MMX

with 128Mb of RAM the card and the standard software supplied with it is capable of capturing a

complete,360◦, scan of the surrounding environment. However, in order to maintain compatibility

with a Linux operating system, the use of in-house software was preferred. The Homogeneous Video

Capture Interface (HVCI)8 written by Mike Lincoln [Lin99] streams raw 16-/24-/32-bit RGB, or 8-bit

greyscale, video data to a dedicated video file on disk. Using direct access to the card and system

RAM, HVCI is capable of streaming large amounts of video data.

7Many CCD cameras use two fields, of interlaced pixel elements or rows, per image frame, each of which can be saved

to the camera’s image buffer via different modes of operation.
8Available from:http://vase.essex.ac.uk/software/hvci/index.html
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3.5 Closing Remarks

This chapter has reviewed the analysis of the relative camera geometry induced by periscopic stereo

and introduced, for the first time, a practical design for the construction of a robust periscopic stereo

head. The imaging system yields a virtually constant geometric relationship between consecutive

image frames. However, it also introduces a tumbling motion to the image data. It has been shown

that this tumbling motion can be corrected with standard geometrical transformations which can be

applied directly to the image data prior to subsequent processing. However, it has been suggested that

the rotational component about the optical axis should be corrected at a later stage.

It should be noted that periscopic stereo is not intended to replace conventional stereo which

is predominant for many robotic tasks. Periscopic stereo is not intended to “show you where your

going”. However, it can record where you have been and it’s inclusion in a robot’s sensor array allows

for increased perception for both robotic systems in, and subsequently human investigation of, remote

environments.

In general, this concludes the discussion of the hardware aspects of periscopic stereo. All the

remaining chapters in this dissertation deal with the image processing and computer vision software

techniques required to realize large-scale scene reconstruction using image sequences captured by a

periscopic stereo head. The concept of when the rotational correction should be applied and the effects

of delaying the correction continue through Chapters5, 6 and7, each of which deals with one of the

three, mutually dependent, processes that constitute 3D reconstruction.
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Chapter 4

Feature Extraction for 3D Reconstruction

A fundamental prerequisite of the 3D reconstruction process is the initial extraction of relevant fea-

tures from the 2D image data and their representation for subsequent processing. In order to maximize

the completeness of any model of the scene these extracted features need to have different levels of

interpretation so that any object in the scene can be described in terms of, say, the distribution of some

of its points or the number of visible sides or even the area of its connected surfaces. The problem with

standard techniques for feature extraction is that they usually deal with just one-dimensional (edge) or

two-dimensional (corner) features and then represent these simply as collection ofpointsof interest.

Historically, this was acceptable for reconstruction algorithms which used ‘edge’ points to recover 3D

structure by matching thecorrespondingpoints in two or more images of the same scene. However,

it has been shown [ST98, MK98] that the correspondence of ‘non point-like image features’ such as

lines, curves and planes, with their stronger geometric constraints, allows some relaxation of the con-

straints applied to 3D reconstruction and improves the overall accuracy of the final model. Feature

extraction for the purposes of scene reconstruction is therefore more than just the detection of either

edges or corners. Ideally this initial, sometimes referred to aspre-processing, stage should consist of
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a single efficient process that deals with features in a consistent way and represents them in a manner

that aids the later stages of the reconstruction process.

In general, feature detection algorithms can be defined in terms of the following list of basic

requirements:

1. provide a unique response for each feature element,

2. generate good localization to sub-pixel accuracy,

3. be robust in the presence of noise.

These requirements are quoted in many computer vision texts1 and have been used by many re-

searchers to design feature, or more specifically, edge detectors. However, there is also another impor-

tant requirement which is sometimes overlooked and that is the computational load of the algorithm

itself. While it may be acceptable in some situations to concentrate on accuracy, 3D reconstruction

algorithms are inherently computationally intensive so expending valuable time on an excessively

complex pre-processing stage, regardless of the increased accuracy, is counter productive. That is

not to say that speed should be regarded as more important than accuracy; simply that there should

be a sensible compromise between these requirements. The following section reviews some of the

problems with the popular edge and corner detectors and suggests that the recently reported SUSAN

algorithm for feature extraction gives the optimal compromise for a 3D reconstruction system.

Comprehensive treatments of feature detection can be found in any of the recommended general

texts referenced in Chapter2. There is also an excellent review by Stephen Smith, available on the

Internet viaCVOnline2.
1probably stem from Abdou and Pratt’s,Quantitative design and evaluation of enhancement/thresholding edge

detectors, Proc. IEEE.
2seehttp://www.dai.ed.ac.uk/CVonline/feature.htm or http://www.fmrib.ox.ac.uk/˜steve/review/
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4.1 The Problem with Derivative Based Feature Extraction

A considerable amount of research has been conducted on edge and corner detection. Much of this

has concentrated on improving methods which are based on calculating either the first and/or second

derivatives of the image intensity function. A variety of alternative methods, ranging from morphol-

ogy to surface fitting, have also been reported but most are computationally intensive and do not yield

any significant improvements over the standard, derivative based methods [Smi97]. In the opinion of

the author of this dissertation, the most popular derivative based feature detection algorithms, have

been presented by; Canny [Can86] with extensions by Deriche [Der87] or Haralick [Har84] for edges

and Kitchen and Rosenfeld [KR82] or Harris and Stephens [HS88] (also referred to as the Plessey al-

gorithm [Nob88]) for detecting corners. It is well known in signal processing that derivatives enhance

the noise component as well as the information component of a signal [Ben88]. Their use is therefore,

usually accompanied by some form of filtering. The inclusion of filtering in images effectively blurs

any features and introduces error in determining their accurate position. Various types of filtering,

that have an ideal,isotropic, response, most prominent of which being Gaussian, have been employed

in order to minimize this positional error. However, these are essentially implemented by discrete

kernels which can, at best, only approximate the desired properties. Therefore, even before any other

problems are considered, there is an immediate conflict between robust detection and localization

accuracy which requires some trade-off.

A second, less obvious, problem is the ability, or rather inability, to produce edge enhanced im-

ages with good connections at junctions. This is, in some respects, a continuation of the inclusion of

filtering which tends to “round-off” corners but is also as a consequence of the inherent differences

between processing one and two dimensional features. The separate development of good edge de-

tection and good corner detection is testimony to the fact that a combined, edge and corner detection
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algorithm with a high level of performance has not been an easily solvable problem. This problem of

“good connections” is often considered as a concern for subsequent edge linking algorithms which are

used to formstringsof edge pixels that can be modelled by either straight lines or curves. However,

the accuracy of these strings and the geometric primitives which they form are directly influenced by

the performance of initial detection stage. This problem may appear trivial, especially when consider-

ing the use of good corner detection algorithms which could “fill in” the gaps left by an edge detector.

However, the use of separate processes does not necessarily improve the accuracy or completeness

of the subsequent model of the imaged scene, but does incur considerable computational costs. No

single edge detection algorithm, that has been developed to date, can yield the perfect response to all

edge types or cope with all types of junction. Indeed, it can be argued that most edge detection al-

gorithms are effectively “tailored” to specific edge types and favor the construction of particular edge

strings. There is, therefore, a second conflict between extracting the maximum amount of structural

information from the image while minimizing the complexity of the algorithm and its computational

cost.

Feature extraction for reconstruction, ideally, requires a composite approach that yields both one

and two dimensional features and represents them in a way which allows the formation of a range of

geometric primitives from simple points and lines to curves and surface patches. These are not new

ideas and many attempts have been made to produce an algorithm which produces such composite

data. In order to illustrate this a short review of a recent project, which was considered for use in 3D

reconstruction by the author of this dissertation, is included. The comments made below are included

only to serve as an example of the difficulties of designing a combined feature detection algorithm

and not as an in depth critique of this system.

The “FEX” (Feature EXtraction) [För94] project has reportedly developed a versatile feature de-

tector that produces afeature adjacency graph (FAG)of points, lines and “blobs” (homogeneous
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regions) from the initial image in a single stage process. The idea behind this project (“to clas-

sify features and centralize the data in a single output image which also incorporates neighborhood

relationships”) [För94] is of interest to 3D reconstruction since a lot of structural information is en-

coded. However, the implementation of the key components in this particular project still suffer from

some fundamental problems. Firstly the basic feature extraction relies on standard gradient based

algorithms, which as discussed, suffer from the contradiction of localization accuracy versus noise

suppression. Most of the gradient-based feature extraction algorithms require a parameter to control

the scale of filtering used and this is largely dependent on the type of feature to be recovered. In this

case, an estimate of the scale required is calculated from some “local” image statistics and then used

in a number of rather complex stages of convolution to yield the initial responses. This scale-space

approach is well known. However, a new combination of geometric measures is reported [För94]

which yield junctions and short, straight line, segments. It is unclear from the paper whether the

computationally intensive method employed produces more accurately located features or simply en-

forces very stringent segmentation to ensure the production of a tri-class or “ternary” image. The

paper does, however, admit that junction connectivity in the initial process is poor and that a second

process, called FAGANA, is used to improve the segmentation accuracy of the image by bridging the

gaps and closing inconsistent line or point structures. The added complexity of classifying each pixel

in the image and then producing an accurate (which is, in itself questionable) feature adjacency graph

seems computationally excessive when subsequent processes are unlikely to make full use of all this

information. In practice, images contain regions which are often difficult or impossible to classify. In

the case of 3D reconstruction, systems tend to employ techniques which are conservatively biased to

ignore possible errors. In such circumstances producing a greater volume of data which contains a

proportional amount of erroneous elements is counter-productive.

Even though this implementation has some fundamental problems the aims and the basic concept
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warrant further investigating at some stage in the future. For now, it is concluded that this approach

does not, as yet, offer any improvement over other techniques.

Until recently there have been few practical alternatives to derivative-based feature detectors.

However, the SUSAN feature detector [SB97], developed by the Robotics Group at Oxford University

offers a possible alternative. The following is review of the SUSAN algorithm for feature extraction.

4.2 The SUSAN Algorithm of Feature Extraction

A new approach to feature detection and low-level image processing, referred to as SUSAN, was

reported in [SB97]. Its principle of operation is different from many previous feature detection al-

gorithms because it does not attempt to calculate the derivatives of the image data. Instead, an ap-

proximately circular mask is used to calculate the local area ofsimilarity to the mask’s central pixel,

referred to as thenucleus, across the whole image. This is effectively a form of local integration of the

image intensity function. The SUSAN algorithm has, therefore, a certain degree of noise rejection, or

filtering, inherently built in. There is little need for any prior filtering stage, which improves localiza-

tion, connectivity and overall algorithm efficiency. Since the technique for feature detection is based

on the ratio of the area, the localization of features is independent of the mask size. The mask size is

therefore chosen to maximize the digital approximation to a true isotropic response. This is derived

from the analysis of standard Gaussian filtering which gives an optimum response with a mask radius

of 3.4, equating to a 37 pixel mask (7x7 mask minus three pixels in each corner, approximating a

circular mask) [SB97].

Figure4.1has been recreated from the original paper to demonstrate the basic idea. Figure4.1(a)

shows several masks placed on a simple image at particular locations. Figure4.1(b)indicates which

areas are similar (shown as unshaded, or white) and which areas are dissimilar (shown as shaded,
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Figure 4.1: Basic concept of the SUSAN algorithm for feature detection.

or blue) to the mask nucleus. Extracting features from a similarity measure becomes apparent from

consideration of the ratio of the shaded to the unshaded areas within each mask in Figure4.1(b). The

mask labelled ‘e’ is situated on a homogeneous region and has a maximum area of similarity. When

the nucleus of the mask is close to an edge, the area of similarity, referred to as the ‘USAN’ area, falls

to approximately half that of the total mask area. If the nucleus is close to a corner the ‘USAN’ area

falls even further to approximately one quarter of the total mask area, as shown with the mask labelled

‘a’. By subtracting the USAN area from the total area of the mask a measure of the proximity to a

feature is achieved. The smaller the area of similarity, the more prominent the indication of a feature.

This gives rise to the acronym SUSAN, “Smallest Univalue Segment Assimilating Nucleus”.

This simple and effective feature detection algorithm is controlled by two factors. The first “bright-

ness”, or similarity, threshold controls the initial response and second, “geometric”, threshold deter-

mines the selection of either one- or two-dimensional features. Both of these thresholds were derived

empirically [SB97], but there is little need to question their validity considering the simple nature of

the algorithm. The USAN area (n) for a given pixel is determined from the sum of similar pixels such
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that;

n(~r0) =
∑
~r

c(~r, ~r0) (4.1)

where, using the original symbols [SB97], ~r0 is the vector defining the position of the nucleus in the

image and~r is the vector defining the position of any other point within the mask.c is the similarity

comparison function given by;

c (~r, ~r0) = e−( st )
6

where s = I(~r)− I(~r0 (4.2)

andt is the brightness, or similarity, threshold andI(~r0) andI(~r) are the image intensity values for

the nucleus and any other pixel within the mask. This intensity, or brightness, comparison function

is shown in Figure4.2 and was reportedly chosen to give an optimal balance between enhancement

and stability [SB97]. The smoothing effect of the exponential is obviously preferable to a box filter

0.5

20−20−40

1.0

40

−0.5

s

t

Figure 4.2: Similarity function for SUSAN algorithm.

response and the power to which it is raised can be modified depending on the nature of the image.

An extensive justification for this is given in Smith’s paper [SB97]. Finally the initial feature response

R(~r0) is determined by comparison with the geometric thresholdg such that;

R(~r0) =


g − n(~r0) if n(~r0) < g

0 otherwise

(4.3)
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With reference to Figure4.1, the value of the geometric threshold for an edge is set tog = 3nmax/4

and for a cornerg = nmax/2. An USAN area of greater3nmax/4 must be a homogeneous region

whereas an USAN area of greater thannmax/2 indicates an edge is near by. From this description of

the SUSAN algorithm, it is apparent that the initial feature response will contain multiple indications

of the same feature. These multiple indications are eliminated in the usual way by the application

of Non-Maximum Suppression (NMS) [Dav97, JKS95, SHB99]. However, there are a number of

possible problems in the classification of either one- and two-dimensional features. Smith suggests

that these are solved by a few, relatively, simple checks. This is investigated further in Section4.3. At

this point, it is more appropriate to consider edge and corner features separately.

4.2.1 Edge Detection Using SUSAN

Following the production of an initial response, as given by Equations4.1, 4.2and4.3, a second pass

through the image is required to further enhance the features and eliminate and multiple indications

of the same feature. The application of NMS in the second pass requires knowledge of the feature’s

direction. Before considering this further it is essential to recognize that the initial processing can

produce two distinct types of edge. Smith refers to these as; the “inter-pixel edge case”, where the

nucleus is near an ideal step edge producing only two regions within the mask, and the “intra-pixel

edge case”, where either a thin band or a gently sloping edge produces a small central USAN area

surrounded by two dissimilar regions. In the first, inter-pixel, case the edge direction is perpendicular

to the vector between thecentre of gravity(CoG) of the USAN area and the mask nucleus. The CoG

of the USAN area is calculated using 1st moments. In the intra-pixel edge case the longest axis of

symmetry, calculated from the 2nd moments3 of the USAN area, is used to directly determine the
3The theory of ‘moment’ calculations is covered in most standard CV texts, see Jain, Kasturi and Schunck [JKS95,

chap.2]
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edge direction, which is parallel. It should be noted that the use of the term “moments” is misleading

since the computation involves summing pixels which have values given by Equation4.2and are not

binary valued, which is the more recognized use of moment calculations. The use here is therefore

more accurately described by the calculation ofvolumetricmoments.

The decision as to which case is appropriate for any particular image point is based on the size of

the USAN area. According to [SB97],

“. . . if the USAN area (in pixels) is smaller than the mask diameter (in pixels) then the

intra-pixel case is assumed. . . . If the USAN area is larger than this threshold, then

the centre of gravity of the USAN is found and used . . . according to the inter-pixel

edge case. If, however, the centre of gravity is found to lie less than one pixel away from

the nucleus then it is likely that the intra-pixel edge case more accurately describes the

situation”.

This initial, area-based, condition, described in the first sentence, will be defined herein asTest-One

in order the differentiate the it from the cases which it determines and the subsequent use of moments.

Little justification, beyond that of “applied” logic, is given in the paper for this important decision.

The reason for this, in the opinion of the author of this dissertation, stems from the fact that the mask

size is fixed and therefore the ratio of the area of a single pixel wide band to the total area justifies the

conclusion in most practical situations. However, the author of this dissertation has found this to be

a poorly constructed simplification. The choice for this inter-pixel vs intra-pixel condition does have

important implications on the overall performance of the algorithm. This is covered in more detail in

Section4.3.2.

Once the edge direction has been found, using either the 1st or 2nd moment calculations, the initial

response is thinned using NMS. The basic algorithm for edge detection using the SUSAN algorithm,
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simplified and expressed inpseudo-codeby the author of this dissertation, is shown in Figure4.3. The

original code for all the SUSAN feature detection is available for download from the Oxford site4. It

Before Any: for ( range of pixel values )
setup similarity look-up table (LUT) for B thresh;

1st Phase: for ( all image ){
Mask image to formM ;
assign ptrMc to LUT based on brightness of mask nucleus;
Calc.usanA =

∑
M Mc −Mith;

if ( usanA ≤ G thresh )
assign initrespnR = G thresh− usanA;

}
2nd Phase: for ( all image ){

if ( usanA ≥MaskWidth) {
Calc. 1st moments ofusanA;
if (|CoG| ≥ 1× pixelwidth) {

Calc. edge direction from CoGvector;
perform NMS across edge;
}
else jumpto ‘2nd moments’;
}
Calc. ‘2nd moments’ ofusanA;
Calc. edge direction from longest axis;
perform NMS across edge;

}

Figure 4.3: Basic pseudo-code algorithm for edge detection using the SUSAN algorithm.

should be noted that Equation4.2 is implemented with a look-up table (LUT) which is constructed,

prior to image processing, for the complete range of pixel values and scaled by 100 to accommodate

fast integer operations. Subsequent binary thinning, using Smith’s own rules, is suggested [SB97]

to eliminate small spurs and ensurenumber-of-neighboursconnectivity but this seems to be little

different from standard algorithms for the production of edge strings and an unnecessary expense.

The use ofhysteresisthresholds, as used by Canny [Can86] to eliminate thestreakingeffect on edge

strings, is not required in any post processing stage [SB97]. The production and use of edge strings is

discussed further in Section4.4and Chapter5.

Although not implemented in the original, it is suggested [SB97] that an accurate, sub-pixel, es-
4The SUSAN source code can be found at:http://www.fmrib.ox.ac.uk/˜steve/susan/index.html
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timate of the position of the edge can be found by determining the peak of a three-point quadratic

curve fit perpendicular to the edge. This sort of extra information, which usually includes edge direc-

tion, connectivity and edge strength, or contrast, is often associated with the use of more complex data

structures that describe the edge elements (often termedEdgel’s). Such structures are not implemented

in [SB97] but are an essential element of image processing in theTina framework. Modifications

to the SUSAN algorithms, discussed in Section4.3.2, have been derived and developed for use with

Tina . A small, but important, factor with such data is concerned with the representation of edge

direction. In many cases it may be desirable to specify the edge direction in a0 → 360◦ range with

some specification for the gradient across the edge (light over dark- positive gradients pointing north

equate to0◦). The nature of the SUSAN algorithm does not readily produce this gradient information

so the range of orientation is restricted to180◦.

4.2.2 Corner Detection Using SUSAN

Corner features are processed in a similar manner to that of edges, except that only the larger initial

responses are selected for second phase processing by the lower of the two geometric thresholds

described on page60, in Section4.2above. Smith suggests that, in practical applications, the use of a

wider brightness threshold (≥ 25 in 256 grey-levels) may be desirable to ensure a “suitable” quantity

of features. This has not been necessary in the course of the research presented herein and, unless

stated, a threshold of 20 (in 256 grey-levels) should be assumed.

In the edge detection algorithm the geometric threshold effectively acts as noise suppression and

has no real effect on the selection of one-dimensional features. For corner detection, however, the

geometric threshold is fundamental to the selection of two-dimensional features. The indication of a

corner is only possible when the USAN area is below half the total mask area and, more specifically,

when approaching one quarter. Therefore the smaller the USAN area, the larger the response and the
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more acute the type of corner. However, some tests are necessary to segment corners from the intra-

pixel edge case which are also indicated by small USAN areas, or any otherfalse positiveindications.

The second test, described in the second sentence of the quotation on page61, determines the absolute

distance of the CoG to the mask nucleus by calculating 1st moments of the USAN area. If this distance

is small (in this case less than
√

2 of a pixel’s width), then the initial response is from an intra-pixel

edge case and not a corner. The indicated feature is therefore rejected. An extra test here enforces

the contiguity of the USAN area’s elements, outward from the nucleus, in the direction of the CoG5.

According to Smith [SB97], the latter is only really necessary for images with fine, detailed, structures

or a high proportion of noise and is included as the final validation of a two-dimensional feature since

it does not incur considerable computational cost.

After the tests have validated the presence of a corner, two-dimensional NMS is applied over the

response surface, using a 5x5 pixel mask, to remove all but the maximum indication. As with the

edge detection algorithm, sub-pixel accuracy can be estimated by fitting a quadratic surface to the

initial response, centered on the peak pixel identified by the second phase. This was not implemented

in [SB97] but has been introduced in the course of the research presented in this dissertation in order

to maintain consistency with the edge detection algorithm and the use of ‘Edgel’ structures for sub-

sequent use in the stereo matching/correspondence algorithms described in Chapter5. The feature

strength is given by the interpolated value from the quadratic surface fit used to derive the sub-pixel

position. Feature orientation is defined as being parallel with the direction of the CoG vector. The

pseudo-code algorithm for the modified second phase of the SUSAN corner detection is given in Fig-

ure4.4. In the original implementation, phase two was actually implemented as an extension of phase

one with only two passes through the image data being made. However, it is far simpler to consider
5This second test is apparent from the fact that the USAN area of a valid corner should be restricted to a small sector

within the mask
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2nd Phase: for ( all image ){
if ( usanA ≤ G thresh ) {

Calc. 1st moments ofusanA;
if ( |CoG| ≥

√
2 pixelwidth) {

if ( Contiguous )
assign as valid corner;

} } }
3rd Phase: for ( all image ){

perform 2D NMS;
}

Figure 4.4: Second and third phase, pseudo-code, algorithm for corner detection using SUSAN.

the SUSAN corner detection algorithm in three distinct phases, as shown in Figure4.4.

4.3 Performance Review of SUSAN Edge Detection

The SUSAN algorithm could be one of the most important low-level, image progressing algorithms to

be derived in recent years and yet it has not received the recognition it deserves. This may be due to a

lack of faith in its efficiency claims or in the use of some of the conditional thresholds (often referred

to asmagic numbers) in its implementation. The production of accurate, sub-pixel, edge and corner

responses is dependent on a few, “relatively simple”, conditional statements which appear logical and

consistent. However two of these tests, specifically those in the edge detector, are not implemented

with the same degree of precision that is shown in the rest of the formulation of the SUSAN algorithm

in [SB97].

From Section4.2.1, the SUSAN edge detection uses NMS to thin the edge response. This requires

knowledge of the edge orientation which is determined using either the 1st or 2nd moments of the

USAN area, depending on the which of two cases of edge type, inter-pixel or intra-pixel, occur for a

given mask position on, or near, a feature. The decision on which moments to use is based, primarily,

on the comparison of the USAN area with the diameter of the mask6. This assumes that only a thin
6For the 37 cell mask used, the diameter is 7
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line of a single pixel wide occurs in practical images. This is an over simplification which introduces

the possibility of error. There is no reason why a band of similar pixels, three rows wide, could not

occur in a real image. In such a circumstance, the algorithm, as it stands, would conclude an inter-

pixel case would exist, even though the calculation of the CoG would lead to a zero length vector to

the nucleus and, as such, be unable to determining the edge direction. Smith recognizes this fact in

the implementation with a subsequent condition to the inter-pixel case that requires that, if the CoG is

found to be within a radius of one pixel from the nucleus, the intra-pixel edge case is assumed. 2nd

moments are then calculated and used to determine the edge direction. This is a logical approach to

the problem but leads to twice the amount of processing than that required for either of the two cases

alone. This occurrence should, therefore, be kept to a minimum. Figure4.5 shows the fragments of

source code (reproduced from the original version, with comments replacing the standard code which

is not of interest here) for the two conditional statements which are in question.

........
if (n>600)
{

..........
/* Calculate 1st moments. */
..........
z = sqrt((float)((x*x) + (y*y)));
if (z > (0.9*(float)n)) /* 0.5 */
{

do_symmetry=0;
..........
/* Determine edge orientation and carry out */
/* non-maximal suppression across the edge. */

}
else

do_symmetry = 1;
}
else

do_symmetry = 1;

if (do_symmetry==1)
{

/* Calculate and use 2nd moments */
}

Figure 4.5: Fragment of original source code showing inter-, intra-pixel edge case conditional state-

ments.
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The following is a detailed review of three typical inter- and intra-pixel edge cases that demon-

strate the concerns with the exact values of the condition variables used in the SUSAN edge detection

algorithm.

4.3.1 Analysis of the Threshold Problems in the SUSAN Edge Detection Algorithm

Figures4.6 and4.7 illustrate examples of where the conditional statements in second phase of the

SUSAN edge detection algorithm, as shown in Figures4.3 and4.5, do not always ensure that the

correct case is chosen. In the following discussion the values of the USAN area are simplified, such

that each pixel adds ‘1’ to the total, and the moments are scaled accordingly. Figures4.6(a)–4.6(c)

real

calcusan=17

ed=0.47

r=9.75

NMS applied

(a) edge deleted

calc

real

usan=13 r=13.75

ed=0.29

NMS applied

(b) edge deleted

calc

real

usan=9 r=17.75

ed=0.27

NMS applied

(c) valid edge

Figure 4.6: Examples of suspect cases in SUSAN edge detection where the mask nucleus is (a) and

(b) approaching and (c) at a30◦ corner of a large USAN area.

show the mask nucleus approaching a30◦ corner of some large area of similarity. In Figure4.6(c)

the USAN area is small, only 9 pixels since the nucleus is over the corner, and the initial response is

high, 17.75. The geometric threshold for a corner7 is 26.75 In Figure4.6(b)the USAN area is 13 and

in Figure4.6(a)17 with the initial responses of 13.75 and 9.75 respectively.

Although edge responses are being considered, these particular examples have been chosen specif-
7The first phase, or geometric, threshold is given by0.75× 37− 1 = 26.75.
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ically because they reflect the subtlety of the problem which only manifests itself near corners or

junctions, thus leading to increased gaps in edge strings. In Section4.1, it was stated that one of

the problems with gradient based feature detection was that of poor connectivity at junctions. The

SUSAN algorithm reports [SB97] to have very good connectivity at junctions. However, this can be

either an advantage or disadvantage depending upon how the edge strings are subsequently processed.

If simple, “line”, strings are to be matched, then the lack of connectivity at junctions would mean that

there would be little need for any “long-string” segmentation and therefore much easier approxima-

tion, or modelling, of the lines. Alternatively, if homogeneous regions, orloop edge strings, are to be

extracted, good connectivity simplifies segmentation and reduces the need to bridge any small gaps

around the periphery. In either case, the decision on the use of 1st or 2nd moments should not be left

to such an “apparently” arbitrary choice of thresholds which arehard-codedinto these conditional

statements.

In Figure4.6(a)the USAN area is 17 so the inter-pixel edge case is assumed and the CoG of the

USAN is calculated. The 1st moments of the CoG areCoGx = 15 andCoGy = 7 respectively and

calculating the normalized magnitude of the CoG vector using;

|CoG| = 1
usanA

√(
CoG2

x + CoG2
y

)
(4.4)

yields, in this case, comparison figure of 0.973. Equation4.4is another way of expressing the second

inter-pixel vs intra-pixel conditional statement described on page61 of Section4.2 which is defined

as
√(

CoG2
x + CoG2

y

)
> 0.9usanA in Figure4.5. The latter will be referred to herein asTest-Two

in order to differentiate the original conditional statement from Equation4.4. Note that the original

SUSAN threshold of 0.9 allows for the central pixel which is always assumed to be in the USAN area

and therefore not directly counted.

A value of 0.973, for the case, above suggests that the edge direction of the example in Fig-
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ure4.6(a)can be calculated from the 1st moments as 7/15, or 0.466. This is less than the 0.5 lower

condition for the direction of NMS8 and therefore defined as being vertical. Reference to Figure4.6(a)

shows that this is clearly not the case and the application of NMS across the derived vertical edge

would lead the comparison of the features along the central row of the USAN area and the subsequent

removal of this particular edge element.

Figure4.6(b)demonstrates the situation where the mask has moved to the adjacent pixel. At this

point the initial response is greater. The shape and therefore the moments of the USAN area have

changed toCoGx = 17 andCoGy = 5. Evaluating Equation4.4 yields a figure of 1.36 suggesting

1st moment calculations for the edge direction, leading to the tangent of 0.29 and another vertical

edge being reported. As with Figure4.6(a), this edge element is removed by incorrect application of

NMS along the edge instead of across it. It is only when the mask reaches the corner of this region

of similarity does this situation improve. In Figure4.6(c) the 1st moments areCoGx = 15 and

CoGy = 4, yielding |CoG| = 1.7 and another vertical edge direction from the tangent of 0.27, this

time “arguably” correct9. This element is not removed, regardless of edge direction, because it has

the maximum local response. This particular case is of further interest. If, for argument, the intra-

pixel edge case is assumed and 2nd moments are used to determine edge direction, the element is still

kept but the calculation would yield a horizontal edge. This discrepancy in edge orientation is not an

immediate problem but does become significant to subsequent edge string processing.

The situation demonstrated by Figure4.7(a)highlights not only the possibility of incorrect as-

sumptions about the edge direction but also the inefficiency of using both 1st and 2nd moment cal-

culations for a particular edge element. The USAN area is 22 and Test-One, the comparison of the
8Edge direction in the inter-pixel case is perpendicular to the CoG vector and the direction for NMS is segmented into;

vertical, less than26.6◦ (tan(0.5)), horizontal, greater than63.4◦ (tan(2.0)), or diagonal being between these values)
9This corner element can be considered as either a vertical or horizontal edge with no subsequent NMS problems, only

the feature’s orientation is affected
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Figure 4.7: Further examples of suspect cases in SUSAN edge detection where the mask nucleus is

(a) near a45◦ corner of a large area and (b) & (c) approaching a sharp15◦ corner.

USAN area with the diameter on page61, suggests the use of 1st moments which areCoGx = 8

andCoGy = −17 respectively. However evaluating Equation4.4concludes the use of 2nd moments,

since the computed value of 0.73 is less than the threshold of 0.9. The use of 2nd moments yields a

diagonal edge direction and the correct application of NMS. However, twice as much processing has

been carried out to achieve the correct result. At first inspection it may seem obvious to adjust the

threshold of Test-One, or even remove it altogether. However, this could lead to greater problems with

the more standard vertical and horizontal edges from large USAN areas which could, if using 2nd mo-

ments, lead to an incorrect diagonal edge direction. This particular example may not be a problem, as

the correct result is produced. However, this case has been highlighted here because of the significance

of the computed value of 0.73, which could be used in the second (inter-pixel confirmation) condi-

tional statement. If the threshold in Test-Two was set to say 0.7 then evaluating Equation4.4 would

confirm the the inter-pixel case and the 1st moments used to determine the edge direction. However

this would lead to an incorrect application application of NMS and the edge feature being deleted.

The importance of this illogical suggestion and the relationship between Test-One and Test-Two will
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be covered in greater detail in Section4.3.2.

In the final example, Figures4.7(c) and 4.7(c) demonstrate the opposite problem of correctly

identifying elements in small USAN areas, for instance those created by acute corners. In Figure4.7(c)

the USAN area is 10 and the 1st moments areCoGx = 6 andCoGy = −3 respectively. Test-One

would suggest the use of 1st moments since the area is greater than the threshold. However, Test-Two

would conclude that the CoG is too close to the nucleus and that 2nd moments should be used. The

use of 2nd moments in this case derives a horizontal edge direction and allows the correct application

of NMS. Again the correct result has eventually been achieved. However, there would be no reason

to carry out the 1st moment, CoG calculations if a slightly higher threshold was applied in Test-One.

For the adjacent pixel shown in Figure4.7(c), the situation becomes much worse. The USAN area

is now only 8 and the 1st moments are onlyCoGx = 8 andCoGy = −2 confirming of the use of

1st moments. However, here an incorrect vertical edge direction is determined with the subsequent

removal of a valid element. At the next two pixel positions the edge elements are retained because

their initial responses are much greater than the surrounding edge indications. However, the tip of the

acute corner has become detached from the rest string.

The above examples have shown that while the SUSAN algorithm is, for the most part, efficient

and accurate there are some questions concerning the use of the thresholds in the two inter-pixel,

intra-pixel conditional statements. The introduction of a few anomalies may, at first, appear trivial,

but their existence leads to the possibility of doubt in the SUSAN algorithm. At best these anomalies

lead to reduced efficiency. However, at worse, they lead to incorrect calculation of edge direction,

often with a90◦ phase shift, resulting in the incorrect application of NMS and subsequent removal

of valid edge elements. While these errors amount to no more than a few pixels near corners or

junctions they are sufficient to introduce significant errors into the accuracy of features, particularly

string elements such asend pointsand mid-pointswhich are used in the correspondence of these
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features and are subsequently projected onto the reconstructed model of the scene. Furthermore the

fact that these conditional variables in question can be used to “tune” the final edge response for

subsequent processing warrants further study of their use and interaction with each other.

4.3.2 Tuning the SUSAN Edge Detection Algorithm

In Section4.3 detailed analysis of particular situations where the SUSAN mask nucleus is near cor-

ners, or junctions, revealed that, while the basic SUSAN algorithm is sound, the hard-coded imple-

mentation of thresholds in the inter-, intra-pixel conditional statements lead to the introduction of

errors. Furthermore, the initial inter-, intra-pixel condition should not to be determined by an arbi-

trary choice such as the area of a single, pixel wide band across the mask. However, the conditional

statements could be controlled by an external variable which could improve efficiency and more im-

portantly tune the output. The aim here being to produce either fully connected or distinctly segmented

edge strings.

In order to gain a better understanding of the use and interaction of these thresholds the edge

detection algorithm was repeatedly applied to the test image supplied with the original SUSAN source

code. This is reproduced in Figure4.8for convenience.

Each time the experiment was repeated the Test-Two threshold (|CoG|) was varied in the range of

0.5 to 1.1 for specific values of USAN area threshold (usanAT) in the range of 600 to 2000 (in steps of

200). Values outside these ranges lead to a rapid degradation of performance, which is logical, consid-

ering their function. However, this suggests a motive for the original “hard-coding” of the thresholds.

The percentage of pixels which require both 1st and 2nd moment calculations was recorded in each

case. Figures4.9(a), 4.9(b), 4.10(a)and 4.10(b)show the results from these experiments. When

the Test-Two threshold (|CoG|) is set low, confirmation of the inter-pixel condition is more likely.

However, as the threshold rises the condition becomes less likely and the intra-pixel is preferred. The
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Figure 4.8: Original SUSAN test image.

gain in efficiency is apparent in Figures4.9(a)and4.9(b)where the percentage of both 1st and 2nd

moment calculations is plotted against|CoG|. These results suggest that a threshold above 0.9 leads

to a less efficient algorithm. Below 0.65 the algorithm is very efficient and little more can be gained.

Varying the USAN area threshold (usanAT) has a small, but noticeable, effect on efficiency. This is

logical since the larger this threshold, the greater the number of edge indications that are processed

directly by the 2nd moment calculations. However, interestingly, the efficiency gain is not as great as

that shown previously. In Figures4.10(a)and4.10(b)the effect of varying the area threshold is more

apparent. As the area threshold is increased, the number of intra-pixel cases increases. This appears to

increase the possibility of error near corners, or junctions, leading to a reduction in the total number of

valid edge elements being reported. What is more even interesting, is that this effect is only moderate

below 1600 and not significant below a threshold of 1000, where the results are virtually identical.

In Figures4.9(a)and4.9(b)each plot follows the same general trend in efficiency so there appears

to be little interaction between the two thresholds. However, the results in Figures4.10(a)and4.10(b)

show that there is some small interaction between the two thresholds. The plots with the higher
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Figure 4.9: Results of tuning SUSAN’s inter-, intra-pixel conditions – use of moments.
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Figure 4.10: Results of tuning SUSAN’s inter-, intra-pixel conditions – number of valid edge elements

produced.
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‘usanAT’ thresholds tend to have a flatter response over the range of|CoG| threshold, while the lower

‘usanAT’ thresholds show distinct points of interest at|CoG| = 0.55, |CoG| = 0.7 and|CoG| = 0.9.

The maximum number of ‘Edgels’ occurs at|CoG| = 0.55 with small reductions at|CoG| = 0.7 and

|CoG = 0.9|. This follows the transitions in levels of efficiency shown in Figures4.9(a)and4.9(b).

However, this does not reflect the actual quality of the edge response. Although a few extra ‘Edgels’

are displayed for|CoG| = 0.55 they appear on the baseline of the shallow isosceles triangle of

Figure 4.11(b) (left-hand image, near the corners) and change the single pixel spur shown into a

block of three pixels. It is therefore questionable that this is a better quality response than that from

|CoG| = 0.7. At the |CoG| = 0.9, these features are removed altogether. However, the effect on

quality can, again, only be regarded as marginal. It is clear from these results that the|CoG| threshold

can be fixed at 0.65. Thereby gaining good efficiency, without any significant effect of the quality of

the edge response.

Unless an image contains a lot of fine detail, or noise, the majority of edge elements are reported

by the inter-pixel edge case from large USAN areas where the use of 1st moment calculations yields

the correct application of NMS. This suggests that the primary threshold should be kept relatively

low. However the results show that this is not, as essential, as logic would dictate. Higher thresholds

produce a gradual reduction in the completeness, but not necessarily quality of the edge response.

Figures4.11(a), 4.11(b), 4.11(c)and4.11(d)10 show the edge responses for Test-One thresholds of

1000, 1200, 1400 and 1800, all with the same|CoG|, or Test-Two, threshold. For Test-One threshold

of 1200 or below, the edge response has complete connectivity around right-angle corners and only

small gaps at some ‘T’ junctions and high curvature corners. These small gaps could be subsequently

removed with a simple bridging procedure, incorporated as part of an edge string process. For a Test-

One threshold of 1400 more small gaps begin to appear at ‘T’ junctions and this trend continues as
10Note: The images are not processed up to the frame limit due to the use of the mask window.
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(a) |CoG| = 0.65 and usanAT = 1000 (b) |CoG| = 0.65 and usanAT = 1200

(c) |CoG| = 0.65 and usanAT = 1400 (d) |CoG| = 0.65 and usanAT = 1800

Figure 4.11: Valid edges reported for SUSAN test image demonstrating the algorithm tuning with

thresholds at:|CoG| = 0.65 and ‘usanAT’ = (a) 1000, (b) 1200, (c) 1400 and (d) 1800.
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the threshold increases until, at a threshold of 1800 and above, where no “loop”, edge strings exist.

From these results it is clear that the SUSAN edge detection algorithm can be tuned to an op-

timal efficiency response for both connected and segmented strings, with no extra processing. This

is achieved via the application of a fixed threshold in the secondary, inter-pixel confirmation, condi-

tional statement and the use of an external, parameter for the primary, inter-pixel/intra-pixel, condi-

tional statement with the values of either 1200 or 1800 depending on the desired response. Although

Smith [SB97] has already conducted a statistical analysis of the SUSAN algorithm, a further statis-

tical analysis should be conducted on the use of the “tuning” parameters introduced in the course of

the investigation presented in this dissertation. This should also include a statistical analysis of the

sub-pixel localization and feature orientation both edges and corners. A technique for applying such

an analysis and modelling sub-pixel accuracy is described in [Roc99]. Such analysis would constitute

a considerable distraction from the main emphasis of this research and is therefore recommended for

future consideration.

4.4 Integrating SUSAN with TINA

Integrating SUSAN edge and corner detection into theTina framework has highlighted a number

of compatibility issues with subsequent processing. The issue concerning the connectivity of edges

strings was covered in Sections4.3 and4.3.2. Although the use of the extra parameter suggested in

Section4.3.2assists the generation of edge strings, subsequent processes do not necessarily appre-

ciate this. Figure4.12 compares the result of string processing the edge images created from both

Canny [Can86] and SUSAN edge detection algorithms. Although a similar number of edge elements

(approximately 7800) are present in both images,Tina’s subsequent string processing tends to seg-

ment the already connected SUSAN edges, as shown in Figure4.12(b), while bridging the reportedly
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(a) Canny edge strings

(b) SUSAN edge strings

Figure 4.12: Comparing edge strings after (a) Canny and (b) SUSAN edge detection implemented in

Tina

less connected [SB97] Canny edges, as shown in Figure4.12(a). The connectivity of the strings cre-

ated after the SUSAN edge detection algorithm can be improved by reducing the overall number of

edge elements by raising the similarity threshold. In the Figure4.12(b)was 10 grey-levels (in 256

grey-level) in Figures4.13(a)and 4.13(b)the thresholds are 15 and 20 respectively. Modifications

have been made to the string processing algorithms inTina to switch out unnecessaryhysteresis

thresholds. However, seamless integration has not been achieved to date.

A similar compatibility problem is also apparent in the correspondence matching, see Chapter5, of
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(a) Similarity threshold of 15

(b) Similarity threshold of 20

Figure 4.13: Comparing edge strings after from SUSAN edge detection with the similarity threshold

increased to (a) 15 and (b) 20 grey-levels.

corners from both the Harris and Stephens (or Plessey) [HS88] and SUSAN corner detectors demon-

strated in Figures4.14(a)and4.14(b)respectively. Again, although the number of corners is similar

in both cases, over twice as many correspondence matches are derived from the former detector using

default parameters. Modifying the similarity and geometric thresholds for the SUSAN corner detector

to 15 grey-levels, as shown in Figures4.15(a)and0.6nmax (see Sections4.2and4.2.2) improves the

situation, as shown in Figure4.15(b). However, fewer matches are achieved. The correspondence

matching is derived from the cross-correlation of the local image intensity function about the feature
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(a) matched Plessey corners

(b) matched SUSAN corners

Figure 4.14: Comparing Tina matching after (a) Plessey and (b) SUSAN corner detection algorithms.

position. Examination of the area surrounding unmatched corners reveals that the location of the fea-

ture follows the change in profile of the feature and effectively induces a relative shift in the corner

location.

Full integration of the SUSAN edge and corner detectors into theTina image processing frame-

work requires further investigation and possible modification to either or both systems.
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(a) matched SUSAN corners with thresholds of 15 and0.6nmax

(b) matched SUSAN corners with threshold of 15 and0.5nmax

Figure 4.15: Comparing Tina corner matching after SUSAN corner detection algorithm with modified

thresholds.

4.5 Summary

In the opinion of the author of this dissertation, the SUSAN algorithm for low-level image processing

is one of the most important techniques to be developed in recent years. It is particularly useful

as a pre-process for 3D reconstruction since the basic summing process of the SUSAN algorithm

effectively produces a local integration of the image. Therefore, it has an inherent noise rejection

capability built into the algorithm and there is no need for any of the extra filtering, which tends to

induce localization error in derivative based feature detectors.
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The fact that localization of features is reportedly independent of mask size allows for a fixed size

to be defined and therefore a simple software implementation. This, coupled with the lack of depen-

dency on any image statistics to derive control parameters for the algorithm, leads to a fast, efficient

feature detector. Both edge and corner features can be extracted using the same basic algorithm with

only a single test to select the appropriate second stage processing for an accurate, sub-pixel, edge

or corner responses. The efficiency and accuracy of the edge response is controlled by two condi-

tions, which although questioned in the course of this investigation, can be used to derive either fully

connected or segmented edges for subsequent string processing. However, the use of these requires

caution since they are only valid over a limited range. The integration of both SUSAN feature de-

tectors with subsequent processing is not seamless and modification to remove any bias for derivative

based feature detectors from these is required for optimal use.

A complete listing of the source code for implementation of SUSAN edge and corner detection,

together with modifications detailed in Section4.3.2is given in AppendixD. This source code has

been written explicitly for incorporation inTina and will therefore not execute in isolation.
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Chapter 5

Solving the Correspondence Problem for

Periscopic Stereo

Most of the stereo algorithms used in 3D reconstruction require features, identified from differing

view points, that correspond to the same real world object, to bematched. Matching corresponding

features across two or more images continues to be a challenging task in computer vision. In essence

it is an optimization problem where the important constraints that can be used to solve the problem

are ultimately determined by the solution itself. The features can be either individual pixels or strings

of edge elements and the subject, often referred to simply as thecorrespondence problem, has been

covered extensively, appearing in almost every text on computer vision. Much of this chapter is,

therefore, a discussion of application of known theory. However, few treatments of this subject fully

emphasize the fact that while there are many useful techniques that could be applied to all correspon-

dence problems no one particular solution can be applied toall problems. In fact, most problems,

by the very nature of the features to be matched, the imaging system employed and the subsequent

processing for which the match is required, have “uniquely preferable” solutions. This chapter begins
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with a short review of some of the general techniques and is then followed by a more detailed descrip-

tion of how these have been applied in order to produce sets of corresponding features for use with

both calibration and reconstruction tasks associated with periscopic stereo images. In particular these

techniques are applied to both rotationally corrected and uncorrected periscopic stereo image pairs, as

defined in Section3.2, in order to assess their compatibility and/or limitations with this image data.

5.1 Constraining the Problem

Techniques for correspondence matching are often grouped into either Feature-based or Area-based

methods. This is more of an historic grouping rather than a practical one. At the lowest level of

processing this distinction is valid but most modern solutions tend to combine techniques from both.

Such classifications can therefore be misleading. In the early days of computer vision research much

attention was given to the correlation of images (area-based techniques). The correlation of large areas

of an image is computationally intensive so considerable effort was applied to improving performance

by tuning the selection of the size and location of the search areas for corresponding points. Area-

based methods have the disadvantage that they use the intensity values at each pixel directly and are

therefore sensitive to distortions that arise as a result of changes in scene illumination, camera position

or the camera’s imaging properties. Alternative, feature-based methods, where specific characteristics

such as contrast, length and orientation are matched, tended to be less ambiguous. This is due to

the lower number ofcandidatematches as well as the lack of dependence on the image intensity

function. They also allow higher precision estimates of the disparity between the matched features.

However, these also fall short of the desired performance for many real-world systems. Contrary to the

impression gained from the considerable amount of early literature on each, the two sets of techniques

are not mutually exclusive.
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The correspondence problem is inherently ambiguous and there is no such thing as a perfect

result. In practice mismatches will always occur in a set of corresponding features. However, their

occurrence can be reduced by the application of certain constraints. The following is a description

of the constraints which are often applied to solving the correspondence problem. These constraints

are derived from either the geometry of the imaging system, the photometric properties of the imaged

scene or some specific properties of objects in the real world. Alternative descriptions of these can

be found in the text by Klette, Schlüns and Koschan [KSK98, chap.4] or in the text by Sonka, Hlavac

and Boyle [SHB99, chap.9].

Epipolar: A pair of points, imaged on separate planes from differing views, that correspond to the

same 3D world point are constrained to lie on the epipolar line projected onto each image by the

opposing image ray which joins the optical center and the imaged point. This is a geometrical

law (described in AppendixA) applicable to stereo camera systems and is the strongest possible

constraint which can be applied to the solution of the correspondence problem. It’s application

effectively reduces the search space from a 2D region to a 1D line but requires knowledge of

the relative camera position between the views in order to apply image planerectificationwhich

enforces thecanonicalstereo configuration.

Uniqueness: Excluding self-occlusion, where two points which lie along the same image ray are

seen as a single point, only one point in the second image should correspond to a point imaged

in the first. In practice there are often several candidate matches which could correspond to

the original feature. This problem is more apparent when matching isolated point features than

edge strings but should always be considered.

Mutual correspondence: This is an extension to the uniqueness constraint and states that correspon-

dence must exist from both left to right and right to left images. This is an obvious requirement
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of all correspondence algorithms which helps eliminate mismatches.

Photometric compatibility: The image intensities of corresponding image points should be similar.

This is a rather weak constraint because it assumes that there is little or no absolute or relative

illumination change between image frames which is not generally the case.

Feature compatibility: Only features from the same physical origin should be matched. This sounds

the same as the original definition of corresponding image points, however, some extracted

image features arise from shadow, or reflection, of objects which are not consistent between

views. These type of features should not be used when attempting to solve the correspondence

problem. However, isolating these from usable features (arising from abrupt discontinuities on

the object surface) is virtually impossible unless some prior knowledge of the imaged objects

and the illumination are known.

Geometric similarity: In general, the geometric characteristics of corresponding features do not

change a great deal between views. Therefore, a correlation measure between, either, the local

regions or some specific feature characteristics should be relatively high. This assumes that

the interocular separation is small compared with the scene depth, or that there is little or no

rotation about the optical axis between the views. However, if either of these conditions exist

then the profile of the imaged feature will undergo some form of distortion and the correlation

measure will be reduced.

Disparity smoothness: Assuming a static scene, the disparity calculated for a set of matched features

should change slowly across the whole image. This can be visualized by considering two points

in the scene,p andq, that are relatively close to each other. Each should yield corresponding

image points, in the left and right images, with a small absolute disparity difference. A deriva-
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tive of this constraint, referred to as the “disparity gradient limit”, is used in the popular PMF

correspondence algorithm [PMF85], which is widely referenced.

Disparity limit: There is an absolute limit to disparity, below and above which humans lose the abil-

ity to resolve stereo images. In a computer vision sense this translates into the resolution of

the camera in one extreme and the amount of image overlap between views in the other. With

reference to the geometric similarity constraint above; as the disparity between two views in-

creases the greater the change in the profile of any particular feature and the lower the similarity

with the corresponding feature. If there is some prior knowledge of the relative transformation

between the two camera views then the disparity across the image should be consistent with the

relative camera motion.

Ordering: For an object with a surface of gradually varying depth, two sets of corresponding feature

points should lie in the same order along their epipolar lines in both images. This constraint

does not apply if there are large relative depths on a single object or between separate objects

in the scene.

It should be noted that some of the constraints listed above act in cooperation with each other while

others tend to contradict. This is evident when considering particular sets of circumstances such as,

the greater the number of corresponding elements in close proximity the higher the possibility of

a mismatch due to the increased likelihood of feature similarity. Alternatively, the use of features

extracted from regions with high surface discontinuity would allow for more unique matching, yet

may tend to be rejected by the techniques that impose geometric similarity, disparity limit and ordering

constraints. The use of local properties can achieve reasonable results but global consistency is also

required. Ideally the final distribution of matched points should be uniform across the image and

reflect the volume of the imaged scene and/or the subsequent reconstruction. In practice this can never
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be fully achieved. It is clear that the application of these constraints to the particular circumstances of

the imaging system, the scene and the subsequent computer vision tasks implies a “tailored” solution.

The following section describes the stereo correspondence method employed for the production

of matched image points for use in the re-calibration of periscopic stereo in Chapter6. The method

employed makes use of some of the software tools available inTina , with some modifications. This

is then followed by a section which briefly reviews the methods employed inTina for stereo corre-

spondence of both points and strings for subsequent reconstruction.

5.2 Point Correspondence for the Calibration of Periscopic Stereo

In general, correspondence algorithms are designed to process image pairs derived from a camera,

or cameras, with particular relative motion between the views. At one extreme the cameras could

have a known relative position; at the other extreme, no positional information is available and the

views are assumed to be arbitrary. The matching strategy employed must take into consideration

the particular geometry of the imaging system used. The more general the relative motion between

the views the greater the ambiguity of corresponding match, due to fewer applicable constraints.

However, excessive processing to remove ambiguous matches is an unnecessary expense if the relative

camera motion is known. This is especially true when considering that subsequent processes should be

sufficiently robust to cope with a small percentage of data that are not consistent with the current model

of the system, usually referred to asoutliers. The image pairs, derived from sequential frames, in the

periscopic stereo system have some “known” relative motion and therefore allow for the possibility

of a simplified correspondence algorithm. The use of the term “known” here is deliberately vague

because it is not intended to infer the use of full stereo calibration data which is the more “standard”

use of the term “known” when applied to camera motion. The calibration process, for which the set
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of matched points is required, is not the initial calibration of the system prior to use, but instead, the

periodic re-calibration of the imaging while in use. Although the camera system is initially calibrated,

the calibration accuracy is reduced over time due to fluctuations in the relative camera geometry. This

is more apparent in the case where the rotational correction, identified in Section3.2, has not been

applied. The degradation of the calibration over time is covered in Chapter6. In general the following

applies to both rotationally corrected and uncorrected image pairs but concentrates on the latter.

The “known” relative motion between views allows for the possibility of applying the epipolar

constraint, via image plane rectification, and a disparity limit constraint. Due to the fact that the same

camera captures both images of the stereo pair and that the time difference between frames is small,

both the photometric and the geometric constraints are applied. However, these are implemented in a

relatively “loose” manner. While there is rotation of the image data, about the optical axis, between

successive views of an uncorrected image sequence, this is small and known. The application of

mutual correspondence and the uniqueness constraint are generally regarded as common-place and are

included in the algorithms described in this section. Because the correspondence data is required for a

subsequent re-calibration process corner edge elements are selected for matching. Camera calibration

using image points is discussed in Chapter6. Since the number of point features in an image is likely

to be comparatively low, the disparity gradient constraint is ignored. This is because its use tends to

lead to a less reliable solution if the feature distribution is not reasonably uniform across the whole

image [TM91]. No assumptions are made about the structure or illumination of the scene so the

ordering constraint can not be applied.

Prior to stereo matching, corner features are extracted from both the left and right images and

stored as edge elements, orEdgel’s. In Tina , edge, or feature, images consist only of pointers to

the features where they exist. The corner locations are identified to sub-pixel accuracy, using local

maxima from a 2D quadratic surface fit to the corner strength, or contrast response, and stored along
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with the peak value of the response and the corner orientation. The specific use of these characteristics

will be covered later in this chapter. The ease with which matching techniques can be implemented

is directly related to the definition and structure of the feature representation. The definition used in

Tina is particularly useful because it incorporates apropertieslist which can be used to dynamically

store extra data associated with the feature.

The application of the epipolar constraint is possible for image pairs produced by periscopic stereo

since an estimate of the relative camera geometry between the views is immediately available. How-

ever, in practice, the application of the epipolar constraint involves image plane rectification. This is

similar to the rotational correction that can be applied to the image data in the initial pre-processing

stage described in Section3.2 and demonstrated in Figure3.5. However, a 2D transformation of the

image data about the optical axis can not achieve the canonical stereo camera configuration if the im-

ages are not originally coplanar. Only the application of a 3D transformation to a common reference

frame can yield the desired result.

The standard image rectification process [JKS95] involves interpolating the image data to form a

new image plane in the canonical configuration. Such interpolation of the image data is a degradation

that tends to reduce the performance of all subsequent processes and should be avoided [Moh93].

A method of simulating image plane rectification, without modifying the initial image data, is

given inTina . This is achieved by using a rough, initial estimate of the camera calibration parameters

and calculating a rectification matrix for each camera. These matrices are contained in a versatile

structure which models a stereo camera system with left and right cameras for both the actual and

canonical camera configurations. The matrices therefore map the transformation between the rectified

and original image planes for each camera. The source code definition ofTina ’s camera models is

given in AppendixE for ease of reference here and more specifically for detailed use in Chapter6.

Simulated image plane rectification is implemented by applying the rectification matrix to the
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position of every feature identified in the original image. The rectified position for the feature is then

stored, together with the original, image plane, position, in the ‘Edgel’s properties list1. A conditional

statement in the access function for feature location selects either the rectified or true image position.

The use of access to ‘Edgel’ structures via their address, stored in the image array, is extended in

Tina to create arectified, row-indexedlinked list of the features. This facilitates sequential raster

access via an efficient form of look-up-table.

Using the software tools identified above, the search for candidate matches in the second image

is simplified (computationally speaking). However, it is not possible in practice to reduce the search

space to a single line. The search can be constrained to a band about the epipolar line but no more.

Even if the system were fully calibrated, the concept of a perfect epipolar line is not practical because

higher accuracy calculations of a feature’s position on the line could lead to many valid matches be-

ing ignored. At best, the epipolar band should include±1 single row of pixels (simulated via the

row-indexed linked list) to allow for the maximum possibility of finding the correct match. While

the epipolar band can be widened to accommodate a less accurate estimate for the initial calibration

parameters, an excessively wide band would negate all the advantage of applying the epipolar con-

straint in the first place. This idea of a “variable width”, epipolar band is useful for a dynamic system

which automatically maintains its own calibration, but would require a heuristic measure for the initial

setting. The default width for the epipolar band, recommended inTina , is±3 rows.

Although the search space has been constrained it is still necessary to select the most likely match

from a set of possible candidates that lie within the epipolar band. A weak measure of correspondence
1Apart from the other useful tools contained withinTina , the simulation of image plane rectification using the rectified

position stored in the properties list and it’s fast access via the row index linked list was fundamental in it’s choice as the

preferred image processing framework to support this research.
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is given by the absolute contrast, or strength, values for each feature,

|Il − Ir|
(Il + Ir)

(5.1)

whereIi is the intensity of the pixels for the potential match between images the leftIl and rightIr.

This is not sufficiently accurate to ensure a low percentage of mismatches. However, it is useful for

the rejection of very dissimilar features prior to the next stage of processing (say reject all≥ 0.6). A

more stringent measure is necessary. The standard technique is to apply local area cross-correlation

to patches of the original image data centered on the location of the candidate match. The form used

in Tina 2 is given by:

cm(p, q) =

n∑
i=−n

m∑
j=−m

Il [px + i′, py + j′] Ir [qx + i′, qy + j′] e
−
(
iσ2+jσ2

4σ2

)
√
n (Ik)

2 + n (Ik+1)2

where n (Ik) =
n∑

i=−n

m∑
j=−m

Ik
[
kx + i′, ky + j′

]
e
−
(
iσ2+jσ2

4σ2

)
for the kth image (5.2)

and wherep and q are the pixels of the candidate match with coordinates given by(px, py) and

(qx, qy), i and j are the indexing coordinates in the correlation patch andi′ and j′ are modified

coordinates to interpolated values for the image data covered by the patch,m = n = 2 for a 5 × 5

correlation patch, and the nominal value forσ is 3. This is explained later. If the correlation measure

(cm) is high (greater than0.98) then a match is fixed and added to an ordered list of all potentially good

matches in the epipolar band for that feature point. These are then stored in the properties list for the

feature concerned. Support measures could be added to the correlation measure at this point in order

to strengthen the match. However, this is not implemented inTina . In practice the list should contain

only a few potentially good matches. A large number of matches would indicate that the threshold for

the correlation measure is set too low. The whole process is repeated for every feature point identified
2The form of local area correlation use inTina differs from the standard found in the literature by not normalizing to

the local image intensity function
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in both the left and the right images. The final stage of the whole correspondence process is then to

select the best match in each case. This can be achieved using a measure of the match strength already

stored or, alternatively, a rejection of all the “less than desirable” matches. The latter is often referred

to asrelaxationand covers a host of techniques that apply additional support measures. Examples of

these are the ordering constraint, disparity gradient limit or some combination of global measure that

reduces the number of competing matches until the only best remains.

5.2.1 Support Measures for Correspondence Matching

The above are largely standard techniques and examples can be found in many of referenced texts.

Of particular interest however, is work published by Thacker and Mayhew [TM91] and Zhanget

al [ZDFL95]. The first, because of its connection with the software tools described above and the

second because it offers an alternative approach which includes an example of a relaxation technique.

In the latter, the assumption is for cameras in arbitrary positions and the task is to recover the unknown

epipolar geometry. In such circumstances the correspondence algorithm must be particularly robust

since the search area consists of large areas of the image and the number of potentially good matches

is high. Initially, a standard correlation measure is used and lists of potential matches are constructed

similar to that described above. Then a support measure is calculated for all the matches based on a

number of constraints. These include a disparity limit and smoothness, both weighted, the uniqueness

constraint and a directional compensation. The latter is reportedly [ZDFL95] required because the

support measure is not symmetric from left to right and right to left. This method is similar to that

applied in the PMF algorithm [PMF85] previously referenced. However, instead of employing a

winner-take-allor looser-take-nothingstrategy for resolving the ambiguity, a “some-winners-take-

all” technique is applied. This correspondence algorithm is reportedly very robust but considerably

more complex than more standard approaches and far more complex than that required for periscopic
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stereo. In the method reported by Thacker and Mayhew [TM91] the correlation measure includes a

Gaussian weighting function which allows the measure to vary between 0 and 1 (1 being good)3. The

assumption made [TM91] is that there is little or no rotation about the optical axis between the two

camera views. This does not apply to periscopic stereo as demonstrated in Figure3.5earlier.

Delaying the application of the rotational correction of the image data derived from periscopic

stereo has distinct implications to the implementation of the local area correlation. If the correction is

not applied prior to this stage of the processing chain then the correlation of image patches must be

able to compensate for the distortion in the image data. Ideally what is required is a method of local

area correlation which is rotationally invariant. The standard, spatial domain, technique for correlation

between image planes does not handle rotations of the image data. However, techniques do exist in

the spatial-frequency domain [CP76, AR84]. However, these are considerably more complex than is

desirable for this particular task.

Techniques that, while not rotationally invariant, are reportedly able to handle large distortions in

the feature profile in the spatial domain were proposed by Lane, Thacker and Seed [LTM94]. The

techniques, referred to asstretch- andshear-correlation, apply correlation towarpedimage blocks in

a recursive manner until the best fit in accordance with the epipolar geometry is achieved. However,

a good estimate of calibration is required for the initial image rectification defined by the epipolar

geometry. This is not necessarily available, depending on the level of degradation of the calibration

accuracy for which the correspondence data is required. Error in the calibration accuracy is effectively

passed to the rectification of the image plane and therefore the localization accuracy of the features.

Since these are matched and passed to a re-calibration process a feedback loop is created which can

lead to either positive of negative effects. These algorithms also incorporate the disparity gradient

constraint, in order to reduce the possibility of mismatches to a minimum, and therefore incur higher
3More standard forms (there are a number of alternatives) of correlation give a measure between±1
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computational costs. These algorithms, unmodified, are not optimal for correspondence matching for

subsequent re-calibration considered in this section. They are however revisited in Section5.4.

An alternative, approximation to the concept of warped image patches can be found in the source

code forTina . This method is not referenced and does not appear to have been published. The

idea appears (without reference this is an assumption on the part of the author of this dissertation)

to attempt to simulateshear-correlation by using the orientation of the corner feature to guide the

warping of the image patches. This idea has some merit since, in general, the profile change of a

feature between views is proportional to the change in orientation. Another alternative approximation

to shear-correlation, offered by the author of this dissertation, combines the idea of guiding the amount

of warp to apply to the interpolated images patches with thepseudo4 calibration provided by the

inherent camera geometry of periscopic stereo. Using the image position of a candidate match as

the centre, a warped (rotated about the centre position) 5x5 patch is constructed from the image

plane by applying quadratic, surface fit, interpolation to positions determined by either a±4◦ rotation

dependent on a either a left-to-right or right-to-left match, as shown in Figure5.1.

direction of sheardirection of shear

5 x 5 image patch5 x 5 image patch

left hand image right hand image

Figure 5.1: Simulated shear correlation with fixed rotation.

4The relative camera geometry can be calculated, as described in Chapter3, and provides a good initial estimate of the

epipolar geometry.
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Apart from these two ideas of extracting warped correlation patches, a third, more obvious, option

is apparent. Due to the fact that the vergence angle between frames is small and the frame capture

rate is almost constant, as discussed in Chapter3, warping the image patches for correlation may not

be necessary for an acceptable percentage of mismatches. The number of acceptable mismatches, as

discussed in Chapter6, is open to debate. Not attempting to model the change in feature profile is a

questionable premise. In summary, Figure5.2 shows the pseudo-code for the point correspondence

algorithm discussed in this section. The algorithm applies equally to for all three correlation patch

techniques, however, the rotated patch is quoted.

initially: from a set of corner Features (Fmi
) for mj images,

wherej = 1, 2.
preproc: for ( mj ) {

Simulate image-plane rectification (by constructing
a row indexed LUT of pointers toFi)
from the “known” relative disparate views; }

correspondence
matching: for ( m1 to m2 ) {

for ( Fi in mj LUT ) {
for ( epipolar band inmj+1 LUT ) {

if ( ! norm(|I1 − I2|) ≥ 0.6 ) {
Compute Correlmeasure over 5x5 patches
with 2nd image patch rotated by±4◦;
if ( Correl measure≥ 0.98 ) {

Fix match and store in list with
Correl measure;

} } } } }
for ( m2 to m1 ) { Repeat above; }
for ( all match lists ){

if ( ! mutual correspondence && unique )
throw away match;

}

Figure 5.2: Pseudo-code for the point correspondence algorithm
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5.3 Assessment of Image Patch Correlation Techniques

Although it is not the aim of this chapter to compare and contrast the performance of image patch cor-

relation techniques, the results presented here were acquired as consequence of testing the proposed

algorithms. This is not intended as proof to support either method and the author of this dissertation

admits that the final choice of method in this implementation is largely intuitive.

The performance of correspondence algorithms is largely subjective and there is little evidence

in the literature of statistical analysis. A notable exception was presented by Thacker and Court-

ney [TC92]. However, such extensive comparative methods are beyond the scope of the research

presented in this dissertation. The following performance measure is only used to give an indication

of performance.

PM (m1,m2) =
(Mt −Mb)
Fmin

(5.3)

wherePM (m1,m2) is the performance measure for a given stereo image pair,Mt is the total number

of matches (Fixed plus Good, orMf + Mg), Mb is the number of bad matches. Fixed matches are

those computed to be the most preferred according to the correlation measure and good matches are

those in the list of candidate matches which fall inside the uniqueness constraint.Fmin is the lower

of total number of features in either the left or right-hand images. The maximum possible score is

1.0 since if all the possible matches were good, with no bad matches, this would equalFmin. The

number of bad matches was derived by inspection of the stereo pairs, examples of which are given in

Figure5.3, using a manual , “matched feature”, selection tool available inTina . Arbitrary epipolar

lines are shown in Figures5.3(a)and5.3(c) in order to demonstrate the relatively small degradation

in the calibration accuracy at the extremes of the five stereo pairs. Each stereo pair is selected from

three different sequences with Figure5.3(b)being the ideal case. The smaller crosses indicate when

the matches are those labelled as “good”.
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(a) frames 22 and 23 of 1st sequence

(b) frames 22 and 23 of 2nd sequence

(c) frames 38 and 39 of 3rd sequence

Figure 5.3: Examples of point correspondences from (a) 1st, (b) 2nd and (c) 3rd sequence.

Table5.1 contains the results of five different examples where all three methods, labelled;Or-

warp for feature orientation guided warping,std-patchfor standard local area image correlation and

rot-patchfor the±4◦, rotated patch, were applied to three sequences (labelled ‘Seq’) of stereo image

pairs. Each set of five stereo pairs simulates when the calibration accuracy is both high and low.

The frame numbers are given for reference only. The varying accuracy of calibration is achieved by
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Or-warp std-patch rot-patch

Seq Frames Fmin Mf Mg Mb PM Mf Mg Mb PM Mf Mg Mb PM

18:19 172 14 5 19 0.0 18 7 15 0.06 20 6 15 0.06
19:20 173 50 3 3 0.28 55 4 3 0.32 58 3 2 0.34

1st 20:21 165 76 4 4 0.44 98 6 7 0.60 101 7 5 0.62
22:22 137 54 3 1 0.41 77 2 2 0.56 77 1 2 0.57
22:23 116 20 1 5 0.14 18 0 3 0.13 18 0 3 0.13
20:21 166 13 3 16 0.0 11 2 13 0.0 9 3 12 0.0
21:22 139 12 3 8 0.05 15 3 9 0.06 16 1 7 0.07

2nd 22:23 119 58 2 1 0.50 85 0 1 0.71 85 0 1 0.71
23:24 106 60 2 2 0.57 81 0 1 0.75 81 0 1 0.75
24:25 96 15 1 0 0.16 19 0 0 0.20 19 0 0 0.20
38:39 149 9 4 13 0.0 12 4 16 0.0 12 4 16 0.0
39:40 123 13 1 6 0.06 17 0 5 0.10 18 0 6 0.10

3rd 40:41 103 55 1 1 0.53 63 0 1 0.60 64 1 1 0.62
41:42 92 58 0 2 0.61 67 0 0 0.73 67 0 0 0.73
42:43 80 22 0 0 0.27 26 0 0 0.32 26 0 0 0.32

Table 5.1: Comparative results for point correspondence algorithms applied to uncorrected periscopic

stereo images.

using a “weak” (not particularly accurate) calibration derived from a rotationally uncorrected image

sequence using only the central,fronto-parallel5, stereo image pair. As each subsequent stereo pair

is selected, in either a clockwise or counter clockwise direction (in a rotationally uncorrected sense),

from this central position the error in the position of the image data with respect to the epipolar

constraint increases. Therefore the possibility of matching the corresponding image point is reduced

in proportion to the displacement through the image sequence. This simulation of low calibration

accuracy is explained further in Section6.3.

Direct comparison of the results is not statistically significant. However, applying the performance

measure to the data presented in Table5.1 it is apparent that both the second and third techniques

perform better than the first, since their scores are higher (compare the columns labelled ‘PM ’), with

the latter marginally better overall. The fact that correlating using the uncorrected image patches

produced virtually identical results supports the concept that, in this particular situation, the4◦ rotation
5implies the image plane is parallel to the scene with no rotation about the optical axis, see the glossary.
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about the optical axis has a minimal effect.

A similar test was conducted on a single, rotationally corrected, image sequence, derived from

the 2nd sequence, using “more” stable calibration parameters. The calibration in this case is “more”

stable due to the absence of the rotation about the optical axis. This is covered in Chapter6. Table5.2

Or-warp std-patch rot-patch

Frames Fmin Mf Mg Mb PM Mf Mg Mb PM Mf Mg Mb PM

20:21 174 71 3 3 0.41 91 8 10 0.51 91 6 10 0.50

21:22 133 62 3 3 0.47 76 5 4 0.59 77 5 4 0.59

22:23 102 50 2 3 0.48 72 1 3 0.69 71 0 2 0.62

23:24 85 41 2 3 0.47 61 1 1 0.72 61 1 1 0.72

24:25 85 36 3 3 0.39 57 0 2 0.65 57 0 2 0.65

Table 5.2: Comparative results for point correspondence algorithms applied to rotationally corrected

periscopic stereo images.

contains the results for this experiment and show that while the standard and rotated correlation

patches identify more fixed matches, the number of bad matches is far greater than that for the orien-

tation guided patch and/or the previous results. The reason for this is demonstrated in Figures5.4(a)

and5.4(b)where the silhouette image frame in Figure5.4(b)creates more corner features at the inter-

face with the image data than the former. These features are naturally included by the correspondence

algorithm and processed. This leads to a distinct reduction in the performance of the standard and

rotated correlation patches but has a lesser effect on the orientation guided correlation patch. This is

due to the fact that the feature orientation is not consistent along these contrived edges.

This anomaly also demonstrates the continuing problem of dealing with the silhouette frame

throughout the remaining process chain. An obvious solution is to bound all processing by aregion

of interest(ROI) calculated from the size of the natural image frame and the frame number within

the sequence. The concept of using a ROI is common place in many image processing environments,
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(a) orientation guided correlation patch

(b) standard correlation patch

Figure 5.4: Point correspondence from region correlation using (a) orientation guided and (b) flat

image patches on a rotationally corrected image sequence.

includingTina . However, the ROI must be the same for both images in the stereo pair. This restricts

the maximum ROI to always be within silhouette frame±4◦, which considerably reduces the viewing

volume to about±1/4 of the sequence from the cardinal point. Due to this limitation such a scheme

has not been adopted.

In summary; the results of these experiments show that if the image sequence is rotationally

corrected prior to correspondence matching then the warping of the correlation patch should be guided

by feature orientation. If, however, the sequence is uncorrected the rotated patch should be used.
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5.4 Correspondence for Reconstruction

Section5.2 concentrated on solving the correspondence problem and producing a set of matched

point features for subsequent re-calibration of a periscopic stereo imaging system. There also exists

the requirement to provide a set of corresponding features for use in the estimation of the scene

depth and subsequent reconstruction. The production ofdepth maps, or disparity images, is discussed

in Chapter7. Disparity images consist of either isolated point features or lines and conic sections

where the depth estimate is encoded by the pixel value.Tina provides a number of stereo matching

algorithms for the latter, edge string, features. These are briefly reviewed in this section, which has

been included here in order to widen the overview of stereo correspondence algorithms and aid the

discussion of future work in Section5.5and also later in Chapter7.

In Section5.2 it was suggested that a small percentage of mismatches, or outliers, were permis-

sible in the correspondence data because subsequent calibration should, in general, be sufficiently

robust to accommodate their existence. However, if the correspondence data is required for recon-

struction then no such relaxation should be tolerated. The correspondence algorithm must therefore

include more stringent checks to reduce the possibility of outliers to a minimum.

A general feature-based correspondence algorithm is given inTina which incorporates a num-

ber of options for match and support cost functions and list ordering to yield an optimal match list.

Following image plane rectification using the row indexed method described in Section5.2 and the

calculation of a central disparity, a disparity window is created. This window constrains all candidate

matches to fall within a valid range of disparity set by the central disparity estimate, the image di-

mensions and an upper and lower disparity threshold, all of which are set by external, user defined,

parameters. A disparity histogram is then constructed from an initial match of edge strings accessed

via the rectified row index of the left and right images. The matches are therefore consistent with
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the epipolar constraint. The disparity is calculated between the centroids of the matched strings. A

selection of match options are available throughTina’s tool interface. These are based on matching

either ‘Edgel’ orientation, contrast, a combination of both or can include all features in the initial

match set. The disparity histogram is then used to update the valid disparity range across the im-

age, effectively implementing a disparity gradient constraint for later use. A list of matched edge

strings is then constructed for both images based on the match function applied through the epipolar

constraint, the disparity gradient and a uniqueness constraint implemented by labelling the matched

strings. Match support structures are then added to the list of potential matches in order to keep

track of the support for each match accumulated over the number of consistent elements in a whole

string match process. Other support functions are available but the ‘whole string match’ support is

recommended inTina . The final stage of processing is the ordering of the match list to yield the

preferred match. Three options are available. A best match at the string matching level, awinner-

take-allscheme applied to all competing matches and a dynamic programming scheme which selects

an optimal ordered match list by applying cost functions to the original constraints of the competing

matches.

A detailed review of these methods has not been completed. However, the initial assessment of

application to both rotationally corrected and uncorrected periscopic stereo image pairs has shown

conflicting results. Figure5.5 demonstrates some of the results of applying the same feature-based

stereo algorithm to a rotationally corrected, as shown in Figure5.5(a), and uncorrected, as shown in

Figure5.5(b), image pairs. In Figure5.5(a)the match performance of the algorithm is good and there

are few mismatches. However,, the inclusion of the silhouette frame does induce mismatch segments

as shown on the right hand side of the bookcase and in the top left hand corner of the right hand image.

The number of matched horizontal strings is naturally lower than non-horizontal strings due to the

increased ambiguity of matching along the same raster line. In Figure5.5(b)the match performance
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(a) corrected periscopic stereo pair

(b) uncorrected periscopic stereo pair

Figure 5.5: Featured based stereo correspondence of (a) rotationally corrected and (b) uncorrected

image pairs.

does not appear as good. Assuming the stereo calibration has an acceptable level of accuracy (as

demonstrated by the inclusion of the epipolar lines in the Figures5.5(a)and 5.5(b)) and considering

that there is only a4◦ difference between the feature orientation of corresponding edge strings, this

feature based algorithm should be able handle the uncorrected images. It should be noted that only

specific edge strings for matching since selecting every string would introduce more highlighted detail

and make the visual comparison much more difficult. This apparent lack of performance in the case

of the uncorrected images is a concern and should be the subject of further investigation.

It is known [QK96, MK98] that, in general, line features offer more flexibility to 3D reconstruction

than point features and lead to more detailed models of the scene. These feature based stereo matching
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techniques are therefore important to large-scale scene reconstruction.

During the discussion of possible solutions to the correspondence problem in Section5.2the tech-

niques, referred as stretch- and shear-correlation [LTM94], was mentioned. These techniques are able

to produce correspondence matches of features, in spite of changes in feature profile, by employing

a recursive search along the epipolar line with a range of warped correlation patches. The range of

warping, which equates to variation in the width of the correlation patch, is reportedly [LTM94] con-

sistent with enforcing a cyclopean disparity gradient limit along the epipolar line. In [LTM94] actual

image plane rectification is applied, by interpolating the image data at positions specified by the cam-

era’s rectification matrix, prior to correlation. The algorithm also employs edge enhancement and

filtering to pre-condition the image data prior to correlation of the warped patched. However, edge

detection, is used to generate the positional information, to sub-pixel accuracy, required to construct

disparity images based on non-horizontal edge strings. Non-horizontal edge strings are used in order

to improve the stability of the algorithm which attempts to remove all ambiguous matches by using

the disparity gradient limit.

The stretch-correlation method is, reportedly [LTM94] preferred and the technique was extended

in [CLTS97] to incorporate a temporal, feedback loop. This involves the use of the previous disparity

image to seed the matching process in the current frames. The use of this temporal information

improves both reliability and efficiency by effectively reducing the search area along the epipolar line.

Although edge strings provide the initial data set, only 3D point data is produced. No attempt was

made to fit lines, or conic sections, to this 3D data.

The application of stretch correlation to rotationally corrected and uncorrected periscopic stereo

images yields consistent results in both cases. The stretch- and shear-correlation algorithms were

designed specifically for implementation in hardware and therefore are not optimized. The original

paper [LTM94] concedes that the popular PMF algorithm [PMF85] is considerably more efficient. In
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the short term, use of the stretch-correlation algorithm for the production of correspondence data for

periscopic stereo reconstruction appears limited due to its computational cost. However, its implemen-

tation in hardware could lead to real-time operation that would certainly be applicable to large-scale

scene reconstruction by a mobile periscopic stereo system. The use of this temporal stereo algorithm

is demonstrated in Chapter7.

5.5 Concluding Remarks

In the introduction of this chapter it was stated that while solutions to correspondence problems may

have common elements, they require “tailoring” to the particular set of circumstances relating to

the imaging system, the type of corresponding feature and the subsequent process that receives the

matched data set. This is evident in the discussion of the techniques developed for point correspon-

dence and the techniques employed inTina for both point and line correspondence algorithms.

This chapter has reviewed a number solutions to the stereo correspondence problem, applied to

both point features and edge strings, with particular attention to their applicability to both rotation-

ally corrected and uncorrected periscopic data. A simple technique, which simulates shear correlation

using a±4◦rotated patch, has been presented for the point correspondence in uncorrected periscopic

stereo image pairs. Although this technique has not been conclusively tested, initial results show an

overall level of performance better than the techniques reviewed. The rotated patch technique has

therefore been adopted for the generation of corresponding point data for subsequent re-calibration

of periscopic stereo using uncorrected image data. The technique recommended for point correspon-

dence for rotationally corrected periscopic stereo image data is the feature orientation guided, warped

correlation technique found in theTina library. Further work is required to fully validate these tech-

niques.
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The review of techniques applicable to the generation of corresponding features required for sub-

sequent reconstruction has been brief. Although there is some concern about the application of the

featured based algorithm to rotationally uncorrected periscopic stereo image pairs, the techniques re-

viewed are capable of processing both corrected and uncorrected periscopic stereo image data. The

stretch correlation algorithm is an established solution which is unaffected by the peculiarities of

periscopic image data. The design appears optimal for matching corresponding features for sub-

sequent reconstruction but less so for re-calibration. Both the featured based and stretch correlation

techniques are referenced later in Chapter7. Further work is required to validate the initial assessment

of the applicability of these techniques to periscopic stereo.
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Chapter 6

Calibration of Periscopic Stereo

Camera calibration is fundamental to the capabilities and performance of computer vision systems

used for the 3D reconstruction of objects or scenes. The method of calibration directly affects the ac-

curacy of the resulting model of the imaged scene and the type of reconstruction possible, as described

in Chapter2. This chapter applies two published techniques on camera calibration [Tsa87, TM91] to

periscopic stereo and introduces a new emphasis on some of the key issues. Specifically, this chapter

presents a new method for combining the two primary calibration techniques, grid calibration and

epipolar calibration. The prescribed calibration algorithm includes a published technique [TM91],

suitably modified, for updating the camera model over time. These methods apply to the calibration

of both corrected and uncorrected periscopic data. This chapter begins with a review of the basic

types of calibration in standard systems. Reviews of camera calibration techniques can be found at

CVOnlineor for more detailed treatments, refer to the texts by Faugeras [Fau93] and Hartley and

Zisserman [HZ00].

Although a scaled Euclidean, or metric, reconstruction is possible with uncalibrated image se-

quences [PKVvG98], the cameras in a vision system should ideally be calibrated in order to achieve
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the best possible reconstruction results. In photogrammetric studies, camera calibration is referred

to as solving theorientation problems. The two basic problems differentiate between recovering the

internal (orintrinsic) and external (orextrinsic) parameters of the camera’sprojection matrix. The

third problem referred to asrelativeorientation, recovers the relative transformation between the two

camera views. The basic theory of the perspective camera model with intrinsic and extrinsic param-

eters, together with the geometry ofstereopsis(two-view imaging) are given in AppendixA. The

terms,internal, external, andrelativecamera parameters will be used throughout this chapter.

The particular method employed for the solution to the orientation, or camera calibration, problem

depends on one of two possible configurations for the imaged scene.

• Known scene: where the position of a minimum of six points in the world and the corresponding

2D image points are known. These correspondences form a set of linear equations which can be

solved and the camera parameters recovered by various forms of matrix decomposition. This is

often referred to asgrid calibration because of the use of a calibration object, or grid, placed in

the scene which defines the world points.

• Unknown scene: where nothing is know about the scene, however, the corresponding image

points from two or more views of the same world points are recovered to form a set of linear

equations. These equations can be solved by either linear or non-linear methods and the camera

parameters estimatedup to scale. The termup to scalerefers to the fact that there is no prior

depth information in this configuration and therefore a normalized camera model is constructed

without any absolute scale. A number of solutions are possible, each depending on the relative

motion between the two camera positions. This motion constraint has two distinct possibilities:
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– Known camera motion: which has three specific geometries:

1. Pure translation.

2. Pure rotation.

3. Both rotation and translation.

– Unknown camera motion: the most general case, often termedself-calibration[FLM92].

Stereo calibration from an “unknown” scene can be described in general asepipolar calibration

because of the explicit use of the epipolar constraint reviewed in AppendixA and used in the solution

of the correspondence problem in Chapter5. This term is preferred toself- or auto-calibrationin

this dissertation since it does not imply anything about the scene. The motive for this is explained in

Section6.4.

In Chapter2 it was stated that full Euclidean reconstruction is only possible if some world ref-

erence is known. Therefore, solutions to the calibration from an unknown scene, regardless of the

motion constraint, produce either restricted camera models and/or varying degrees of reconstruction

ambiguity. That is either an affine camera that models parallel projection is assumed or only an affine

reconstruction is possible. A number of solutions have been presented for the various camera con-

figurations [PH95, MvGvDP93, Har94, HMDB95, MF92, ZDFL95] and types of scene and there is

some diversity in the opinion of researchers concerning the preferred solutions given particular cir-

cumstances.

The relative camera motion between the views in periscopic stereo is “known”. This allows a

useful simplification to the solution of epipolar calibration. Furthermore the use of a single camera

yields fixed intrinsic parameters between stereo views. The aim of this chapter is therefore to in-

vestigate methods capable of producing full camera calibration for both rotationally corrected and

uncorrected image pairs which will ultimately allow periscopic stereo to be used to estimate physical
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measurements of the scene.

Throughout this chapter reference will be made of the single camera and parallel camera models

defined inTina . The source code definitions of these are given in AppendixE for ease of reference.

6.1 Grid Calibration

The concept of relating 3D world points to 2D image points viasimilar trianglesis discussed in Chap-

ter3 and in AppendixA. Knowing the coordinates of a set ofn 3D world points and the corresponding

images points, a set of linear equations can be formed such that,

x̃n = PX̃n (6.1)

wherex̃n andX̃n are the image and world points in homogeneous coordinates andP is the camera

projection matrix. The coordinates of the 3D world points are defined by the calibration target, or

grid, and referenced to some chosen world origin. The most referenced solution for grid calibration

found in the literature is that presented by Tsai [Tsa87].

6.1.1 Tsai’s Method

First the coordinates of all the corresponding image points are converted into their equivalent camera

coordinates as:

xc =
(xi − u0)d′x

sx
and yc = (yi − v0)dy (6.2)

where;u0 andv0 the coordinates of the principal point,sx is a scaling factor which is initially set to

one and derived explicitly later,dy is the vertical distance between two sensor elements on the CCD

array,d′x is the horizontal distance between two adjacent pixels calculated fromd′x = dxNcx/Nfx,

wheredx is the horizontal distance between adjacent sensor elements,Ncx is the number of sensor

elements in a row andNfx the number of pixels in the image row for the current resolution.Ncx
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anddx are often given in the camera’s data sheet but can be derived by experiment where an image

of a known square target is capturedfronto-parallel1 and the number of pixels is divide by the actual

measurements of the square in millimeters. This is described in detail in Reg Willson’s tutorial on

Tsai’s calibration2. This initial stage effectively defines the camera’s internal parameters, excluding

f , in EquationsA.6 andA.7 in AppendixA and removesK from consideration in EquationA.8.

The next stage is to construct a matrixM from sets of linear equations of the form given by

Equation6.1. Considering only the Euclidean coordinates, the linear equations for transformation of

3D world points to 2D image points in the camera coordinate frame is given as:

x =



xc1

xc2

...

xcn


=



yc1Xw1 yc1Yw1 yc1Zw1 yc1 −xc1Xw1 −xc1Yw1 −xc1Zw1

yc2Xw2 yc2Yw2 yc2Zw2 yc2 −xc2Xw2 −xc2Yw2 −xc2Zw2

...
...

...
...

...
...

...

ycnXwn ycnYwn ycnZwn ycn −xcnXwn −xcnYwn −xcnZwn





a1

a2

...

a7


= M A

(6.3)

whereA is the 7-vector solution, from which the external camera parameters are derived, andM is an

n by 7 matrix defining the problem space. This only applies if the calibration points are derived from a

non-coplanar calibration grid. If the calibrations points are all coplanar then the terms containingZw

are removed from the problem space, as recommended in [JKS95, KSK98, Wil94], thereby reducing

A to a 5-vector. The missing parameters must then be determined indirectly, as described later.

The use of more than seven points (continuing for the non-coplanar case) leads to an over-

determined set of equations which can be solved for the vectorA using a number of methods:

• The pseudo-inverse technique (orMoore-Penroseextension of the generalized inverseA+)
1see the Glossary for terms which are initalics.
2Reg Willson’s tutorial and source code is available from:

http://www.cs.cmu.edu/afs/cs.cmu.edu/user/rgw/www/TsaiCode.html
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where,

A = (MTM)−1MTx (6.4)

is recommended3 in [KSK98].

• Single Value Decomposition (SVD)4 whereM can be decomposed into the product of three

matrices such that,

M = U D VT (6.5)

whereU has orthonormal columns,D is a non-negative diagonal andVT has orthonormal rows,

is recommended in [JKS95, SHB99].

• The method implementation inTina uses aCholeskyleast-square solution, which is similar to

LU decomposition for a specialized case of a symmetric, positive-definite matrix and ensures a

positive, non-singular solution [PFTV93, sect:2.9].

From the analysis in [Tsa87] and [KSK98], the parameters of the solution vector equate to:

a1 =
r1sx
ty

, a2 =
r2sx
ty

, a3 =
r3sx
ty

, a4 =
txsx
ty

, a5 =
r4

ty
, a6 =

r5

ty
, a7 =

r6

ty
(6.6)

wheretx and ty are two of three components of the translation vectort, rj are components of the

rotation matrixRwhich form [ R | t ], the transformation, or projection matrix, from the world to the

camera coordinate frame. Using the orthonormal property ofR (r2
x + r2

y + r2
z = 1) and parameters

a4, a5 anda6 a value forty can be calculated. Initially the sign ofty is assumed to be positive and

r1, r2, r4, r5 andtx are calculated from Equations6.6. Then the signs of the components of the most

eccentric image point in the calibration data set are compared to the signs of:

x′ = r1Xw + r2Yw + tx and y′ = r4Xw + r5Yw + ty (6.7)
3This is also used in the implementation by Reg Willson.
4The theory and code for SVD can be found inNumerical Recipes[PFTV93, sect:2.6]
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If the signs are the same then all the calculated parameters remain positive, if not then all the signs are

set negative.

The scaling factorsx is determined using the orthonormal property ofR and the fact that image

scanning orientation is assumed to be from left to right (sx always positive) such that:

ty

√
a2

1 + a2
2 + a2

3 = ty

√
(t−1
y sxr1)2 + (t−1

y sxr2)2 + (t−1
y sxr3)2 = sx

√
r2

1 + r2
2 + r2

3 = sx (6.8)

If only five parameters are available, from the use of coplanar calibration data, thenty is determined

from:

ty =
1√

a2
1 + a2

2 + a2
4 + a2

5

(6.9)

The remaining parameters are calculated as described above except for the scaling factorsx which can

not be calculated in such circumstances. It is therefore ignored until a later stage of processing. If the

scaling factor is available then the components,r1, r2, . . . , r6, of the rotation matrix are finally

calculated using Equations6.6. If not then the orthonormal property ofR is used again to determined

r3 andr6. In either case, the last row,rc, of the rotation matrix is determined from the other two rows

by, rc = ra × rb

An initial estimate of the focal length and thetz component of the translation vector is determined

from the set of linear equations:

g1 yc1

g2 yc2

...
...

gn ycn



 f

tz

 =



h1 yc1

h2 yc2

...
...

hn ycn


(6.10)

formulated fromn calibration points where,

gj = r4Xwj + r5Ywj + tz and hj = r7Xwj + r8Ywi (6.11)
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Thisn by 2 matrix is solved forf andtz as above, using the same preferred method. The estimates for

f andtz are improved by constrained optimization. This process can incorporate estimates of radial

lens distortion as described in [JKS95, KSK98, SHB99, HZ00, Tsa87]. The implementation given by

Reg Willson includes optimization with 1st order radial lens distortion. The implementation given in

Tina consists of a separate process which does not, as yet, include radial lens distortion. The separate

process does, however, allow for a “global” optimization of any or all of the internal camera parame-

ters and all of the external camera parameters using the simplex optimization method [PFTV93]. The

error function used for the optimization computes the sum of the square error of the corresponding

calibration points projected onto the image plane. This is given by Equation6.12and discussed in

more detail later. No weighting factors are used and all the parameters selected are optimized without

bias. The scaling factor in the original algorithm, can be “partially” compensated in the optimization

process by the selection of one of the aspect ratio parameters together with principal pointu0, v0 (la-

belledax, ay, cx andcy in Tina )5, and the focal lengthf . However, considering that all parameters

are optimized equally in simplex optimization andsx applies to some parameters and not others, see

Equation6.6. This is a source of error which impacts on the performance of this implementation and

identifies a limitation with using coplanar calibration data.

6.1.2 The Design of Calibration Grids

This section discusses the design of calibration grids. As mentioned in Section6.1.1, the grid cali-

bration can consist of either coplanar or non-coplanar calibration points. Examples of non-coplanar

calibrations grids are given in the referenced texts [Fau93, HZ00, chap.6,pp.170] Coplanar grids are

generally of the form shown in Figure6.1. Non coplanar calibration grids are usually formed by two
5The aspect ratio parameters effectively scale the horizontal and vertical axis of image plane according to dimensions

of the pixel grid and the current image resolution. In practice only the horizontalax is ever used.
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coplanar grids at 90◦to each other. Identification of the corresponding image points requires feature

extraction to sub-pixel accuracy together with a subsequentlabelling procedure which identifies and

matches specific points in an ordered fashion. The result of such labelling is also demonstrated in

Figures6.1(a)–6.1(b). It is essential that the techniques employed to identify the corresponding image

(a) frame 11 (b) frame 12

Figure 6.1: Successive frames of a coplanar calibration grid inside a small box.

points are invariant under the perspective distortion created by the camera. Due to the tumbling nature

of the uncorrected image data between successive frames from periscopic stereo, the techniques em-

ployed should also be rotationally invariant. This does not present a problem for the feature extraction

part, which consists of edge detection followed by line fitting; the calibration points are recovered to

sub-pixel accuracy from the intersection of the lines. However, robust labelling and correspondence

matching is more difficult.

Labelling on coplanar grids is simpler than that on non-coplanar grids. The reasons for this are

given in the next paragraph. Unfortunately coplanar grids are not the preferred choice in the refer-

enced texts [Fau93, HZ00, KSK98]. The primary reason for this is that for many of the optimization

methods used in the various calibration techniques coplanar data points yield degenerate cases. The

is discussed in [HZ00, sect:10.9] for the estimation of the fundamental matrix using the8-point al-
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gorithm and herein Section6.1.1, page113, where the use of theZw coordinates are precluded for

coplanar calibration points.

Non-coplanar calibration grids tend to be larger than their coplanar counterparts. This is due,

in part, to the desire for a greater number of calibration points for an over-determined set of linear

equations. However, more important is the increased ambiguity in labelling the corresponding image

points for both the left and right planes. One method of reducing the ambiguity in labelling the

corresponding image points is to employ the concept of thecross-ratiowhich remains invariant under

projective transformations [Fau93, HZ00], as described in Chapter2 on page18. Using the cross-

ratio, sets of four collinear image points can be matched to their corresponding set of four collinear

calibration points. By using different sets of four points an ordered and labelled list of points can

be produced. This is the method employed inTina and that used to derive the labelling shown in

Figure6.1.

It was suggested in Chapters1 and3 that the primary application of large-scale reconstruction

from periscopic stereo would be for remote operation in hostile environments. The idea using a

calibration grid placed in the scene is therefore counter-productive. However, by using a calibration

grid placed in the corner, inside a small small box, this apparent limitation can be over come. The

box is placed over the periscopic stereo head. This “calibration in a box” idea allows the system to be

calibrated prior to use. However, its use introduces a limitation to grid size which must be completely

visible in a single image frame. The author has made attempts to incorporate non-coplanar calibration

grid (across the corner of the box) and maintain the use of the cross-ratio. This requires a total of at

least six collinear calibration points on the grid in order to solve the labelling ambiguity. Reducing

the number of calibration points on each half of non-coplanar grid leads to an increased likelihood of

incorrect labelling especially given the tumbling image data. Figure6.2demonstrates that even with

grid of 8 × 8 calibration points, errors still occur. Notice the top rows in Figure6.2(a)and the left
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(a) frame 9 (b) frame 11

Figure 6.2: Incorrectly labelled calibration points

hand columns in Figure6.2(b). Figures6.1(a)and6.2(b)are of the same frame using different data

files which define the location of the corners of each square on the grid in the world coordinates. The

only difference in these files is the location of the world origin from where the calibration points are

defined. This should not, in theory, affect the labelling process which computes the extended grid

lines from top to bottom and then labels the intersections from bottom left to top right as shown in

Figures6.1and6.2.

At the time of writing, an optimal solution has not been found. The coplanar calibration grid, with

8 × 8 calibrations points, as shown in Figures6.1 and6.2 is used, with specific data files known to

yield no labelling errors over these frames, for the initial camera calibration described in this chapter.

The source code for the recovery of the calibration data used in the experiments presented herein is the

same as that available inTina . The design of a non-coplanar calibration grid for use inside the box

requires further work to yield an optimal compromise between size, complexity and robust recovery

of the calibration points.
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6.1.3 Problems with Tsai’s Method

Although Tsai’s method is widely referenced, there are a number of limitations and sources of er-

ror which are not always conveyed to the reader. Two constraints for the use of Tsai’s method are

recommended in [JKS95]. These are:

1. The world origin in the absolute coordinates is not in the field of view.

2. The world origin does not project to a point in the image that is close to they axis of the camera

coordinate frame.

Condition 1, reportedly [JKS95] decouples the effects of radial lens distortion from the focal length

and the distance to the calibration grid. Condition 2 ensures that thety component of the translation

vector is not close to zero and therefore does not present a problem in Equation6.6. In practice

neither of these constraints present a problem since a world origin can be offset from the calibration

grid by some translation, with the data points scaled accordingly. For the experiments in this section

the world origin was chosen as the base of the corner of the box plus an offset translation vector of

[ 250, 100, 0 ]. The calibration data points were specified assuming afronto-parallel condition such

that theYw coordinates of the horizontal collinear calibration points are all the same.

In section6.1.1, the review of Tsai’s method reveals that the initial phase of processing requires

the corresponding image points to be converted to the camera coordinate frame using an initial “guess”

of the principle point and the aspect ratio of the camera’s pixel grid. The initial values, recommended

by Tsai [Tsa87], assume the principal point to be at half the image width and height and the aspect

ratio to be 1:1. The initial focal length is determined by an “educated” guess, based on the lens

parameters. Although improved estimates of the principal point, aspect ratio and focal length can be

determined by subsequent optimization, as is the case inTina’s implementation, their requirement

presents a distinct limitation if “good” initial estimates are not available. This fact has been recognized
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in [JKS95, KSK98]. However, no evidence is given in these texts to the extent of the effect of “bad”

initial guess of these parameters. What constitutes “good” and “bad” initial estimates of the principal

point, or indeed, the other internal camera parameters, appears from the literature, to be resolved

by “trial and error”. This impacts on the use of the implementation given inTina . Since the final

optimization phase considers all parameters to have equal error, the result can be an optimal solution

with large accuracies in any particular parameter. In order to assess these effects a number of attempts

to calibrate the camera using the same data, associated with Figure6.1(b), were conducted while

varying the initial estimates of the principal point,u0 andv0. The camera is assumed to be coincident

with the world origin such that a zero translation vector is specified and the rotation matrix is defined

by an identity matrix. The initial estimate of focal length was set to 10 and the aspect ratiosax =

1.1, ay = 1.0. The results are given in Table6.1, wheref0 is the initial value of focal length returned

by the basic Tsai algorithm andfmin is the estimate of the focal length after optimization.
∑
ε2 IPmin

is the sum of the squared error function for minimizing the difference between the corresponding

image and world (X) calibration points:

∑
ε2 IPmin =

∑(
(Xu − xu)2 + (Xv − xv)2

)
(6.12)

projected on to the image plane (u,v). The use of the sum of squared error for optimization is a valid

measure of the accuracy of result only because the number of calibrations points remains constant

throughout this experiment. The central pixel (192, 144 - labelled ‘#’) was chosen as the origin of

an iterative search and the variation ofu0 andv0 was chosen to form a “star” pattern in the centre of

the image. Table6.0(a)presents the results for a single-stage optimization process and Table6.0(b)

the results for a two-stage process where the central columns of show the optimization with only the

focal length included with the external camera parameters. The five columns on the right-hand side

of both Tables6.0(a)and6.0(b)show the results of optimization withu0, v0, ax andfmin included
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(a) Single-stage optimization

Guess P & Tsai f IPmin( f0, u0, v0, ax )

start u0 v0 f0

∑
ε2 IPmin u0 v0 ax fmin end

184 139 1.37 11.393 213.6 104.1 1.51 6.31 ?

192 139 1.58 12.393 161.6 119.9 1.25 5.54

200 139 1.78 7.096 223.9 110.6 4.03 7.10

184 144 1.30 ‡9.6e+08 187.9 138.3 1.09 1.33

# 192 144 1.54 8.884 70.7 129.3 1.21 4.56 ?

200 144 1.74 11.972 207.9 109.7 1.40 6.15

184 149 1.23 14.546 207.9 120.9 1.18 5.69

192 149 1.49 23.934 216.8 152.9 0.85 4.04

200 149 1.71 20.263 252.0 134.3 0.97 5.32

(b) Two-stage optimization

Guess P & Tsai f IPmin( f0 ) IPmin( fmin, u0, v0, ax )

start u0 v0 f0

∑
ε2 IPmin fmin

∑
ε2 IPmin u0 v0 ax fmin2 end

184 139 1.37 17.368 5.12 16.090 188.5 129.1 1.08 5.18 ∗
192 139 1.58 17.946 5.28 16.427 196.6 128.5 1.08 5.26

200 139 1.78 18.230 5.35 17.791 200.7 133.6 1.02 5.03

184 144 1.30 19.520 5.20 13.564 176.7 121.7 1.20 5.51

# 192 144 1.54 20.271 5.27 18.088 214.2 132.6 1.02 5.14

200 144 1.74 20.483 5.35 17.303 222.4 128.5 1.05 5.38

184 149 1.23 22.511 5.21 16.952 193.6 131.0 1.06 5.11

192 149 1.49 23.251 5.28 15.990 205.0 126.4 1.10 5.40

200 149 1.71 23.966 5.36 16.637 199.4 129.2 1.07 5.24

Table 6.1: Initial results for Tsai calibration with varying estimates of the principal point.

with the external camera parameters. The former produces less stable results, as indicated by a wide

variation in optimized estimates of the internal camera parameters, large (≥20.0) errors and a failure

to minimize after a second attempt (labelled ‘‡’) and there is no clear indication (labelled ‘?’) for

the best direction of the true location of the principal point. The initial optimization should therefore

always be conducted for the focal length only. The results from the second optimization, far right-hand

columns of Table6.0(b), show a range of estimates for the camera parameters, some more “stable”

than others since the final estimates of the parameters are not widely disparate, or illogical, for instance
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2.0� ax � 1.0.

A similar experiment was conducted for an aspect ratios ofax = 1.0, ay = 1.0. The results are

not given here in order to save time and space. However, these were, in general, less stable than those

given in Table6.1. The fact that more stable results are achieved with a greater horizontal than vertical

scaling is logical since both the image and the camera’s CCD array have a greater width than height.

However, the inclusion of the horizontal scaling at an early stage in the iterative optimization process

leads to less stable results, as shown in the central columns (results labelled ‘†’) of Table 6.1(a). The

best result achieved (combination of lowest error and most stable estimates of quoted parameters) is

highlighted (labelled ‘∗’) in Table6.0(b)and was chosen for the centroid of a second set of calibrations

with a smaller variation of the coordinates from the estimated principal point. The experiment was

repeated twice, each time selecting the most favorable result in an attempt to converge to an optimal

result via a sort of crude gradient decent approach. Table6.2 contains the results from third set of

calibrations.

The results in Table6.2 are arranged in a similar manner to Table6.1 except for the inclusion of

an intermediate optimization stage forf0 andax as shown in Table6.1(a). Optimization of all the

parameters is conducted after (Table6.1(a)), or instead of (Table6.1(b)), the intermediate stage. A

star search pattern is used with the inclusion of two extra calibration tests at (167,139) and (168,139).

Although the “guess” coordinates of the principal point now lay within a3 × 8 pixel region of the

previous “best” result, the final results of parameter optimization still yield some erratic values. For

an initial estimate of (168,139) for the principle point no minimal solution is achieved (labelled ‘‡’).

While for the adjacent pixel (167,139) a minimal solution with “apparently” satisfactory estimates of

the internal camera parameters is achieved. It should be noted that the implementation inTina con-

tains an escape condition if a solution is not forthcoming after a given number optimization attempts.

Excluding these two results, all but two other (labelled ‘†’) of the final results in Table6.1(a)appear
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(a) Three-stage optimization

Guess P & Tsai f IPmin( f0 ) IPmin( fmin, ax, ) IPmin( fmin2, u0, v0, ax )

start u0 v0 f0
∑
ε2 IPm fmin

∑
ε2 IPm ax fmin2

∑
ε2 IPm u0 v0 ax fmin3 end

167 139 0.92 15.900 5.03 16.844 1.00 4.50 16.863 167.0 139.0 1.00 4.50

168 139 0.94 ‡ 5.6e+09 ‡ 1.04 ‡ 6.4e+06 1.15 1.34 14.906 161.6 131.9 1.08 4.89 ?

172 139 1.03 16.282 5.08 16.331 1.10 5.08 15.066 172.2 129.7 1.10 5.08

176 139 1.14 16.615 5.12 17.125 1.02 4.70 17.029 177.4 136.2 1.02 4.73

180 139 1.26 17.022 5.16 17.497 1.01 4.70 17.209 178.1 136.8 1.01 4.71

172 140 1.01 16.614 5.08 16.653 1.10 5.08 14.870 176.6 127.5 1.12 5.21 ?

# 176 140 1.12 16.985 5.12 18.189 † 0.98 4.43 18.217 175.9 140.1 † 0.98 4.43

180 140 1.24 38.190 5.32 12.335 † 2.46 6.86 12.280 180.0 140.6 † 2.45 6.85

172 141 0.98 17.013 5.08 17.031 1.10 5.08 16.179 184.6 130.5 1.07 5.09

176 141 1.10 17.322 5.12 17.244 1.10 5.13 15.053 180.5 127.2 1.12 5.25

180 141 1.22 17.761 5.16 17.575 1.10 5.17 14.481 171.4 127.4 1.12 5.19 ?

(b) Two-stage optimization

Guess P & Tsai f IPmin( f0 ) IPmin( fmin, u0, v0, ax )

start u0 v0 f0

∑
ε2 IPmin fmin

∑
ε2 IPmin u0 v0 ax fmin2 end

167 139 0.92 15.900 5.03 15.978 178.7 131.4 1.70 5.01 ∗
168 139 0.94 ‡5.6e+09 ‡1.04 11.766 90.6 150.5 †0.98 2.86

172 139 1.03 16.282 5.082 15.324 176.6 129.4 1.09 5.11

176 139 1.14 16.615 5.12 15.126 168.6 131.0 1.09 4.10 ?

180 139 1.26 17.022 5.16 16.428 184.7 131.4 1.06 5.04

172 140 1.01 16.614 5.08 16.930 190.5 131.4 1.05 5.06

# 176 140 1.12 16.985 5.12 15.649 186.8 128.0 1.10 5.23

180 140 1.24 38.190 5.32 24.242 194.2 152.3 1.07 5.21

172 141 0.98 17.013 5.08 16.600 189.4 130.9 1.06 5.10

176 141 1.10 17.322 5.12 16.094 180.6 131.3 1.70 5.09

180 141 1.22 17.761 5.16 14.625 168.0 128.7 1.11 5.10

Table 6.2: Search results for Tsai calibration with varying estimates of the principal point.

plausible. As stated above. these results appear less stable and there is no clearly “best” result from

the three-stage optimization. Although a “best” result (labelled ‘∗’) is highlighted in Table6.1(b), the

choice is based more on the author’s own definition of “stable” rather than on a definitive solution.

Collectively the results given in Tables6.1and6.2clearly demonstrate the fundamental problem

with Tsai’s method. Although a solution can be achieved after a number of iterations, “stable” and
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logical values for the camera parameters are not guaranteed and the number of iterations is dependent

on the initial guess. It is apparent that if the initial guess is inaccurate by more than a few pixels,

the iterative optimization will yield estimates of the internal camera parameters, in particular the

coordinates of the principle point, that oscillate about the optimal result. This is partially compensated

in the implementation inTina with the inclusion of maximum error bounds in the error function of

the simplex optimization process which effectively enforces a slow, steady convergence to the result.

However, the question of how many iterations are required for an optimal solution, or the validity of

values in that solution, is still ambiguous. This is not the fault of the simplex optimization process.

Even if the camera parameters were weighted, or bounded, in some way, a poor initial guess would

still be liable to yield the sort of instability demonstrated here.

Given the less than desirable nature of the results from these experiments, it is difficult to see how

the optimal conditions could be modelled in order to generate a cost function which could be used

to automate the search process conducted in these experiments. The inclusion of Tsai’s algorithm in

an automated calibration process is therefore highly unlikely. It should be noted that the results also

show that the coordinates of the principle point for the camera used in these experiments are some

considerable distance, in pixels, from the assumed centre of the image. In fact, the best results were

recorded in a3 × 3 pixel region surrounding an initial estimate of the principle point at (162, 138).

This is not uncommon in low-cost CCD cameras [Wil94] but far greater than expected here. In spite of

the shortcomings of Tsai’s method an initial, user assisted, calibration is possible for both rotationally

corrected and uncorrected periscopic stereo image pairs.

6.1.4 Alternative Method of Grid Calibration

Recently, an alternative method for grid calibration has arisen. This method appears in [SHB99] and

is covered in detail in [HZ00]. The following is a brief outline of the method.
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From Equation6.1, the3× 4 projection matrix is parameterized such that,


λxi

λyi

λ

 =


p11 p12 p13 p14

p21 p22 p23 p24

p31 p32 p33 p34





Xw

Yw

Zw

1


=


p11Xw + p12Yw + p13Zw + p14

p21Xw + p22Yw + p23Zw + p24

p31Xw + p32Yw + p33Zw + p34

 (6.13)

whereλ is the arbitrary homogeneous scale and is removed to yield two linear equations:

xi (p31Xw + p32Yw + p33Zw + p34) = p11Xw + p12Yw + p13Zw + p14 (6.14)

yi (p31Xw + p32Yw + p33Zw + p34) = p21Xw + p22Yw + p23Zw + p24

For n calibration points a2n× 12 matrix is constructed such that:

Xw1 Yw1 Zw1 1 0 0 0 0 −xi1Xw1 −xi1Yw1 −xi1Zw1 −xi1

0 0 0 0 Xw1 Yw1 Zw1 1 −yi1Xw1 −yi1Yw1 −yi1Zw1 −yi1
...

...

Xwn Ywn Zwn 1 0 0 0 0 −xinXwn −xinYwn −xinZwn −xin

0 0 0 0 Xwn Ywn Zwn 1 −yinXwn −yinYwn −yinZwn −yin





p11

p12

p13

...

p34


= 0

(6.15)

or AP = 0.

A minimum of six corresponding calibration points are required to solve Equation6.15. More

calibrations points lead to an over-determined set of linear equations which can be solved using a

robust least-squares method, subject to‖P ‖ = 1. Singular Value Decomposition (SVD) [PFTV93]

is recommended in [HZ00] for the solution Equation6.15, whereA = UDVT , with the positive

diagonal ofD arranged in descending order, thenP is given by the last column ofV. In [HZ00]

further recommendation is given to use data normalization, proposed by [Har95], to precondition

both the world and image points thereby leading to more stable solutions when using SVD. The

normalization does not affect the accuracy of the result and is reversed after a satisfactory result is
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achieved. The result from this linear solution can then be used as an initial estimate for an iterative

optimization ofP using Levenberg-Marquardt [PFTV93], or an alternative method, while minimizing

the geometric error given by Equation6.12. Correcting for lens distortion can be included in the

optimization process, as mentioned in Section6.1.1.

The external and internal camera parameters are recovered fromP by exploiting the fact that:

P = [ KR | − KRt ] = [M | b ] (6.16)

whereM = KR is a3× 3 sub-matrix and the translation vector is given byt = −M−1b.

Since the rotation matrixR is orthogonal and the camera matrixK is upper triangular, as shown in

EquationA.8 of AppendixA, both can be recovered usingQRmatrix factorization [PFTV93].

This grid calibration method, referred to as agold standardalgorithm in [HZ00], is worth fur-

ther investigation, especially into its use with a periscopic stereo system and is referenced later in

Section6.5.

6.2 Epipolar Calibration

The concept of camera calibration without the use of a calibration target or some other known world

data, referred to as self-, or auto-calibration [FLM92], is based on the deterministic nature of the

relative geometry between the two views of stereo imaging system. An introduction to two-view,

or epipolar, geometry is given in AppendixA. This section briefly reviews the popular methods

recommended in the referenced texts.

The epipolar geometry between two views is defined by thefundamentalmatrix such that:

x̃TF x̃′ =
[
xi, yi, 1

]
F


x′i

y′i

1

 = 0 (6.17)
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whereF is a3× 3 matrix which can only be determined up to scale. Multiplying out and rearranging,

Equation6.17can be written in the form of a vector inner product. Ifn corresponding images points

are available, the vector inner product can be expanded to form a set of linear equations in matrix

form:

Af


xi1x

′
i1 xi1y

′
i1 xi1 yi1x

′
i1 yi1y

′
i1 yi1 x′i1 y′i1 1

...
...

xinx
′
in xiny

′
in xin yinx

′
in yiny

′
in yin x′in y′in 1





f11

f12

...

f33


= 0 (6.18)

Sincef can be determined, at best, up to scale, a unique linear solution is possible for eight cor-

responding, error free, image points. If error exists in the positional estimates of the data then a

least-squares solutions is required. This is referred to as the 8-point algorithm. The basic concept of

computing the fundamental matrix is accredited to Longuet-Higgins [LH81]. However, the original

implementation was applied to calibrated cameras, thereby yielding the essential matrix, as described

in AppendixA.

The recommended [HZ00, SHB99] solution for Equation6.18is to use SVD, minimizing‖Af‖

subject to‖f‖ = 1. This is similar to the use of SVD mentioned in Section6.1.4, only with a reduced

problem space. An important property of the fundamental matrix is that it is singular and of rank

2 [HZ00]. The initial solution derived from SVD does not enforce this constraint. However, matrixF

can be replaced by a matrixF′ that minimizes the Frobenius norm‖F−F′‖ subject todet F′ = 0. This

is achieved by applying SVD toF. The recommended algorithm, incorporating data normalization,

as described in [HZ00]. A minimum case solution, requiring only seven corresponding image points,

is possible using the constraintdet F = 0. This is also described in [HZ00].

The 8-point algorithm yields a direct solution but is sensitive to positional errors in the data, which

was the motivation behind the inclusion of data normalization in [Har95]. The algorithm will also fail
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if there areoutlierspresent in the data. A number of robust optimization methods are possible together

with a number of possible error functions. [HZ00] recommends the Levenberg-Marquardt method of

optimization, minimizing with either an algebraic error function or a ‘Maximum Likelihood’ (ML)

estimator that minimizes the geometric distance of the re-projected points on the image plane. The

latter is referred to as their ‘gold standard’ algorithm for estimatingF.

An alternative approach to, or in support of, robust non-linear orthogonal regression algorithms is

to attempt to remove the outliers from the data. Two competing methods are currently supported by

the computer vision community. The Random Sample Consensus (RANSAC) algorithm, originally

proposed by Fischler and Bolles [FB81] (reprinted [FB87]), randomly selects the minimum data set

for the parameters required to compute the model (in this case the fundamental matrix) fit to the

data and then computes the support for the postulated model across the whole data set. This method

partitions data into outliers and inliers and eventually selects the minimum data set with the maximum

support. The alternative is the Least Median of Squares (LMS) estimator which selects the model

with the least median distance to all the data in the problem space from a limited selection of models

computed from the minimum data set required for that model.

The above methods have been reviewed here in order to give an overview of the subject. Two

excellent papers that review and compare all these methods are by Torr and Murray [TM97] and

Zhang [Zha98]. While these methods are recommended in the referenced texts they are, in general,

applicable to arbitrary stereo views and are, especially in the case of the latter examples, more com-

plex than is required for periscopic stereo. Since the relative camera geometry is already known,

the requirement in the case of periscopic stereo is for improved estimates of the internal camera pa-

rameters while minimizing the projected error of the corresponding points, subject to the constraints

imposed by the epipolar geometry. The next section reviews a technique which performs this task.
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6.2.1 The Variational Principle and Epipolar Calibration

The epipolar calibration method used inTina is based on theVariational Principle proposed by

Trivedi [Tri87]. Trivedi’s technique for estimating the fundamental matrix was presented as a more

stable alternative to the SVD solution prior to its use with data normalization. It requires no external

variables or use of heuristics and is compatible with the generation of a covariance matrix that mod-

els and propagates the error in the camera’s internal parameters and relative motion. The use of the

covariance matrix is covered in Section6.3. The following is a brief review of the method, as im-

plemented by Thacker and Mayhew [TM91], together with the modifications necessary for use with

periscopic stereo.

The basic idea of the variational principle is to obtain the smallest shift, or variation, in the ob-

served data necessary to make that data fit the prescribed model which is defined by a set of param-

eters. To obtain the minimum shiftsδxj andδx′j required to make the corresponding image points

consistent with an estimate of the fundamental matrixFj , [TM91] makes use of the Lagrange method

of optimization by minimizingE , the error, subject to:

E =
n∑
j=1

(
δxTj S−1δxj + δx′Tj S

−1δx′j
)

+
n∑
j=1

λj
(
Fj +∇Fjδxj +∇′Fjδx′j

)
(6.19)

where∇ is the vector differential operator andS is the error given as a diagonal matrix with the

componentsσ2
x andσ2

y for the image planex andy directions andσ2
z which is set to zero, since the

error is defined in terms of the image plane.

Analytically this is achieved as follows. From,

∂E
∂δxj

= 2 δxTj S−1 + λj∇Fj = 0 and
∂E
∂δx′j

= 2 δx′Tj S−1 + λj∇′Fj = 0 (6.20)

rearrange to yield:

δxj =
−λjS∇FTj

2
and δx′j =

−λjS∇′FTj
2

(6.21)
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Expanding the epipolar constraint equation,δx′Tj Fjδxj = 0 , about the pointxj , for Equation6.19:

2Fj +∇FλjS∇FT +∇′FλjS∇′FT = 0 (6.22)

rearrange to yield:

λj
2

=
Fj

∇FjλjS∇FTj +∇′FjλjS∇′FTj
(6.23)

Substituting in Equations6.21,

δxj =
FjS∇FTj

∇FjλjS∇FTj +∇′FjλjS∇′FTj
and δx′j =

Fj

∇FjλjS∇FTj +∇′FjλjS∇′FTj
(6.24)

where

Fj = x′
T
j [ t ]×Rxj ∇Fj = x′

T
j [ t ]×R and ∇′Fj =

[
[ t ]×R

]T
xj (6.25)

Effectively the data shifts are created by variations in the estimates of the fundamental matrix created

by optimizing the relative camera parameters.

The implementation given inTina uses simplex optimization, minimizing the sum of the squares

of error in the corresponding image points, subject to the epipolar constraint, as given in Equation6.19.

The camera parameters passed for optimization can be any of the internal camera parameters and the

six parameters defining the relative camera transformation. Three for the translation and three for the

rotation given in quaternion form6, see AppendixF. In fact there are only five free parameters since,

q2
0 = 1− q2

1 − q2
2 − q2

3 and t21 = 1− t22 − t23 (6.26)

The implementation inTina was originally written for a stereo camera system with two real

cameras and therefore two sets of internal camera parameters. However, by including a new “reg-

ister” (temporary result storage for optimization process) function and a conditional statement the
6A Quaternion is a four component vector, originally defined by Hamilton 1843 [Ham66], which can be used to encode

3D rotations.
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source code has been modified to optimize a single set of camera parameters, as shown in Figures6.3

and6.4. The original error function,triv camerror(...) , computes an estimate of the fun-

/* cam_error.c */ .......
double triv_camerror(int *n_data, double *x,

Camera * cam1, Camera * cam2, List * world3d,
Vec2 * (*pix_get1) ( /* ??? */ ),
Vec2 * (*pix_get2) ( /* ??? */ ), double accuracy)

{...../* original Tina source code */
}

double scam_stereo_reg(Covar * incov, int mask, double *a)
{ /* new stereo_reg for single_camera stereo. used in

* pixchisq_scam() for cam_cal_triv_simplex()., Added May 2001, by Ed.
*/

Matrix *delta, *dprod;
double chisq = 0.0;
int i, n_par = 0;

if (incov == NULL) return (0.0);

for (i = 0; i < 16; i++) if (mask & (1 << i)) n_par++;

delta = matrix_alloc(1, n_par + 6, matrix_full, double_v);
for (i = 0; i < n_par + 6; i++) {

delta->el.double_v[0][i] = a[i] - VECTOR_DOUBLE(incov->vec, i);
}
dprod = matrix_prod(delta, incov->mat);
for (i = 0; i < n_par + 6; i++) {

chisq += dprod->el.double_v[0][i] * delta->el.double_v[0][i];
}
matrix_free(delta); matrix_free(dprod);
return (chisq);

} .......

Figure 6.3: Modified source code for error storage function for epipolar calibration with a single set

of camera parameters

damental matrix and sum of square error of the projected corresponding points for every iteration of

the simplex optimization algorithm. The new register function,scam stereo reg(...) , updates

the covariance error matrix and the estimates of the camera parameters from the previous covariance

error matrix. The source code for the simplex optimization algorithm is unmodified and not included

here.

The main advantage of this method of epipolar calibration is that it is simple, fast and the accuracy

of the estimates reportedly [Tri87, TM91] improves over time. This is achieved by the use of error
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static double pixchisq_scam(int n_par, double *a)
{ /* New function */

double chisq = MAXDOUBLE, *f = NULL;
(void) store_camera_int(cal_mask, a, cal_caml);
(void) store_camera_int(cal_mask, a, cal_camr);

if (store_camera_rel(a + n_par - 6, cal_caml, cal_camr))
{

int n = MAXINT;
chisq = triv_camerror(&n, f, cal_caml, cal_camr, cal_data,

cal_get_pixl, cal_get_pixr, accuracy);
chisq += scam_stereo_reg(cal_in_cov, cal_mask, a);

}
return (chisq);

}
static double pixchisq_stcam(int n_par, double *a)
{ ............./*** AS ABOVE ***/

(void) store_camera_int(cal_mask, a, cal_caml);
(void) store_camera_int(cal_mask, a + n_par / 2 + 3, cal_camr);
if (store_camera_rel(a + n_par / 2 - 3, cal_caml, cal_camr)) {

int n = MAXINT;
chisq = triv_camerror(&n, f, cal_caml, cal_camr, cal_data,

cal_get_pixl, cal_get_pixr, accuracy);
chisq += stereo_reg(cal_in_cov, cal_mask, a);

}
return (chisq);

}

double cam_cal_triv_simplex(Camera *caml, Camera *camr, int mask, Bool single_cam,
List *data, Vec2 *(*getpixl)( /*???*/ ), Vec2 *(*getpixr)( /*???*/ ),
Covar *inv_cov) /* inverse covarience */

{
double *a, chisq, chisq_old;
double (*pixchisq)( );
int n_par, n_parms, i;
if (data == NULL || caml == NULL || camr == NULL) return (0.0);
cal_mask = mask; cal_data = data; cal_caml = caml; cal_camr = camr;
cal_get_pixl = getpixl; cal_get_pixr = getpixr; cal_in_cov = inv_cov;
for (i = 0, n_par = 0; i < 16; i++) if (mask & (1 << i)) n_par++;

if ( single_cam ) { /***** MODIFIED ******/
n_parms = n_par + 6;
pixchisq = pixchisq_scam;

}
else {

n_parms = 2 * n_par + 6;
pixchisq = pixchisq_stcam;

}
a = (double *) ralloc((unsigned) n_parms * sizeof(double));
(void) conv_camera_int(mask, caml, a);
(void) conv_camera_rel(caml, camr, a + n_par);
if ( !single_cam )

(void) conv_camera_int(mask, camr, a + n_par + 6);

chisq_old = pixchisq(n_parms, a);
for (i = 0; i < 5; ++i) {

chisq = simplexmin(n_parms, a, scale_init, pixchisq, c_test1,
(void (*) ()) format);

if (chisq_old - chisq < c_test2)
break;

chisq_old = chisq;
}
(void) store_camera_int(mask, a, caml);
(void) store_camera_rel(a + n_par, caml, camr);
if ( !single_cam )

(void) store_camera_int(mask, a + n_par + 6, camr);
else

(void) store_camera_int(mask, a, camr);
rfree((void *) a);
return (chisq);

}......

Figure 6.4: Modified source code for optimization of a single set of camera parameters, subject to the

epipolar constraint
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covariance and is discussed in Section6.3. An initial estimate of the error covariance is required by the

implementation and is derived from a weak model derived from the initial guess values of the chosen

internal and relative camera parameters. The implementation also includes error bounds which limit

image plane errors, in pixel units, and ensures a slow and steady convergence to the desired result.

Section6.1.3identified that the error in the location of the principle point was considerable for

the particular camera used in these experiments. This leads to the question of whether the variational

principle for epipolar calibration can reduce this initial error and if so how many iterations of the

optimization process are required. In order to answer these questions an experiment similar to that in

Section6.1.3was conducted.

Beginning at the centre of the image, (192, 144), a number of initial calibrations were computed,

each time initializing the covariance matrix so that the result in always independent. Table6.3shows

the results using the two left hand images in Figure6.1. The corresponding image data was constructed

using the labelled points on the calibration grid which are, in general, accurate to less than a pixel.

It should be noted that only the corresponding image points are used, not the world data points.

The use of this data is discussed further in Section6.4. An initial estimate of the relative camera

transformation, calculated from Equation3.4 in Chapter3, was included via theTina’s camera

parameters window7. The initial value of focal length wasf0 = 10.0 and the horizontal scaling was

ax = 1.1 in each case.

Table6.3 is arranged with the initial estimates of the coordinates of the principle point (u0, v0)

in the far left columns and the results of the optimized internal camera parameters in the right hand

columns.
∑
ε2Epimin is the sum of the square error given by Equation6.19for all the calibration

points. The results in Table6.3demonstrate several things. Firstly, the estimated value of the horizon-

tal scaling is erratic and yields illogical results (labelled ‘‡’) in cases where the initial principle point
7The calibration tool inTina effectively allows any of the camera parameters to be initialized prior to calibration
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Guess P Epimin( f, u0, v0, ax )

start u0 v0

∑
ε2 Epimin u0 v0 ax fmin end

176 139 0.6169 176.0 139.0 1.116 10.01 ?

184 139 0.6138 184.0 139.0 1.082 10.00 ?

192 139 0.6791 192.0 139.0 ‡ -1.92 10.00

200 139 0.6893 199.9 138.9 ‡ -1.96 9.99

184 144 0.6204 184.0 144.0 1.354 9.99

# 192 144 0.7687 192.0 144.0 ‡ -2.23 10.00

200 144 0.7880 200.0 144.0 ‡ -2.31 9.99

184 149 0.7924 184.0 149.0 ‡ -2.29 9.98

192 149 0.7489 192.0 149.0 ‡ -2.19 9.98

200 149 0.7027 200.0 149.0 ‡ -1.861 9.96

Table 6.3: Initial results for epipolar calibration with varying estimates of the principal point.

is grossly inaccurate. However, when the initial estimate of the principle point is closer to the true

value more sensible results are achieved and the sum of the square error is reduced. Secondly, there

is little change in the optimized estimates of the principle point or the focal length. This situation is

maintained even when the horizontal scaling is removed from the parameter list for optimization. This

is not surprising since a reasonably accurate initial estimate of the relative transformation is supplied

in the parameter list for optimization. With only small changes in the relative camera parameters there

is little opportunity for the simplex algorithm to optimize the coordinates of the principle point. This

is further compounded by two facts. Firstly, the internal camera parameters are the same for both

cameras, as determined by the modification for periscopic stereo use. Second, the principle point cre-

ates an relative shift of the data point and not a scale change. This is evident from the camera to image

transformation given by EquationsA.5 andA.6 of AppendixA. Therefore any change in estimates

of the principle point will have less effect than that of the horizontal scaling of focal length on the

projected image points.

Although the variational principle can not aid the search for better estimates of the coordinates of

the principle point, its use for recovering the relative camera geometry and therefore maintaining the
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calibration accuracy of an already calibrated system is evident. Figures6.5(a)and6.5(b)show the

effect of deliberately changing the initial estimate of the relative camera transformation by varying

the incremental rotation angle of the periscopic head from the standard4◦ to 2◦ and8◦. Figure6.5(a)

(a) before epipolar calibration

(b) after epipolar calibration

Figure 6.5: The effect of varying the relative camera transformation on epipolar calibration.

shows the effect on the epipolar lines before calibration and Figure6.5(b)after. No visible change is

apparent in latter, even though the variation in the relative transformation between the virtual cameras

is far greater than would ever be apparent in a real system, excluding catastrophic failure. The differ-

ence in the sum of the square error was less than0.01 of the figure for the (192,144) entry in Table6.3,

which was the principle point of the default parameters used for this particular test.
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The ability of the variational principle to maintain the accuracy of calibration over an extended

period of time far outweighs the inability to locate the principle point. The reason for including the

apparently negative result, of the latter, is explained further in Section6.4.

6.3 Maintaining Calibration and Propagating Error

All of the camera calibration techniques mentioned in this chapter include some form of iterative

optimization, either directly or as a recommendation for their use. The requirement for iterative op-

timized solutions implies a need to assess and monitor the accuracy of the estimated results. The

error, or uncertainty, in such results can be given by the error covariance and modelled by the inverse

covariance matrix. The computation of the error covariance also allows for the optimal combination

of two estimates of the parameter sets that define the optimized function. An introduction to covari-

ance estimation and optimal combination by Thacker and Cootes [TC96] can be found atCVOnline.

Alternative treatments on the computation of uncertainty are given in [Fau93] and [HZ00]. A detailed

description of the computation of error covariance is not included and the following is given without

qualification.

Given an error metricχ2 from an optimization cost functionf(a) for a set of parametersa, the

expected change inχ2, or error covariance, for a small change in model parameters is given by:

∆χ2 = ∆aTC−1∆a (6.27)

whereC−1 is the inverse covariance matrix. This is based on the form given in [TC96].

The inverse covariance matrix is computed from the partial derivative, or Jacobian, matrixδf/δa

of the original cost function used in the optimization of the parameters. The computation of the error

covariance is implemented inTina using the Jacobian matrix technique. This is used to derive an

estimate of the error and fed back into the optimization processes used in Section6.2.1and mentioned
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later in Section6.4. In keeping with the modification to the source for epipolar calibration described

in Section6.2.1, the source code for the computation of the covariance matrix has been modified for

a single set of internal camera parameters in a stereo system. The modification is almost identical, in

practice, to that given in Section6.2.1and is therefore not included here.

The use of the error covariance in the optimization loop effectively allows previous estimates of

the parameters to be combined with the new estimates. This propagates the error and produces a

robust maintenance of the calibration accuracy over time. The requirement for a robust epipolar cal-

ibration algorithm is particularly useful with Trivedi’s variational technique, since the method does

not incorporate any form of outlier detection or removal. Any outliers in the correspondence data are

incorporated in the optimization and can lead to the degradation of the calibration accuracy with each

subsequent optimization. The inclusion of the error covariance estimate tends to reduce the effect of

outliers in the data over time, assuming their occurrence and effect have a uniform distribution. How-

ever, a large percentage of gross outliers in the correspondence data would have an instant and longer

lasting effect. Such an occurrence is unlikely during the initial calibration since the possibility of out-

liers in the data set is low (not withstanding catastrophic failure of the grid labelling algorithm) when

using the calibration grid. However, for the continued re-calibration of the system, using naturally

occurring correspondence data from the image scene, the probability of the existence of gross outliers

increases. The performance of correspondence algorithm depends of the epipolar constraint and the

re-calibration of the stereo cameras, defines the epipolar geometry. The two processes are therefore

inextricably linked.

Chapter5 included some simple experiments comparing the performance of correspondence algo-

rithms applied to both rotationally corrected and uncorrected stereo images. In Chapter3 the analysis

of the relationship between the image data and the rotating mirror identified that the image data is

subjected to rotation in sympathy with the mirror and assumed that the centre of rotation is coincident
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with the optical axis. It was stated that the experiments with the uncorrected images, in Section5.3,

allowed for the simulation of degraded calibration accuracy and examined the effect on correspon-

dence matching. The reason for this degradation in calibration accuracy is due to the fact that rotation

about an axis through the image plane which is not, in fact, coincident with the optical axis of the

camera. This translates to an error between successive relative camera transformations which accu-

mulates over half a cycle of a complete scan by the periscopic head. The error then decreases over

the other half cycle, returning the relative camera transformation to the original state. This effectively

induces an oscillation, relative to each camera, about the horizontal centre line of the image, such

that there is a variable, vertical shift between any selected stereo pair. Figure6.6 shows an image

pair ten frames ahead of the currently calibrated pair. The epipolar line, computed from the current

calibration, clearly demonstrates the vertical shift induced by the displacement (compare both ends of

the epipolar line and objects in the scene). This is discussed further is Section6.3.1.

(a) left image (b) right image

Figure 6.6: Vertical shift induced by the displacement of the axis of rotation from the optical axis.

In order to assess the ability of the epipolar calibration, using the variational principle, to maintain

calibration accuracy over time and also the effects of this vertical shift error, the following experi-

ment was conducted. Starting with a pre-calibrated system, as described in Section6.4, an image
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pair was selected from a periscopic sequence, approximately one frame prior to the currently cali-

brated alignment8. The epipolar calibration was computed for the pair using the corresponding image

points extracted from the scene as shown in Figures6.7 and6.8. Four internal camera parameters,

( f, u0, v0, ax ), are included in the optimization. The error covariance was then computed, combined

with current covariance and saved for the next iteration together with the new estimate of the calibrated

parameters for the camera models. The sequence was advanced by one frame (old right hand image

becomes new left hand image) and the corresponding points computed using the rotated patch algo-

rithm with the simulated image plane rectification, as described in Section5.2. The rectification is

derived from the last estimate of the epipolar geometry. The epipolar calibration is computed using

the new correspondence data and the whole cycle repeated until insufficient data points are recovered

to compute the calibration.

Figure6.7(d)shows the images where the calibration is most accurate. This is due to the similar

relative image alignment with the image frames from the grid calibration. The epipolar lines shown

indicate the alignment of corresponding structure in the images. Figure6.7 shows the first half of

the image sequence with frames before this starting point and Figure6.8 the second half of the im-

age sequence with frames after this point. The results of this “calibration tracking” experiment are

given in Table6.4 and the order in which each image pair was process is indicated. The reason for

selecting images pairs in the forward and back sequence is to maintain the calibration accuracy as

long as possible for the purposes of demonstrating the effects which are the subject of interest in this

experiment. The horizontal and vertical disparity, given in the second column, are computed from the

estimated camera centre coordinates subject the rectification matrix in the parallel camera model (see

AppendixE). Fmin is the lower of the total number of features in each image and the epipolar band
8There is no correlation in image frame numbers when switching from the calibration image sequence to a sequence of

the imaged scene. Therefore the geometric alignment between frames of different sequence is only approximate
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(a) frames 20:21

(b) frames 21:22

(c) frames 22:23

(d) frames 23:24

Figure 6.7: Results from calibration tracking experiment - part 1; (a) frames 20:21, (b) frames 21:22,

(c) frames 22:23, (d) frames 23:24.

141



(a) frames 24:25

(b) frames 25:26

(c) frames 26:27

(d) frames 27:28

Figure 6.8: Results from calibration tracking experiment - part 2; (a) frames 24:25, (b) frames 25:26,

(c) frames 26:27, (d) frames 27:28.
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order frames (l:r) disparity (h,v) Fmin e-band matched
∑
ε2 Epimin

∑
ε2 Raddst(l, r)

7 20:21 20.62, -1.53 166 6 20 89.74 1965, 272.1

5 21:22 18.80, -1.71 139 5 30 197.8 750.6, 89.63

3 22:23 17.68, -2.56 119 3 72 78.50 23.50, 89.63

1 23:24 17.57, -2.43 106 3 89 10.29 5.62, 31.48

2 24:25 17.72, -2.24 96 3 78 57.31 26.49, 9.11

4 25:26 17.80, -2.34 82 4 33 168.4 62.0, 323.9

6 26:27 19.23, -1.23 69 5 21 139.3 803.4, 1625

8 27:28 20.62, -1.53 53 5 13 123.6 5430, 409.4

Table 6.4: Results of calibration tracking in the presence of vertical shift error.

width (labelled ‘e-band’) is the width, in pixel units, of the search band about the epipolar lines, as

described in Section5.2. This was used in an attempt to compensate for the vertical shift error and

allow the correspondence algorithm a greater opportunity to produce sufficient data for calibration.

At the limits of the calibration sequence the width of epipolar band has already exceeded a sensible

limit. Refer to the discussion on setting the width of the epipolar band on page93 in Section5.2 for

the qualification of a “sensible limit”. The sum of the squares error for the epipolar optimization, for

the parameters (f, u0, v0, ax ), is the the same as that used in Table6.3 from Equation6.19. This

gives a measure of the total error of the corresponding points perpendicular to the respective epipolar

lines. This gives a reasonable guide but not a particularly accurate measure of the overall accuracy

of the calibration since it does account for horizontal error due to changes in the location of the prin-

cipal point (u0, v0) and horizontal scaling factor (ax) during the successive optimization. Although

no actual lens distortion parameters are included in the model a measure of the radial lens distortion

(labelled ‘
∑
ε2Raddst(l, r)’) is included in Table6.4 to give a better overall indication of accuracy.

This error measure is computed between the corresponding image and world (X) point as:

∑
ε2Raddst =

∑(
(X2

u −X2
v )

1
2 + (x2

u − x2
v)

1
2

)2
(6.28)
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on the image plane(u, v) where the world points are back-projected from the images points via the

camera models and the computed disparity and then re-projected back on the image plane. This may

seem convoluted but the image plane is the only place where accurate measurement can be made and

the double projection ensure all the model parameterized are included in the error measure. It should

be noted that the figures do not give an absolute measure in themselves since they are the sum of the

squared error over all the data points. The best measure of the calibration accuracy is the distribution

of the the radial lens errors, as shown in Figure6.9, together with the computed values of both the

epipolar and radial distortion error measures. Since there is a limit to the amount of data, especially

(a) accurate calibration (b) weak calibration

Figure 6.9: Examples of distributions of radial lens distortion errors and their indication of calibration

accuracy.

across multiple images of error distribution patterns, the reader is requested to use the same subjective

assessment as the author. That is, if both error measures are low in value and the left and right radial

distortions are similar then the calibration accuracy is high. If the figures rise or become unbalanced

then the accuracy is falling.

The increase in vertical shift error is evident from both the disparity figures in the second column

of Table6.4 and Figures6.7(a)and6.8(d). Although the numerical difference in vertical disparity
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appears small it should be noted that these are for the principle point near the centre of the image. The

relative distortion created by the axial offset between the centre of rotation and the optical axis is not

uniform across the image. Apart from the induced vertical shift there is also an equivalent yaw error

component which equates to an extra rotation in the image data. This is evident from the fluctuation

in the horizontal disparity and by comparing the displacement in the corresponding structure about

the epipolar lines in Figures6.7(a)and6.8(d). The displacement is greater at the edges of the image

than it is in the centre. The reason for this is described in Section6.3.1.

Although the algorithm makes a valiant attempt (the sum of the squares error for the optimization

is small in global terms) to track the change in the relative camera transformation it is incapable

of maintaining calibration accuracy for more than a few frames. In Section6.2.1the ability of the

variational principle to estimate the relative camera transformation was found to be rather good, even

in the presence of a large difference between the initial estimate and the apparent, imaged, geometry.

However, the accuracy of the correspondence data was extremely good, since it was derived from the

calibration grid. Here, the correspondence data contains both localization noise and gross outliers.

Some of these are induced by an attribute of experiment which, in reality, would not exist; namely the

camera’s support stand which appears in the centre of the image. This creates invalid features from

points of occlusion. Given the limitations of the experimental apparatus and the fact that the change

in the relative camera transformation is severe the performance of the algorithm is not as bad as the

results suggest.

Maintaining calibration accuracy autonomously could be achieved by keeping track of the per-

centage of data points recovered using the measure, or something similar, discussed in Chapter5.

If the number of “fixed” correspondence matches compared to the potential number correspondence

matches falls below a certain threshold, a re-calibration could be initiated. The requirement to re-

calibrate for every successive frame is not envisaged for rotationally uncorrected image data from a
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real periscopic system and certainly not necessary for rotationally corrected data as demonstrated in

Figure5.4 in Chapter5.

6.3.1 Modelling the Axial Error

The large offset error between the centre of rotation and the camera’s optical axis identified in Sec-

tion 6.3 would not exist in an accurately manufactured periscopic stereo head. This type of error is

extreme and only induced by the rotationally uncorrected, captured from the turn table implementa-

tion of periscopic stereo described in Section3.4. It should be noted however, that while the rotational

correction eliminates this error by interpolating across the whole image, it does so at the expense of

localization accuracy of the corresponding data. The offset error is effectively transferred to positional

error of the imaged structure and therefore would be incorporated in the reconstruction of the scene.

A model of the system and the axial offset can be created using the analysis in Section3.1. By

replacing the zeroxm andzm components ofCr in Equation3.4with δu andδv (for a displacement

of the image plane) yields:

Cv =


δu

b

δv

− 2b cos θ


sin θ sinφ

cos θ

sin θ cosφ

 =


δu− b sin 2θ sinφ

−b cos 2θ

δv − b sin 2θ cosφ

 (6.29)

Introducing the same components to Equations3.5, 3.8, 3.9and repeating the derivation, a new version

of the transformation matrix in Equation3.13is derived, where:

T(δu,δv) =


1 + 2 sin2 θ sin2 φδxδu

(1−δx)δu − sin 2θ sinφ 2 sin2 θ sinφ cosφδzδv
(1−δz)δv

sin 2θ sinφ δxδu
(1−δx)δu (cos 2θ) sin 2θ cosφδzδv

(1−δz)δv

2 sin2 θ sinφ cosφδxδu
(1−δx)δu − sin 2θ cosφ 1 + 2 sin2 θ cos2 φδzδv

(1−δz)δv

 (6.30)

The denominators in the first and third columns of Equation6.30demonstrate the compound nature

of the distortion induced by an axial offset.
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Selecting the assumed principle pointpo = [ imagewidth/2, imageheight/2 ] and an arbitrary

image point toward the periphery of the framexi = [ 3 imagewidth/4, 3 imageheight/4 ] and con-

verting to the mirror coordinate frame yieldspm = [ 0, b, 0 ] andxm = [xu pix , b, xv pix ] where

pix is the assumed pixel size. Transforming these points with Equation3.13to the virtual image plane

creates a reference line defined byP vr andXvr. Note that the new subscript “vr” defines “virtual”

and is different from the nomenclature used in Chapter3.

Repeating this process for an offset principle point and the chosen image point, offset by the same

translation, with the transformation matrix given in Equation6.30creates a second line on a distorted

virtual image plane defined byP ′vr andX ′vr. The absolute difference between these points and the

reference is given by:

‖X ′vr −Xvr‖ and ‖P ′vr − P vr‖ (6.31)

and effectively yields a point measure of the image plane error, in pixels, induced by the axial offset.

Assuming perfect calibration and the rotational error witnessed in Figures6.7(a)and6.8(d)is approx-

imated by the absolute difference given in Equation6.31, then a rough estimate of the maximum axial

offset (2D translation of the image plane) was found by iterative testing until the error in the localiza-

tion of the peripheral point falls below the sensible limits of the epipolar band given in Section5.2,

across two frames separated by theφ = 4◦.

While this is not a particularly accurate model of the system, an estimate of the maximum allow-

able axial offset was found to be approximately±8 pixels from the central position. The calibrated

principle point for the camera used in these experiments was found to be approximately (162, 138),

which is acceptable in vertical direction but not in the horizontal. Although such errors are common

in low-cost CCD cameras higher, precise localization of the principle point is certainly possible with

modern manufacturing and factory calibration techniques. It is recommended that a camera with a
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principle point of with a maximum limit of±5 pixels be used in a periscopic stereo head. The cam-

era’s optical axis can be aligned to the axis of rotation by using a calibrated jig during manufacture.

6.4 Combining Grid and Epipolar Calibration

The rationale behind the experiments in Sections6.1.3, 6.2.1and6.3 is that the calibration process

should, ideally, be an autonomous process. It can be argued that this is desirable for any camera system

used for 3D reconstruction. However, the target applications of remote operation and large-scale

reconstruction requires that an automated calibration, or at least re-calibration, scheme is mandatory.

The concept of “calibration in a box” was introduced in Section6.1.2and essentially allows for the

possibility of applying grid calibration to the periscopic stereo system prior to use. However, the use

of the grid data is not exclusive. Assuming the failure modes (when block mismatches occur, as shown

in Figure6.2) are identified and defensive techniques applied, the set of corresponding points from

the imaged calibration grid, is very accurate. It is therefore logical to make use of this information for

initial epipolar calibration, as shown in Section6.2.1.

In Sections6.1.3and6.2.1limitations are identified with both the currently available techniques

in deriving the initial calibration of an unknown stereo camera system. Without prior knowledge of

the internal camera parameters, the initial calibration is laborious process consisting of the iterative

estimation of the parameters and gradual modification of the camera model. While other techniques

may improve the situation and ultimately lead to a more autonomous calibration procedure, there still

remains the question of combining these two calibration techniques in order to achieve a full calibra-

tion model for the system. Epipolar calibration can not recover absolute scale and grid calibration, on

it’s own, can not recover the epipolar geometry of a stereo system. The latter is the most important

constraint applied to both the acquisition of correspondence data and subsequent 3D reconstruction.
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Initially it was thought, by the author of this dissertation, that the “optimal” solution to stereo

camera calibration was to calibrate for absolute scale first, using a grid calibration method. Then

improve the estimates of the camera’s internal parameters and derive relative transformation from

updated estimates of the fundamental matrix acquired by epipolar calibration. This idea is suggested

in [JKS95] and implemented by Zhanget alin [ZFD97]. The sequence of operations for the method

given in [ZFD97] is as follows9:

• Point the cameras to toward the calibration apparatus and match the corresponding world and

image points.

• Point the cameras toward the environment, extract points of high curvature in both images and

perform robust correspondence matching of these points.

• Estimate the epipolar geometry by using the two sets of matches (reference + environment).

• Reconstruct in a projective basis from the points of reference.

• Estimate the projective distortion in order to recover structure in Euclidean space.

The problem with this approach is that if the initial grid calibration is not particularly accurate,

the subsequent epipolar calibration may, depending on the technique employed, require a number

of iterations before sufficiently accurate estimates of the internal camera parameters are achieved.

Furthermore, any error in the absolute scale of the world to camera transformation can not be improved

by epipolar calibration. Zhang,et al [ZDFL95], recognizes that linear solutions for estimating the

fundamental matrix are sensitive to noise in image point localization and from mismatches. This fact is

supported in [HZ00, SHB99, Har95, TM97]. In [Zha98], Zhang explores in detail robust methods for
9An outline of Zhang’s method is given on their web pages at:

http://www-sop.inria.fr/robotvis/personnel/zzhang/CalibEnv/CalibEnv.html
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estimating the fundamental matrix in the presence of noise, yet fails to make use of the more accurate

data available from the calibration grid in the initial phase. The following method of calibration was

derived for use with the concept of “calibration in a box”. However, it is equally applicable to any

stereo camera system that identifies and labels the calibration grid points in an ordered fashion.

Instead of initially calibrating to recover the external camera parameters and then recover the

relative transformation between the cameras, the sequence is reversed and extra epipolar re-calibration

performed at the end. A summary of the algorithm for “calibration in a box” is given in Figure6.10

and the description proceeds as follows.

1. Initial Epipolar Calibration :
Using the corresponding image points from a calibration grid,
compute the epipolar calibration, assuming the left optical centre is
coincident with the world origin. Optimize all the camera parameters
for minimal epipolar error and save error covariance.

2. Grid Calibration :
Compute the grid calibration for the left camera.

a: If using Tsai’s grid calibration optimize the initial estimate of
the focal length only.
b: Copy across the internal parameters and computer the external
parameters for the right camera.
c: Optimize all the parameters for minimal error between the
projected calibration and corresponding image points.
Combine the error covariance with previous estimate.

3. Final Epipolar Calibration :
Repeat epipolar calibration and optimize all parameters.
Computer final error covariance and store in case of re-calibration.

Figure 6.10: Summary of the Calibration in a box algorithm

Firstly, using the calibration grid described in Section6.1.2, compute the epipolar calibration using

the variational principle, as reviewed in Section6.2.1. This yields an accurate estimate of the relative

camera transformation. An initial estimate of the horizontal scaling factor is also achieved, assuming

the initial guess of the coordinates of the principle point is not in gross error. The initial guess values

for the internal camera parameters used for the calibration results achieved in this section were;f =
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10.0, u0 = 161, v0 = 139, ax = 1.05 . The initial guess of the focal length is unimportant, as

described in Section6.1.1, but is necessary for the initialization of the covariance matrix for the desired

number of internal camera parameters prior to the epipolar calibration, as described in Section6.2.1.

The initial values the external parameters are determined for right hand camera from the calculation of

the relative transformation given by Equation3.4. The optical centre of the left hand camera is initially

assumed to be coincident with the origin of the world coordinate frame, as described in Section6.2.1.

After the epipolar calibration is computed, the covariance matrix is derived for the estimated internal

and relative camera parameters and stored for later use.

The next stage is to compute the grid calibration to recover the external camera parameters and

improve estimates of the internal camera parameters. This is achieved in three phases; Firstly, using

Tsai’s method with subsequent image plane optimization, as described in Section6.1.1, an estimate

for the focal length is derived. No other parameters are included in the optimization. An alternative,

possibly more robust (see Section6.1.4), grid calibration method could equally be applied at this

point. The second phase addresses the fact that both the left and right virtual cameras in a periscopic

stereo system have the same internal parameters. In a conventional stereo system the first stage would

be conducted twice and following phase ignored.

There are two approaches which could be adopted. The focal length and the external camera

parameters can be recovered for the second camera as above and the internal parameters combined

with those from the left camera to yield an average. This should, ideally, reduce the overall error by

averaging over both sets. However, the optimized estimates from Tsai’s method are not that stable

(as shown in Section6.1.3) and the extra computational cost seems, in the opinion of the author of

this dissertation, to outweigh the minimal advantage for such a naive combination at this time. An

alternative grid calibration method may make this option more attractive.

Since the virtual cameras have the same internal parameters it seems unnecessary to compute
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them twice. The internal camera parameters can be simply copied across from the left to the right.

However, the external camera parameters for the right hand camera are still required. This can be

solved by using the following geometrical relations. With reference to Figure6.11, given any two of

the 3D transformations relating to a stereo camera system the third can be derived directly from the

combination of the other two such that:

[ R | t ]wl = [ R | t ]−1
c [ R | t ]wr or [ R | t ]c = [ R | t ]wr [ R | t ]−1

wl

or [ R | t ]−1
c = [ R | t ]wl [ R | t ]−1

wr (6.32)

In this particular case we have the relative transformation[ R | t ]c and the left world to camera

left image right image

X

Π

[ R | t ]c

C ′e′

l′

e

x
l

C

[ R | t ]wr[ R | t ]wl

x′

Figure 6.11: Relating the transformation in epipolar geometry.

transformation[ R | t ]wl so the right world to camera transformations is given by:

[ R | t ]wr = [ R | t ]c [ R | t ]wl (6.33)

In practice this is computed using the ‘product of transformations’ function given inTina’s math

library. The code segment for this is given in Figure6.12 for ease of reference. It should be noted

152



that, since the initial epipolar calibration defined the two sets of external camera parameters, in terms

of the initially assumed world origin which is coincident with the left camera’s origin, the external

transform already stored in the right camera is in fact the relative transformation.

..../* compute the third transformation */
transfR = trans3_prod(*(rightcam->transf), *(leftcam->transf));
*(rightcam->transf) = transfR;
.........

../** from Tina’s source library **/
Transform3 trans3_prod(Transform3 transf2, Transform3 transf1)
{

Transform3 prod = {Transform3_id};

prod.R = mat3_prod(transf2.R, transf1.R);
prod.t = vec3_sum(transf2.t, mat3_vprod(transf2.R, transf1.t));
return (prod);

}....

Figure 6.12: Computing the third transformation associated with the epipolar geometry of a stereo

imaging system.

With the three transformations defined, the last phase of this second stage is to optimize the in-

ternal camera parameters while minimizing the errors between the projected world calibration and

corresponding image points in both the left and right cameras. This is achieved using the same op-

timization used with Tsai’s grid calibration method except that the algorithm is applied to both the

left and right cameras simultaneously. This involves adding the sum of the squared error from the

optimization error functions, applied to both the left and right camera models, on every iteration. This

algorithm is already included inTina but has been modified for use with a single set of internal

camera parameters, as described in Section6.2.1on page132. This algorithm makes use of the pre-

vious error covariance from the epipolar calibration during the optimization. This is then updated by

computing the full covariance matrix for all the camera parameters.

The simultaneous optimization of both the left and right cameras includes the relative camera

parameters in its own parameter list. Since the accuracy of the relative camera parameters is much
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higher than all the other parameters at this stage the tendency in the simplex optimization algorithm

is to sacrifice the accuracy of these for improvement in the rest. The final stage is therefore; to repeat

the epipolar calibration, minimizing the errors in the corresponding image points and improving the

estimates of the relative camera parameters. It should be noted that the restoration of the level of

accuracy reported by the algorithm is not complete since the original guess values for the first epipolar

calibration were calculated from the ideal and are therefore all consistent with each other.

Table6.5contains the results from each phase of the three stage “calibration in a box” algorithm.

The left hand column of Tables6.4(a)and6.4(b)show the stage of the calibration algorithm for which

(a) Internal camera parameters

Optimization errors Internal params

stage
∑
ε2 Epi |Ēpi|

∑
ε2 Raddst u0 v0 ax f

0: initial 162.0 138.0 1.20 10.00

1: Epimin 0.617 4.9e-07 161.9 138.0 1.17 9.997

2: f0 “–” “–” “–” 0.986

2a: IPmin 14.51 221.7 129.9 1.07 5.471

2b: [ R | t ]wr “–” “–” “–” “–”

2c: SIPmin 13.72 6.9e-04 18.17 23.84 161.9 137.8 1.18 5.453

3: Epimin 7.413 -2.4e-04 19.24 22.39 162.4 138.5 1.18 5.468

(b) Relative camera parameters

Relative camera parameters

stage q1 q2 q3 t1 t2 t3

0: initial 0.012 -0.035 0.035 0.0 0.034 5.233

1: Epimin 0.003 0.071 0.036 2.5e-07 -0.099 5.233

2: f0 -0.203 -0.010 0.005 0.519 0.226 356.8

2a: IPmin -0.027 0.066 0.045 0.366 0.777 519.9

2b: [ R | t ]wr 0.003 0.022 0.039 -6.4e-06 -0.088 4.734

2c: SIPmin 0.003 0.023 0.040 0.0 -0.078 5.251

3: Epimin 0.003 0.021 0.040 6.2e-06 -0.078 4.894

Table 6.5: Results from the “calibration in a box” algorithm for (a) the Internal camera parameters

and (b) the Relative camera parameters.
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the results apply. This begins with initial parameters (labelled ‘0:initial ’). The internal camera pa-

rameters in Table6.4(a)are as described in previous experiments. Those in Table6.4(b)are derived

from the “known” relative rotation and translation parameters (Rx = 0◦, Ry = −4◦, Rz = +4◦

andtx = 5.2331, ty = 0.0, tz = 0.18mm from a combination with the baseline distanceb in the

periscopic stereo head) and mapped onto the equivalent quaternionic parameters described by Equa-

tion 6.26earlier. The relevant optimization errors are given for each stage in Table6.4(a)and include

an estimate of the radial distortion error projected onto the image plane, as described in Section6.3

on page144, together with the sum of the squared error for the perpendicular distance between all the

corresponding image points and their respective epipolar lines (labelled ‘
∑
ε2Epi ’) and the normal-

ized mean epipolar (labelled ‘|Ēpi|’) error. The latter is included here to demonstrate the balanced,

positive and negative, epipolar errors which is a good secondary indication that the calibration is likely

to be accurate and stable. Visual confirmation of the calibration accuracy for the parameters of the

full perspective camera models for both cameras is given in Figure6.13. The small crosses represent

the world calibration data projected onto the image frame using the calibrated camera models.

(a) left image (b) right image

Figure 6.13: Visual confirmation of calibration accuracy.

This “calibration in a box” method produces accurate, stable calibration for full perspective cam-
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era models. This can be applied to both initial laboratory calibration during manufacture and prior to

use in the operating environment. Subsequent re-calibration during operation is computed using the

variational principle or an alternative epipolar calibration technique.

6.4.1 Comparing the Order of the Combined Calibration Methods

In order to make a subjective comparison between the two methods of combining grid and epipolar

calibration the tracking experiment described in Section6.3 was conducted for both on the same se-

quence of uncorrected periscopic image data. Table6.6 contains the results of this experiment. As

(a) ‘Calibration in a box’ method

order frames (l:r) disparity (h,v) Fmin e-band matched
∑
ε2 Epimin

∑
ε2 Raddst(l, r)

7 20:21 20.34, -1.27 166 5 35 129.5 201.9, 346.4

5 21:22 20.30, -1.32 139 4 28 82.44 31.11, 94.69

3 22:23 19.52, -1.40 119 3 59 59.94 39.35, 24.49

1 23:24 20.38, -1.27 106 3 87 16.28 10.68, 9.410

2 24:25 20.26, -1.31 96 3 69 66.62 51.23, 46.27

4 25:26 19.81, -1.30 82 4 24 100.1 23.45, 32.33

6 26:27 20.08, -1.26 69 5 14 64.96 46.69, 12.38

8 27:28 20.25, -1.19 53 6 9 87.54 107.7, 72.51

(b) ‘Grid plus epipolar’ calibration

order frames (l:r) disparity (h,v) Fmin e-band matched
∑
ε2 Epimin

∑
ε2 Raddst(l, r)

7 20:21 17.90, -2.64 166 5 17 40.31 16.30, 272.1

5 21:22 17.61, -2.97 139 5 24 147.6 66.58, 36.82

3 22:23 17.19, -2.77 119 3 22 49.75 23.82, 7.35

1 23:24 18.69, -2.57 106 3 86 1.963 6.92, 3.38

2 24:25 17.34, -1.95 96 3 73 43.42 30.54, 12.28

4 25:26 17.39, -2.46 82 4 39 146.4 52.84, 57.94

6 26:27 17.87, -2.54 69 5 13 63.63 16.03, 14.63

8 27:28 17.81, -2.60 53 6 3 14.72 0.29, 0.18

Table 6.6: Comparative results of calibration tracking for (a) the ‘calibration in a box’ against (b) the

standard ‘grid plus epipolar’ calibration methods.
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before the order the calibration sequence is given together with the relevant frames numbers. The

horizontal and vertical disparity is given as a guide to the vertical shift error discussed in Section6.3

andFmin is the lower of the total number of features in each images. The width of the epipolar band

(labelled ‘e-band’) is increased as the calibration sequence advances in order to allow the correspon-

dence matching algorithm to recover more data as in the previous experiment. Both the sum of the

squares for the epipolar and radial distortion errors are given in the right hand columns. It should be

noted that the absolute values are not a good comparative measure since they are computed across all

of the points, especially those of the last row in Table6.5(b)which are from three mismatched data

points. However, the balance between the radial distortion errors and the generally lower epipolar

error with an increased number of matched corresponding image points at either end of the sequence

demonstrates that the calibration in a box method is more stable overall than the standard method, even

though the latter appears to be more accurate (has lower absolute error values for a similar number of

matched points).

6.5 Concluding Remarks and Future Work

The research represented in this chapter covers both grid and epipolar calibration and a number of

techniques have been reviewed.

The popular Tsai method of grid calibration was found to have a number of limitations in its

use and the accuracy of its results was found to be worse than expected. Although this method has

been used here, it not recommended for inclusion in a robust calibration algorithm. The alternative

method reviewed in Section6.2 is reportedly more accurate and stable, assuming the inclusion of

data normalization. This method accommodates coplanar calibration data, but is not advised. The

implementation of this method using a non-coplanar calibration data is therefore recommended, by
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the author of this dissertation.

The application of the variational principle to epipolar calibration offers a quick and simple

method of maintaining calibration for small changes in the relative camera transformation. How-

ever, it’s inability to estimate the internal camera parameters, up to scale, is a limitation. The current

implementation makes use of all the supplied corresponding image points. Any errors, in the form

of positional noise or gross outliers, in the correspondence are therefore transferred to the camera

model. Although the inclusion of error covariance reduces the effect of such error over time, short

term stability is a concern. Given all these facts it is recommended that the use of SVD method of

computing the epipolar calibration, reviewed in Section6.2, be investigated for the initial estimate

and the variational principle used to improve the estimates and maintain the error covariance for sub-

sequent re-calibration. However, the variational principle should be subject to the use of improved

correspondence algorithm with the inclusion of the disparity gradient constraint, as in the PMF algo-

rithm mentioned in Chapter5, or a case deletion method such as RANSAC mentioned in Section6.2.

The accuracy of the calibration of a stereo imaging system is improved by the use of both grid and

epipolar calibration. The “calibration in a box” method presented here combines both in an apparently

novel way. Simply reordering the application of grid and epipolar calibration yields accurate and

stable results even with the use of less than preferred base techniques. The “calibration in a box”

method involves the elementary computation of the third transformation matrix associated with the

epipolar geometry of a stereo system. The author has identified that reordering the calibration and the

use of elementary theory concerning the geometrical relationship between the 3D transformations do

not appear to have been reported before.

Maintaining the calibration accuracy of a periscopic stereo system requires periodic epipolar re-

calibration during operation. The need for re-calibration should, in theory, be low for both the rota-

tionally corrected and uncorrected images since the relative geometry between the views is known.
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However, axial offset error between the axis of rotation and the optical axis in the uncorrected data

increases the need for, and reduces period between, re-calibration. In practice this error would be

minimized during the manufacture. However, for the image data captured using the turn table imple-

mentation periscopic stereo head used in the course of this research such correction is not possible.

In spite of complications it is possible, using the “calibration in a box” method and subsequent

epipolar re-calibration, to compute and, in theory, maintain calibration accuracy for both rotationally

corrected and uncorrected periscopic data. Both can therefore be used for scene reconstruction as

discussed in Chapter7.
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Chapter 7

Reconstructing the Scene

In Chapters1 and2 it was stated that the main advantage of a periscopic stereo imaging system is

that it has the capability of reconstructing large-scale 3D scenes. The long-term aim is to construct

Euclidean models from which real world measurements can be derived. In order to achieve this im-

aged features are projected, using the camera model, to form 3D descriptions of geometric primitives

such as points and lines. The type of projection and class of reconstruction depends on the type and

accuracy of camera model, as described in Chapters2 and6. The full perspective camera and par-

allel camera models for the stereo system, derived in Chapter6, enables Euclidean reconstruction of

the imaged structure. However, this does not constitute a “model” of the imaged scene. A visually

recognizable model of the scene requires extra processing which includes various techniques from

triangulation to surface modelling. These techniques are beyond the scope of the research presented

in this dissertation. Therefore, this penultimate chapter limited to a discussion of the concept of how

disparity images, generated from periscopic stereo, are related to each other and they can be used to

interactively reconstruct large-scale models of the scene.
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7.1 Multiple Disparity Images

In Chapter3 the analysis of the virtual camera motion revealed that each subsequent image pairs se-

lected from a periscopic sequence should, in theory, have the same relative geometry. In the Chapter6,

the discovery that the location of the principle point, for the camera used, was displaced from the cen-

tre of the image and the axis of rotation by a considerable margin (calibrated location estimated at pixel

coordinates(162, 138) ) represents a distinct departure from the theory for all experiments. However,

the ability of the calibration tools to recover and maintain the epipolar geometry over extended peri-

ods, not withstanding the limitations of the rotationally uncorrected experimental data, supports the

basic concept. The constant, deterministic, nature of the virtual relative camera geometry is compat-

ible with the use of the temporal stereo algorithm [CLTS97], based on stretch correlation [LTM94],

discussed in Section5.4. Using this stereo algorithm, sets of disparity images can be generated for

each image pair in the scan sequence as demonstrated in Figure7.1. The disparity images in Fig-

ures7.1(e)–7.1(g)are derived from the periscopic images in Figures7.1(a)–7.1(d), working from left

to right in pairs. The disparity is derived from the corresponding edge data by subtracting the horizon-

tal coordinate of the right matched feature point from that of the corresponding left feature point at

the intersection of the common epipolar lines [CTS98]. The disparity image is then constructed from

the coordinates of the left image matches with disparity encoded in the pixel value.

On their own these disparity image convey little about the structure of the scene. It is possible to

recognize certain features from the corresponding images, see Figures7.1(b), 7.1(c)and7.1(f). How-

ever, this is more connected with the ability of the human mind to resolve structure by interpolation

rather than the accuracy or content of the projection. The disparity images consist largely of vertical

structure. This is due to the predilection for the use of non-horizontal edges in the temporal stereo

algorithm. Horizontal edges can not be used to derive a measure of the disparity since the error is
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(a) frame 20 (b) frame 21 (c) frame 22 (d) frame 23

(e) disparity image f.20:21 (f) disparity image f.21:22 (g) disparity image f.22:23

Figure 7.1: Sequential disparity images (e)–(f) from uncorrected periscopic image data (a)–(d).

inversely proportional to the angle between the edge and the common epipolar line created by the

image plane rectification for the stretch correlation technique [CTS98], as shown in Figure7.2. It

should be noted that the diagrams in Figure7.2(b)are not entirely accurate since the structure should

be “warped” in sympathy with the image plane and a more accurate definition of the problem is that

scene in the scene which is parallel to corresponding epipolar lines can not be used for disparity mea-

surement. This is a distinct limitation to the reconstruction of large-scale models since a considerable

percentage of the structure in the human engineered world is horizontal as well as vertical. However,

this limitation is addressed in Section7.2.

Each disparity image is projected from the left camera, which is taken to be the reference coor-

dinate frame. The camera frame, either left or right, is the only frame of reference possible at this

stage. However, using knowledge of the sequence number of the original images, the disparity images
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Figure 7.2: Lost of the disparity measure for horizontal structure.

can be projected on to an absolute coordinate frame centered on the periscope system origin. This is

defined as the intersection of the optical axis and mirror plane in Section3.1. The origin for the recon-

structing coordinate frame is therefore given by the preset distanceb between optical centre and the

mirror plane as defined in Section3.1, see Figures3.3and3.7. The transformation to this coordinate

frame is effectively a rotation followed by translation into the scene along the optical axis such that

each projected 3D point is therefore given by:

X ′ = RX + t where R =


cosmφ 0 sinmφ

0 1 0

− sinmφ 0 cosmφ

 (7.1)

t = [ 0, 0, b ] , m is the frame number andφ = 4◦ , from the mirror rotating at16.6 rpm with a
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capture rate of25 fps, as described in Section3.4. R is a 3D rotation about theY-axisof a right

handed coordinate frame. This effectively forms a panorama of over lapping disparity images as

demonstrated in Figure7.3

disparity images
projected

Figure 7.3: Panorama of projected disparity images.

With approximately4◦ separating each image there are 90 images in each horizontal scan of the

surrounding environment. Using successive images yields 90 disparity images for each scan. Each

successive image pair produces a disparity image which is consistent with every other, since they

are projected using the same camera models. This assumes “reasonably” stable internal and relative

camera calibration but not absolute accuracy or stability. This statement is explained Section7.3later.

Each projected cloud of 3D data is therefore related by a Euclidean transformation. Knowledge of this

transformation could be used in some form of data fusion algorithm which combines the over lapping

sets of projected 3D data.

The creation of this panorama of projected data assumes that each of the disparity images were de-

rived from fronto-parallel images. The mirror rotation about the optical axis in uncorrected periscopic
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data will however be transferred to the disparity image and the projected data, as evident in Fig-

ure7.1(f). The rotational correction of the periscopic data must therefore be taken into consideration.

7.2 Late Correction of the Periscopic Rotation

The concept of rotationally corrected and uncorrected periscopic data has continued throughout this

dissertation. The reason for this is due to three aspects, two of which have already been discussed

in Sections3.2 and5.3. To summarize; the first was that interpolation of image data for correction

induces positional error in the feature localization. The second concerns the complexity of processing

through the rotating silhouette frame. This is evident in Figure7.4 where the silhouette frame ap-

pears in the projected data in the disparity images shown in Figures7.4(e)and7.4(f). Figures7.4(a)

and7.4(b)show images from corrected periscopic images, processed for re-calibration. The images

in Figures7.4(c)and7.4(d)are produced by the stretch correlation algorithm and are therefore dis-

torted1 (the ball appears oval) from the application of the image plane rectification, as discussed in

Section5.4.

Processing the rotationally uncorrected periscopic data has presented its own problems, as dis-

cussed in Chapters5 and6. However, using this data has an extra hidden bonus. Since the image

data is constantly rotating all horizontal structures will at some instance in time be imaged as non-

horizontal lines. The use of uncorrected periscopic data can therefore compensate for the limitation

in the temporal stereo algorithm previously discussed in Section7.1.

The rotational correction can be combined with rotation matrix in Equation7.1and applied to the

projected data in 3D. Alternatively rotational correction can be performed in 2D as demonstrated in

Figure7.5. This rotation shown is deliberately excessive in order the convey the concept. This was
1The distortion caused by the image plane rectification has been included here for reference only and has no special

significance to the discussion in this chapter.
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(a) cal of f.18 (b) cal of f.19 (c) stretchcorl f.20 (d) stretchcorl f.21

(e) disparity image f.18:19 (f) disparity image f.19:20 (g) disparity image f.20:21

Figure 7.4: Disparity images from rotationally corrected periscopic data with: (a) and (b) the cali-

bration corners, (c) and (d) a temporal stereo pair after stretch correlation and matching and (e)–(f)

sequential disparity images from the image pairs (a):(b),(b):(c) and (c):(d).

(a) matched features overlaid on left image (b) rotated geometry list from matched features

Figure 7.5: Rotating the list 2D geometry, create from the matched features, before projection to 3D.
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created by applying a 2D rotation matrix, of the form:

Rφz =

 cosmφ sinmφ

− sinmφ cosmφ

 (7.2)

to the geometry shown in Figure7.5(a). It is not suggested that re-projection into the right hand image

is necessary or correct; this only demonstrates the concept of correction in 2D2.

Although the panorama has been projected into an absolute coordinate frame the accuracy of the

reconstruction, regardless of the data fusion and modelling techniques employed, will still have poor

accuracy. This is due to the small baseline inherent in the design of the periscopic stereo head. It is

well known the accuracy of depth estimation is inversely proportional to the baseline distance between

two views [HZ00]. Even if every second or third frame is used to form an image pair and the disparity

images produced were combined with the original panoramic data, the accuracy would still be poor

compared with a conventional stereo reconstruction. However, this is addressed in the next section.

7.3 Multiple Periscopic Scans

The single panorama of projected data described in Sections7.1 and7.2 does not constitute large-

scale reconstruction. It does not yield a navigable map of the local environment, nor does it allow for

accurate measurements of world structures.

In Chapter1 it was stated that the target application for periscopic stereo is for autonomous mo-

bile robots. Therefore, the periscopic head can be relocated in a new position displaced by some

distance and a second scan of the local environment captured. The sketch in Figure7.6demonstrates

two successive scans of a local environment. The relative displacement,D, could be recovered from
2A list of 2D geometry is constructed inTina using conic and line fitting techniques applied to the edge strings in the

left hand image
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odometers on the robot. However, this is not essential since the relative camera positions can be recov-

ered by epipolar calibration between corresponding image data across the two sequences. Computing

disparity images
scene

structure

2nd scan

projected

1st scan

count back

Z

D

[ R | t ]

Figure 7.6: Registration of projected disparity images from different scans.

the epipolar calibration across different scan image sequences allows for the reconstruction of a third

set of projected data. This, together with the data from each scan, can be combined to form more

accurate reconstruction of both depth and structure. Subsequent scans of the local environment would

recover yet more data and a large-scale model of the scene is produced incrementally over time. For

each subsequent scan the epipolar calibration is also used to transform the data from the first absolute

coordinate frame to the second, as shown in Figure7.6. This effectively creates a transitional world

origin which is updated by every new position. Using the last position of the periscopic stereo head

as the origin of the coordinate frame, navigation back through the world model and absolute scale

measurement are both possible.

Registration of the corresponding images can be achieved by initially using a crude “count back”

method of the frames and then subsequently by using the feature matching techniques described in

Chapter5. This is possible since each scan is captured from the same cardinal point, as described in
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Section3.4. The number of frames to count back in the second scan, relative to the first, as shown

in Figure7.6, is proportional to the baseline distance between the scans and the mean depth of the

scene. Both of these can be recovered from the data computed thus far. A secondary support for the

registration can be derived from the percentage of corresponding image points similar to the measure

used in Section5.3.

Figure7.7demonstrates the generation of a disparity image from widely disparate views. Again,

(a) frame.22, seq.2 (b) frame.24, seq.1 (c) disp image

Figure 7.7: Disparity image from registered images across different periscopic sequences.

this makes use of the temporal stereo algorithm [CTS98]. The original images in Figures7.7(a)

and7.7(b)show the corresponding points used for re-calibration and two arbitrary epipolar lines are

given to convey the calibration accuracy. Using the variational principle for epipolar calibration with

the error covariance was found to give accurate and stable results after the initial phase. However, the

initial calibration for a unknown transition of the periscopic head is largely dependent of the validity

of the correspondence which is inversely proportional to the distance moved by the head.
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7.4 Closing Remarks

This chapter has presented the outline of an iterative method of reconstructing large-scale models

of the surrounding scene. It is based on the projection for disparity images onto a common world

coordinate frame which is updated by the transition of the periscopic head to subsequent positions in

the local environment.

The proposed method makes use of the temporal stereo algorithm since it is compatible with

the consistent relative, virtual, camera geometry inherent in periscopic stereo. The use of the stretch

correlation technique has distinct advantages for widely disparate views from subsequent scans. How-

ever, from the discussion in Section5.2, the use of the stretch correlation technique for the individual

scans may not be necessary or desirable. Although the use of successive images is described, there is

sufficient overlapping in the image data of every second frame. This allows for the possibility of the

inclusion of disparity images from a wider baseline and therefore improved depth estimation and the

possibility of processing across three views using recently developed techniques involving the use of

tensors. This reportedly [HZ00, chap.16–18] increases both depth accuracy and structural content.

The final advantage of the late correction of the rotation about the optical axis in periscopic data

directly addresses the limitation in the temporal stereo algorithm for reconstruction of horizontal

structure, or more accurately, structure in the scene which is parallel to the corresponding epipolar

lines. With subsequent scans from disparate viewpoints, accurate reconstruction of horizontal struc-

ture would increase over time. This would naturally lag behind accuracy and volume of non-horizontal

structure.

Much of the discussion presented in this chapter is conjecture on the part of the author since proof

of the construction of large-scale 3D models can only really be given by their existence. However,

this conjecture is based on “known” theory from computer vision and robotic navigation using tri-
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angulation. The initial experiments have shown the methodology to be correct. However, the large

errors induced by the offset of the centre of rotation from the optical axis for the system used make

the reconstruction of large-scale models difficult with the current data. Final proof of the ability of

periscopic stereo to reconstruct large-scale models of the imaged scene is therefore the of subject of

ongoing research.
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Chapter 8

Conclusions and Future Work

The research presented in this dissertation has taken the concept of periscopic stereo through to the

design and construction of a realizable imaging system. The capability of periscopic stereo for large-

scale 3D reconstruction of the imaged scene has been demonstrated via the examination of each stage

of the reconstruction process.

In Chapter3 the analysis of the virtual camera geometry revealed that, assuming rotation about

the optical axis, relative motion between the views is consistent. The virtual baseline distance de-

pends on the size of the head and the choice of camera lens. Synchronization of the speed of rotation,

the camera shutter speed and the image capture rate is recommended since it ensures constant rela-

tive motion of the camera. The induced “tumbling” motion inherent in periscopic stereo image data

presents two distinct approaches for processing the image data. One consists of initially applying a 2D

rotation to the image plane in order to remove the tumbling effect and then processing the data using

standard stereo algorithms. However, this “corrected” approach induces a rotating “silhouette frame”

into the image sequence which creates it’s own problems for bounding the region of interest during

correspondence matching, calibration and reconstruction processes. The second, “uncorrected”, ap-
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proach makes no attempt to initially correct for the tumbling effect and processes the image data using

suitably modified stereo algorithms in order to implement rotational invariance or compensate for it.

In most cases, the modifications are relatively minor since the amount of relative rotation between the

frames is small. In either case, the tumbling effect has been central to the consideration of each stage

of the overall scene reconstruction process.

The positional accuracy of the reconstructed scene points is dependent on the accuracy of the

camera projection matrix and the localization of the corresponding image points. Feature detection

to sub-pixel accuracy is necessary for positional accuracy since localization error leads to the fracture

of edge strings and to the possibility of mismatched correspondence data. In Chapter4 the SUSAN

algorithm for feature detection was found to be an efficient and effective alternative to derivative

based methods. The implementation of SUSAN edge and corner detection reveals complications.

Identifying possible edge errors near junctions lead to the concept of “tuning” the output response

for connected, or segmented, edge strings. Modifications to the implementation of the SUSAN edge

detector have been evaluated. The results show that the optimal threshold for the secondary “edge-

type” condition, defined by the magnitude of the centre of gravity vector of 0.65, improves efficiency

of the algorithm without incurring any degradation of performance. The inclusion of an additional

parameter, valid over a limited range, effectively allows for the binary selection for edge connectiv-

ity. However, the integration of SUSAN feature detection with subsequent processing is not seamless

since the definitions of feature contrast and orientation are different from derivative based equiva-

lents. A proper statistical analysis is required to fully validate the modifications made and assess the

accuracy of sub-pixel localization.

Matching corresponding features in two or more images is an ambiguous problem with the pre-

ferred solution dependent on the particular set of circumstances regarding the imaging system, the

scene and subsequent processing requiring the match. An optimal solution for all cases does not exist
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since the application of particular constraints is not the same in all cases. Given the requirement for

matched point features from periscopic data for subsequent re-calibration, the preferred solution em-

ploys the correspondence algorithm available inTina with the choice of two correlation techniques.

In the case of uncorrected periscopic data a±4◦ rotated correlation patch is marginally preferable to

a standard correlation patch. In the case of corrected periscopic data the warped patch, guided by

feature orientation found inTina’s library of source code, is recommended since it is less affected

by the induced silhouette frame.

These “patch-warping” correlation techniques are preferred to the proven stretch-correlation tech-

nique since no actual rectification of the image plane is required. Preference, in this particular case,

is based on the use of simulated rectification of the image plane which does not distort the localiza-

tion of the point features. Therefore, the accuracy of the epipolar calibration is partially decoupled

from the collection of accurate data for which it is required. However, in the case of the matching

correspondence data for reconstruction, the use of stretch-correlation in the temporal stereo algorithm

is preferred since the reduction in mismatched data, from the use of temporal disparity gradient in-

formation, outweighs the degree of localization error induced. The assumption in this argument is

that occurrence of mismatched data in the correspondence data set does not unduly affect the calibra-

tion accuracy. This is a questionable premise since the reported stability of the variational principle

for epipolar calibration in the presence of outliers is not been supported by the results presented in

Section6.3.

Currently two schools of thought exist on the question of outliers and calibration. One suggests

that all outliers should, as far as possible, be removed from the correspondence data prior to calibration

regardless of the optimization strategy used. The other claims that correctly constrained optimization

negates the need for computationally intensive case deletion methods. The author of this disserta-

tion prefers a compromise approach where the correspondence algorithm is sufficiently constrained
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to reduce the number of outliers without the need for further case deletion methods and the calibra-

tion algorithms are sufficiently robust in the presence of a small number of outliers. The use of the

term “sufficiently” here is deliberately vague since an accurate measure in either is impossible due

to the inability to predict the number, or degree of error, of outliers in the general case. The author’s

preference is merely an observation and unsubstantiated here.

The inadvertent inclusion of outliers in the correspondence data from uncorrected periscopic data

highlights the need for a disparity limit constraint, based on the known relative camera parameters,

and/or a disparity gradient limit. However, the latter is known to be unstable for point correspondence

data since uniform distribution of the data across the image is unlikely. Modelling the axial offset error

induced in the periscopic data by the limitations of the simulated system has produced a recommended

estimate of the maximum allowable alignment error of±5 pixels. This is within current manufacturing

capability.

A number of calibration techniques were reviewed in Chapter6. Although Tsai’s method of grid

calibration is widely referenced, the results from experiments with a coplanar grid found it to be

unstable and inaccurate, especially when the initial guess for the principle point is in error by more

than a few pixels. Assuming a reasonably accurate estimate of the principle point, Tsai’s method

is more stable with an iterative approach to the optimization phase. The preferred sequence begins

with optimization for the focal length only, followed by the inclusion of the principle point with the

horizontal aspect ratio. However, the accuracy of the results is still questionable and in general Tsai’s

method of grid calibration is unsuitable for an autonomous calibration system.

Epipolar calibration using the variational principle was shown to yield accurate stable estimates of

the relative camera parameters. However, its ability to derive estimates of the internal parameters from

an initially uncalibrated state is poor since it is constrained to achieve an optimal result by gradual iter-

ation. Stability in the presence of outliers can not be concluded at this time. In the case of uncorrected
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periscopic data, the apparent performance is good considering the prevailing experimental conditions.

However, calibration accuracy can not be maintained for more than six successive image pairs. In the

case of widely disparate views, when registering images from different scans, the ability to acquire

and maintain calibration is more apparent with the variational principle. However, this has not been

formerly confirmed. The inclusion of an initial estimate of calibration using the linear, closed-form,

solution given by SVD may lead to more stability in the both epipolar and grid calibration.

A novel combination of epipolar and grid calibration for initial calibration, prior to use, referred

to as “calibration in a box” has been presented. The use of a self contained system does not invalidate

the concept of remote operation and the concept of scaling the grid calibration data for the intended

scene depth is possible. Calibration in a box switches the traditional order in which grid and epipolar

techniques are applied. Instead, a three stage process that begins and ends with epipolar calibration,

via optimization using the variational principle, is used. This algorithm relies on an elementary ge-

ometric combination of the three transformation matrices inherent in a stereo camera system, where

the third is derived from knowledge of the other two. Although not extensively tested, this algorithm

yields stable calibration results at the first attempt since it reduces the error in the initial camera pa-

rameters for the focal length and aspect ratio. However, the accuracy is largely dependent on “base”

methods for the grid and epipolar calibration either now which were found to give reliable estimates

of the image plane coordinates for the principal point. Although the external parameters of the right

hand camera are calculated directly, a final optimization stage is essential to return the accuracy of the

relative camera transformation and ensure stability for subsequent epipolar re-calibration during oper-

ational use. Improved results are achieved by allowing multiple scans of the periscopic head inside the

box with successive optimization for the relative and external parameters. Each of which should be

accompanied by an appropriate error covariance estimate. Re-calibration of the system is conducted

in the normal manner using corresponding image data and epipolar calibration. Control of periodic
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re-calibration could be given either by a correspondence performance measure and/or some random

event within a maximum period (say once every scan on a randomly selected pair of images).

The theory of large-scale scene reconstruction using disparity images from periscopic data has

been presented. Using knowledge of the frame number and the calibrated camera projection matrix

allows for the transformation of the disparity image data onto the world coordinate frame defined

by the system origin. Successive disparity images from a periscopic scan can be projected to form

a panorama. On their own panoramas of projected disparities images are not particularly accurate.

However, the generation of disparity images from periscopic images registered across separate scans

yields more accurate depth estimation. The combination of separate panoramas and “cross-scan”

disparity images should enable accurate reconstruction of the surrounding scene in an efficient manner

that directly addresses the problem of “where to look next”. The late correction of the tumbling

motion, inherent in periscopic data, has a number of advantages. It removes the need for initial

interpolation of the image data together with the induced feature localization error. It simplifies image

processing by circumventing the need for processing through the silhouette frame. The apparent

complexity of processing tumbling image data was shown to be unfounded and in the case of the use

of the temporal stereo algorithm directly addresses the limitation of reconstructing structure in the

scene which is parallel with corresponding epipolar lines. In other stereo systems this limitation is

given as structure which is horizontal in the scene. Apart from improvements in the calibration and

correspondence algorithms, future work on large-scale reconstruction will undoubtedly concentrate on

the fusion of overlapping structure in the panorama from adjacent projected disparity images, cross

panoramic depth and structural information.

Most of the techniques employed in the course of this research are based on, existing stereo

vision techniques. However, virtually all have required some extension or modification in the context

of periscopic stereo. Individually these techniques offer little which could be regarded as “new”
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theory, with the possible exception being the “calibration in a box” concept. However, in combination

the techniques presented make periscopic stereo practical for the extrication of 3D structure and an

effective compromise compared to existing imaging systems, by simplifying many of the problems

inherent in scene reconstruction. Periscopic stereo is the only system proposed to date which could

be capable of producing autonomous large-scale scene reconstruction, efficiently. However, the lack

of a complete demonstration of registered panoramas of disparity images means that this conclusion

can not be fully substantiated at this time. It is suggested that the addition of periscopic stereo head to

a robot’s sensor array may, for example, not only allow for increased robotic perception by supplying

an “awareness” of the surrounding environment but subsequently allow telepresence exploration of

remote mapped environments.
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Appendix A

Perspective Projection, Coordinate

Systems and Epipolar Geometry

This tutorial briefly describes the basic theory of the perspective projection performed by a camera

in terms of the transformations across the relevant coordinate systems. It also covers the geometry

between two cameras which form a stereo imaging system. Alternative tutorials can be found via

CVOnline1.

The imaging system of a camera performs a perspective projection (also called central projection)

on the world such that all points along a line from the optical centre out into the scene are projected

to a single image point. The effect is more apparent when viewing two parallel lines in the 3D

world which appear to converge to a point at infinity, known as thevanishing point. This projection

is essentially a linear transformation of a 3D projective space (P3), the world, to a 2D projective

space (P2), the image plane. However, if the points in these spaces are represented with normal,

Euclidean coordinates the expressions, that are used to define the transformations, become non-linear.
1The CVonline website can be found at:- http://www.dai.ed.ac.uk/CVonline/
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In order to keep the geometry simple, yet allow for the mathematical definition of primitives such as

points and lines at infinity, projective coordinates, often calledhomogeneouscoordinates, are used

for the analysis of projective transformations. The vector defining a normal point represented in

homogeneous coordinates has an extra component, which can take any non-zero value. This is often

set to ‘1’ and a one-to-one mapping from Euclidean space (Rn) into projective space (Pn) is therefore

given by:

[x1 , . . . , xn]T −→ [x1 , . . . , xn , 1]T

Points at infinity, often referred to asideal points, have no Euclidean representation, but are defined

in homogeneous coordinates by[x1 , . . . , xn , 0]T . Two homogeneous points are equivalent if one is

a scalar multiple of the other,(x1 , x2 , 1)T ≡ (λx1 , λx2 , λ)T . A collineation, or projective transfor-

mation, is any mapping,Pn → Pn, which can be defined by an(n+ 1)× (n+ 1) matrixA, such

that p̃ = A q̃ wherep̃ andq̃ are the mathematical shorthand for homogeneous coordinates given by

(n+ 1) vectors.

Figure A.1 demonstrates the geometry for the perspective projection performed by a camera.

Three coordinate systems are used to model the projection of a point in the world, defined by a 3-

vector (Xw) in the world coordinates, to a point on the image plane, defined by either a homogeneous

3-vectorXi = [Xi , Yi , Zi]T , or its 2D equivalent given by

xi = [u, v]T = [Xi/Zi , Yi/Zi]T (A.1)

The three coordinate systems are:

1. TheWorld coordinate system(subscriptw) describes the position of objects in the world with

respect to a defined origin0w.

2. TheCamera coordinate system(subscriptc) describes the position of objects with respect to its

own optical centre0c, sometimes defined as the focal pointC.
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3. The Image coordinate system(subscripti), which has its axis aligned to the camera coordinate

system, describes the position of the imaged point in terms of the pixel coordinates in the image

plane.

It should be noted that an extraimage affine coordinate systemis sometimes used to distinguish

between the ideal coordinates and the actual coordinates when imperfections in the geometry of the

pixel grid are taken into account.

The scene point, in the world coordinate system, can be translated into the camera coordinate

system
co−ordinate
Image

co−ordinate
system

World
Scene point

Optical ray

Optical axis

Camera co−ordinate system

Image plane

Principal point

Focal point

0w

Xw

Yw
Zw

t

R

Xw

Xc

f

Yc

Zc

u

v

xi

U c

Xi

Zi

−Yi
0i

Xc

p = (u0, v0)

0cC

Figure A.1: Basic geometry for perspective projection.
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system by a translation vector (t) followed by a rotation matrix (R) such thatXc = R(Xw − t) as

shown in FigureA.1. These are often known as theextrinsic, or external, camera parameters and can

be given in the form, 

r11 r12 r13 tx

r21 r22 r23 ty

r31 r32 r33 tz

0 0 0 1


=

 R t

0T 1

 = [ R | t ] (A.2)

where the delimiter[ | ] is used to denote that the matrix is composed of two sub-matrices, or, in this

case, a matrix and a vector.

The world pointXc, given in the camera coordinate system, is projected on to the image plane

as pointU c where thexc and yc coordinates can be derived from similar triangles, as shown in

FigureA.2, such that:

U c =
[
f Xc

Zc
,
f Yc
Zc

, f

]T
(A.3)

wheref is thefocal lengthbetween the optical centre of the lens and the image plane. This projec-

tion can be represented by a linear mapping between homogeneous coordinates using the normalized

projection matrixM as:

UC =


xc

yc

f

 = λ


1 0 0 0

0 1 0 0

0 0 1 0





Xc

Yc

Zc

1


= λMXc (A.4)

whereλ (λ = f /Zc) is the scale factor.

The focal pointC is the centre of the camera projection and the origin of the camera coordinate

system0c. In FiguresA.1 andA.2 the focal point appears in front of the image plane, which is its
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actual physical position. However the focal point is often shown behind the image plane in order to

simplify the explanation of projection. In that case the vectorU c differs only by the sign off .

The final translation is from the camera coordinate system to the image coordinate system as

shown in FigureA.3. Theprincipal point, at coordinates (uo , vo), defines the point where the optical

axis intersects the image plane. The origin for the pixel coordinates is however defined as the top

left-hand corner of the image plane. The translation is therefore given by,

ku xc = u− uo and kv yc = vo − v (A.5)

where the units ofk are in pixels/length as shown in FigureA.3.

Combining withf from EquationA.4, EquationA.5 can be expressed in matrix form by,

xi =


u

v

1

 =


f ku 0 uo

0 −f kv vo

0 0 1




xc

yc

f

 = K


xc

yc

f

 (A.6)

whereK is known as thecamera calibration matrixand is a3× 3 upper triangular matrix. This is

Zc

Xc

0c

Yc

f

yc

xc

U c

Xc

−Xc

xc = f Xc /Zcyc = f Yc /Zc

Figure A.2: Derivation of image point from similar triangles.
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Figure A.3: Conversion to image coordinate system.

more usually defined as:

K =


αu 0 uo

0 αv vo

0 0 1

 (A.7)

whereαu = f ku andαv = −f kv define the scaling in the imagex andy directions and as such the

aspect ratio, αu/αv, of the pixel elements. If the pixel grid is assumed to be perpendicular, the above

is satisfactory however sometimes an extra term (αsh) is shown in the top row, centre column which

describes ashearfactor. The components of the camera calibration matrix are collectively known as

the theintrinsic, or internal, camera parameters.

Combining all three translations above yields the3× 4 projection matrixP which models the

transformation from 3D Euclidean space to an image.

xi =


u

v

1

 =


αu 0 uo

0 αv vo

0 0 1




1 0 0 0

0 1 0 0

0 0 1 0


 R t

0T 1





Xw

Yw

Zw

1


= KM [ R | t ] Xw

(A.8)

This is often simplified tõxi = PX̃w whereP = KM [ R | t ] as shown. Often only the form of

(P) is important and not its actual decomposition. However, decomposition can be achieved using
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a matrix factorization method such aQR decomposition which can be found inNumerical Recip-

ies[PFTV93].

Two-View Geometry

Using two cameras to form a stereo imaging system, the 3D coordinates of any world point, viewed

in both cameras, can be computed from the intersection of the image rays projected from the optical

centers of each camera. The geometry that relates the two views of a stereo camera system is known

asepipolargeometry and is shown in FigureA.4.

left image right image

Π

C ′

K ′

x′

e′

l′

P ′X

X(λ)

P

K

C e

x
l

[R | t ]c

Figure A.4: Epipolar geometry for a stereo camera system.

The abstract, or conceptual, plane (Π ) is defined by the optical centers of both the left and right

camera and the world point of interest and is known as theepipolar plane. This plane, intersects each

image plane creating an abstract line, called theepipolar line. Each epipolar line, in turn, defines

two points; an image point coincident with the projected image ray and anepipole. The epipoles

( e ande′ ), are the projection of the optical centers, viewed by the other camera, in both the right

and left images respectively. These points are not necessarily on the image plane, as is the case with
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parallel cameras. Two cameras with coplanar image planes and parallel optical axis are referred to as

thecanonical configurationand produce collinear epipolar lines.

Any two image points corresponding to the same 3D world point are constrained to lie on the

epipolar line in the other image. This forms the basis of solutions to stereo matching, calibration and

subsequently 3D scene reconstruction. The epipolar geometry of a stereo camera system is uniquely

described by theFundamentalmatrix such that:

x̃TF x̃′ =
[
x y 1

]
 F




x′

y′

1

 = 0 (A.9)

wherex̃ andx̃′ are corresponding, homogeneous image points andF is a3× 3 matrix.

Proof that the epipolar geometry of a stereo system is described by the fundamental matrix is

derived as follows. Consider the image rayX(λ), back-projected fromx, on the left image plane in

FigureA.4, by the projection matrixP. This is obtained from̃x = PX̃ by considering two points

of interest on the image ray; the optical centre of the cameraC, wherePC = 0, λ = ∞, and

the pointP+x, whereλ = 0 andP+ is the pseudo inverse ofP such thatP+ = PT (PPT )−1 for

which PP+ = I. Assume that the world origin is coincident with the left camera centre such that

P = K [ I |0 ] andP′ = K′ [ R | t ] The image ray is then line formed by the two points and given by:

X(λ) = P+x+ λC =

 K−1 x

0T

+ λ

 C
1

 (A.10)

Consider these two points imaged by the second camera such that:

x′λ=∞ = P′C ' K′ [ R | t ]c

 0

1

 = K′ t = e′ (A.11)

x′λ=0 = P′P+x ' K′ [ R | t ]c

 K−1 x

0

 = K′R K−1 x (A.12)
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where' denotes the equivalenceup-to-scale, e′ is the epipole and[ R | t ]c is the transformation from

the world origin at the left camera centre. The ray is imaged in the second camera as the epipolar line

and can be computed from the vector product

l′ = e′ × x′ (A.13)

=
[

P′C
]
× P′P+ x

= K′ t × K′R K−1 x

= K′−T [ t ]× R K−1x (A.14)

where[ ]× denotes the skew-symmetric matrix form of the translation vector given by:

[ t ]× =


0 −tz ty

tz 0 −tx

−ty tx 0

 (A.15)

A similar algebraic manipulation is made on[ e′ ]× = [ P′C ]× .

Sincex′ lies onl′ andx′T l′ = 0 , which, substituting forA.14 can be written as

x′T
(

K′−T [ t ]× R K−1
)
x = 0 (A.16)

This defines the epipolar geometry of the stereo system, where the fundamental matrix is given by

F = K′−T [ t ]× R K−1 (A.17)

Computation of the fundamental matrix allows for the following calculation of the epipolar lines

l′ = Fx and l = FT x′ , sincexT l′ = 0 and lTx = 0 and the epipolesF e = 0 andFTe′ = 0 .

The two cameras are related by a rotationR and a translationt, collectively given as[ R | t ], such

that

x′ = Rx+ t (A.18)
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Taking the vector product witht, followed by the scalar product withx′ yields,

x′ · (t × Rx) = 0

which returns to EquationsA.9.

If the cameras are calibrated then the image point, in pixels, can be expressed in the camera

coordinate system such thatx = Kxc andx′ = K′ x′c. Substituting these andE = [ t ]× R, whereE

is known as theEssentialmatrix, in EquationA.16 yields

x′Tc Exc = 0 (A.19)

Comparing with EquationA.17, the essential matrix is related to the fundamental matrix by

F = K′−T E K−1 (A.20)

and defines the epipolar geometry for a stereo system with calibrated cameras.
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Appendix B

People and Projects in 3D Scene

Reconstruction

Some of the people associated with the three main projects at SMILE98 :

• VANGUARD : Visualization Across Networks using Graphics and Uncalibrated Acquisition of Real

Data.

European project based at the Visual Geometry Lab., Uni.of Oxford.

P. A. Beardsley, G. Cross, A. Fitzgibbon, D. Forsyth, R. Koch, J. Mundy, M. Pollefeys, P. Pritchett, I.

Reid, P. Torr, L. Van Gool, and A. Zisserman.

• PANORAMA : ACTS PANORAMA Project.

Consortium of 14 European partners from various universities, research institutes and industry.

R. Buschmann, L. Falkenhagen, R. Koch, A. Kopernik, T. Riegel, and D. Tzovaras.

• CUMULI : Computational Understanding of Multiple Images.

European project with, INRIA Sophia-Antipolis, Lund Uni., INRIA-IMAG Grenoble, Fraunhofer IGD,

IMetric.

K. Åström, O. Faugeras, A. Heyden, R. Mohr, L. Quan, G. Sparr, P. Sturm, B. Triggs, and Z. Zhang.

A comprehensive list of poeple in Computer Vision has been compiled by Margaret Fleck at the and can be

found at:http://www.cs.hmc.edu/ fleck/computer-vision-handbook/vision-people.html

Other projects of interest are:

• CAMERA : CAd Modelling of Built Environments from Range Analysis.

Euro Project partners are: Fraunhofer IGD (Germany), IST (Portugal), IEC-JRC (Italy), Kungliga Tekniska

Hogskolan (Sweden), LAAS-CNRS (France), UK Robotics (UK) and Uni.of Edinburgh (UK).

Project Coordinator: R. Fisher, Uni.of Edingburgh.

Aim: Automatically create architectural CAD and VR models of existing buildings from range and in-

189



tensity images.

Website:http://www.dai.ed.ac.uk/daidb/people/homes/rbf/CAMERA/

• RECCAD: (Copernicus) 3D surface Reconstruction for CAD modelling:

European Research project partners are: VAGG, CS at Uni.of Cardiff., GML, CAR Inst. Budapest.,

CVL, Uni.of Ljubliana, Slovenia., CMP at Fac.Eng, Czech Tech.Uni.

Aim: Produce complete and detailed boundary representations of geometric models.

Website: http://ralph.cs.cf.ac.uk/reccad.html

• COMORI and REC3D : Construction of Complete 3-D Models from Range Images and a MathLab

Toolbox for 3D Reconstruction from Uncalibrated 2D Views.

CMP at Fac.Eng, Czech Tech.Uni.

T. Werner, T. Pajdla, M. Urban, J. Burianek, J. Cernik and V. Hlavac

Aim: Develop existing methods for registration of surfaces and fusion of surface measurements into

consistent geometrical models.

Website:http://cmp.felk.cvut.cz/cmp/demos/Recx.html

• RESOLV: Reconstruction using Scanned Laser and Video.

European research programme, partners are; VERS Assoc., IST, JRC, Robosoft, ZGDV and Comp.Vis.Group,

SCS at Uni.of Leeds.

Project Manager: David Leevers of VERS.

Aim: Full environment reconstruction by an autonomous mobile robot for telepresence applications,

specifically surveying hazardous environments. Website:http://www.scs.leeds.ac.uk/resolv/

• REVEAL : Reconstruction from Video of Environments with Accurate Lighting.

Advanced Interfaces Group, Dept.of CS at Uni.of Manchester.

R. J. Hubbold, T. L. J. Howard, A. D. Murta, S. Gibson, A. J. West, D. Oram and J. Sinnott

Aim: Construction of fully interactive virtual environments that faithfully represent real-world scenes.

Website:http://aig.cs.man.ac.uk/research/reveal/

• Temporal Stereo: Electronic and Electrical Engineering Dept., at The University of Sheffield. S. Cross-

ley, A. J. Lacey, R. A. Lane, N. L. Seed, N. A. Thacker and R. B. Yates

Aim: Improving the accuracy and consistency of depth information for iterative 3D reconstruction using

previous estimates of disparity images.

Website:http://www.shef.ac.uk/eee/ecs/index.html

• VECTOR : Model-based Visual Surveillance.

Computer Vision Group, CS at Uni.of Reading.

G. Sullivan, S. Maybank, T. Tan, P. Remagnino, A. Worrall, J. Ferryman and J. Anderson

Aim: Tracking of vehicles and people in urban scenes for security purposes and reconstruction of room

interiors.

Website:http://www.cvg.cs.reading.ac.uk/Research.html

• VIRTUOUS : Autonomous Virtual World construction.

European research programme, partners are; CVSSP, EE at Uni.of Surrey., Inst.CTR Slovak Acad., UTIA

CAS Prague IST Uni.of Lisbon.

Aim: Registration of 3D surfaces to build 3D Models for a VR environment.

Website:http://www.ee.surrey.ac.uk/EE/VSSP/3DVision/virtuous/virtuous.html
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And in the US:

• Facade:
Computer Vision Group, CS at Uni of California at Berkeley.

P. Debevec, C. Taylor, J. Malik, G. Levin, Y. Yu

Aim: Creation of photo-realistic models for the entertainment and the construction industries.

Website:http://www.cs.berkeley.edu/ debevec/Research/

• (MBV) Modelling By Videotape:

Robotics Inst. at Carnegie Mellon Uni.

T. Kanade, C. Tomasi, C. J. Poelman, D. Moris, M. Han and L. Quan

Aim: Autonomous 3D model construction via SFM.

Website:http://www.vasc.ri.cmu.edu/ mbv/

• Pioneer: Remote reconnaissance system for structural analysis of the Chernobyl reactor.

US Dept.of Energy lead consortium which includes NASA JPL and NREC.

Aim: To design and build a tele-operated mobile robot capable of exploring the Chernobyl nuclear

reactor and recovering detailed inspection of the interior.

Website:http://robotics.jpl.nasa.gov/tasks/pioneer/homepage.html
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Appendix C

General Considerations when Choosing a

Framework for Image Processing

Software for Computer Vision Research

Before any useful results can be obtained from research into image processing and/or computer vi-

sion techniques a software framework, or environment, for the tools being used, and/or developed,

is essential. Even if this framework amounts to little more than anad-hoccollection of processing

and display programs, their interaction constitutes some form of framework and as such the following

considerations will still apply.

The following describes, in brief, some of the considerations pertaining to an “informed” choice

of a software environment, or framework, for image processing (IP) and computer vision (CV) tools.

These considerations were applied to the choice of environment for work on large-scale 3D scene

reconstruction but are equally valid for all areas of machine vision research. Use of the terms “frame-

work” and “environment” are completely interchangeable in the context of this guide. It is hoped
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that this “alternative” guide, which is not intended as a review of frameworks currently available, will

be of benefit to readers new to computer vision research and save valuable time for more important

matters.

Acknowledgment: The author would like to thank his colleagues, Mike Lincoln and David Johnson,

for their invaluable input to the formulation of ideas conveyed in this guide.

Off-the-Shelf Options - What to look for!

It seems that there are almost as many IP frameworks as there are applications. Much of this is due

to the gradual evolution of CV techniques over the years and the increase in the number of machine

vision applications but a great deal is also due to personal preference and the belief that anin-house

system will be better in some way. In a few cases the later may be true but attempting to design a useful

IP environment is by no means an easy task and can be a costly, albeit educational, exercise. There

has been so much written about all the various IP environments that it is extremely difficult to offer a

good reference from which to begin a review of the options available. However a useful collection of

papers covering many of the important considerations can be found in ‘Experimental Environments

for Computer Vision and Image Processing [CC94a]’. A list of the most popular environments can

be found through CVOnline together with an excellent review1 by Dr Adrian Clark [Cla98], written

originally for the EPSRC Summer School for Computer Vision. There are a number of similar reviews

available on the ‘Internet’, some supporting specific environments, others more general. Therefore,

yet another review is unnecessary. However, apart from the review referenced above, few, if any, give

advice on what to look for and how to make an “informed” choice. The following hopes you address

this issue without bias, so no judgments will be made about any specific frameworks. Regardless of
1also available from:http://www.dai.ed.ac.uk/CVonline/environ.htm
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all the “hype” surrounding particular frameworks, none should be automatically regarded as the best

option. In general, IP frameworks are initially written with a target area of research, or application,

in mind and then adapted for more general use as they are developed. As such they may be ideally

suited for the original task, but not necessarily ideal for others.

Image formats

The multitude of image formats2 are a testimony to the complexity of the requirements of IP environ-

ments. At one end of the scale, a simple image format with just the height, width and number of bits

per pixel is all that is required to carry out basic IP tasks. At the other, a comprehensive description of

the data type, colour model, spectrum band, region of interest, history of processing and a whole host

of other information may be required. There has been much debate over the year on the complexity

of image formats and which ones an IP environment should support. However, a large proportion of

the argument is ultimately dependent on the CV techniques being investigated. For example, work

on multi-spectral (e.g. colour) images is greatly simplified if the data is stored in a single composite

file rather than across several single band image files. However, processing is often performed on the

separate image bands so efficient data management becomes an important issue. An image format

with it’s own compression might be good for data storage but adds a considerable overhead when

attempting to process individual bands of data. There are a large number of format conversion tools

freely available but most of the more popular environments already support an increasing number of

image formats. It is advisable to become familiar with, at least, a couple of different image formats

and choose the most appropriate for the work in hand. Try not to become preoccupied by one partic-

ular format. Saving and displaying results is paramount to all research work so choose image formats

that are supported by a large number of processing, display and conversion tools.
2image format specifications can be found at:http://www.dcs.ed.ac.uk/home/mxr/gfx/
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Component parts

If a software framework is considered as a set of co-operating “modules”, each can be analyzed in

terms of its components. These modules can consist of any number of similar tools but there are

essentially only a few distinct modules for certain types of software environment. These could be:

• Libraries of standard and/or task specific tools such as; mathematical, geometric, image pro-

cessing, computer vision, simulation.

• A data management and process control core consisting of standard and user defined data types,

data storage structures, memory management, process pipelining or scheduling, etc.

• User interfaces to provide data I/O, data visualization, which could include both 2D and 3D for

images and data plots, and other analysis and prototyping tools to simplify algorithm develop-

ment.

These types of “modules” have also been described astoolkitsor servicesin some environments, but

they amount to the same thing. Most, if not all, the popular environments have extensive libraries of

the processing tools but, unfortunately, not all are organized in a user friendly way. Some of the larger

environments are accompanied by list generating, or look-up, tools to help you find what you are

looking, others seem to rely on poor descriptions and a considerable amount of user patience. Many

environments also have extra toolkits for specific vision tasks, such as medical imaging or character

recognition, but these are simply extensions to the basic processing libraries. “Ideally”, these more

specialized CV modules should, in the option of the author, be optional and selected by compilation.

The core of any system is obviously fundamental to its operation and use. Most environments

should be written to allow a considerable amount of flexibility for the access and manipulation of

both image data and also the various sorts of dynamic data which are created from it, such as edges,
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corners or textures, etc. There are a number of data management models which regularly appear

in IP environments, each with their own advantages and disadvantages. There is insufficient space

here to discuss the various options in any detail but the reader should be aware of metaphors such

as ‘stack’, ‘register’ and ‘blackboard’. The way in which an environment handles data processing

internally may be of little interest to many users. However, such concerns become very apparent

with increasing amounts of low-level programming within the environment. Of greater importance,

at least to many, seems to be the type of user interface employed. This is understandable as there is

little point in having an extensive library of processing tools if the effects can not be visualized in an

appropriate way in order to realize their worth. However the effectiveness of user interfaces are often

over shadowed by their appearance. Attractive features may appear to offer good functionality but

in fact offer little of practical value. Ideally an IP framework should be able to display image data

after every “distinct” process (i.e. those that change the image data). It should also support different

methods of highlighting, or displaying, features of interest. This should be at various resolutions

down to the pixel level. Some frameworks are able to support data plotting facilities, which also can

be extremely useful. Tools which aid the construction of algorithms, either by scripted input or some

form of graphical user interface, can be useful. However, they can also become hindrance to effective

research. This is due to the human tendency to ignore essential checks of the derived data part way

through the process chain. Discovering deep seated problems after months of looking at erroneous

results is unfortunately more common that it should be. There is often considerable value attached to

thelook and feelof most software packages and unfortunately image processing environments appear

to be no different.

In general, most of the popular IP environments have all the necessary components for an intro-

duction into CV research. The choice of which to use therefore may not have been made easier by

considering the component parts. If we assume that an IP environment has all the components required
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for research into the area of interest, then the next most important considerations are likely to be how

easy they are to use and/or modify. Reviews of IP environments often discuss general attributes such

as:

Extensibility - modify and extend to incorporate new ideas,

Generality - applicable to many areas of research by consisting of standardized tools and algorithms,

Operability - flexible interface that allows interaction at various levels of programming.

All these terms can have a number of different interpretations and are often used in impressive de-

scriptions in the framework’s accompanying documentation. Making an “informed” choice from such

descriptions is not easy so it may be worth considering the choice of framework not by “what it can

offer”, but from the point of view of the actual requirement of the task in hand.

Level of programming

The concept of “requirement” introduces the most fundamental question that should be asked by all

researchers connected with image processing and computer vision.

“What level of programming is required for the particular project or task”.

If the level is more user oriented and less development then some high level interpretation, that allows

the construction of algorithms by connecting together basic elements, may be more appropriate. This

could involve relatively simple interfaces which consist of wrappers around lower level processes that

are applied to images sequentially. Using such process wrappers, an edge detection algorithm might be

developed by sequential calls to;diffx() , sqr() , diffy() , sqr() , add() , nonmaxsup() .

Some environments use more exotic, higher level interfaces, some graphical and some scripted. The

more popular environments allow different levels of programming access, but, unfortunately, others
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are more restrictive. The use of higher level, abstracted, user interfaces can increase understanding

and productivity. However, such abstraction can also incur a considerable overhead when developing

new code or testing new ideas, especially when manipulating data structures that were not expected

to be handled by the particular interface.

If a considerable amount of code development is envisaged then access into the lower levels of

source code will almost always be required. It seems that many researchers like to create their own, or

at least modify existing, code. This includes both the IP tools and also the interface tools that produce

the results in some particular format not normally available. Therefore, the level of programming

access is often likely to be low level and involve direct access to all the source code. Many environ-

ments are freely available from the Internet, with full source code and documentation. Undoubtedly

some of these will be written in a language which is preferred by the reader, however some may not.

‘C’ is a popular language for many mathematical and scientific software tools and there are a number

language conversion packages available, both to and from ‘C’. There are also a number of possibilities

of combining ‘C’ code with another languages. Although it is becoming increasingly less likely these

days, some vision environments may contain large sections of code written in another language, or

worse converted from some ancient library of low-level image processing functions. This is can lead

to considerable problems when implementing new techniques and it is often difficult to confirm the

suitability of the low-level processes in higher level algorithms. It is always advisable to conduct a

thorough check of the source code before use.

The use of a particular programming language in IP and CV environments should be largely

arbitrary. Unfortunately this is not always the case. The software models and structures within some

languages, or, more accurately, the libraries of data classes and access functions created by some

higher level languages, do not lend themselves to the sort of data access and manipulation required

for IP and CV techniques. The greater the level of abstraction the more constrained the programmer
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is to using the predefined models and data structures. This can be apparent in both the design of

the framework and the language it is written in. If the programming model at the required level of

interaction is too rigid then it is often very difficult to implement new ideas.

In general, it is recommended that the choice of IP framework be based on the level of program-

ming that will be undertaken. If this is at a high level, then a framework with good support tools for

algorithm construction should be chosen. However, ensure that the tools are not too restrictive for

code development. If, however, low level programming is envisaged, avoid high levels of abstraction,

both in the code and the user interface.

Summary

The following summarizes the points raised above and can be used as a simple “checklist” for the

choice of a framework for IP and CV tools. This should not be considered as absolute or complete.

• Image formats: Ensure they are appropriate for the project or task.

• Library support: Select the libraries you want and where possible leave out those you don’t!

• System complexity: Ensure that there are appropriate image data types and dynamic data struc-

tures for the intended area of research and flexible, but consistent, forms of data access.

• Data visualization: Look for flexible image and data representation. This usually requires both

2D and 3D graphics support and plotting utilities.

• Productivity: Ensure that the framework design allows simple, quick algorithm generation but

beware of “flashy” user interfaces.
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Writing Your Own

Although there are some very good image processing environments, few, if any, of those which are

freely available, offer all of the attributes that are required for efficient research. This is especially true

when venturing into the higher levels of CV techniques such as those required for 3D scene recon-

struction. Consequently, it is sometimes desirable to write your own. This should not be considered

lightly. Designing and constructing a useful framework for vision research is not an easy task. How-

ever for those determined to embark on such an undertaking the following are a few pointers which

were acquired from a couple of stalled attempts at constructing a dual image processing and virtual

environment modelling framework for research use. This is not intended as a specification for a image

processing framework and will not cover every aspect of possible concern. Neither will any aspects

of the design of a framework for virtual environments be discussed.

JIVE (Joint Imaging and Virtual Environments) is an ongoing project at The University of Essex

which hoped to combine many of the IP features identified above together with an interface for Virtual

Reality (VR) modelling. Although this project had an ambitious specification, which incorporated

multi-spectral images, video stream processing as well as a VR interface, the plan was to design and

build the framework in two distinct phases. The first phase was just to construct the basic IP and CV

framework with a versatile data management model that would allow the second, virtual environment,

phase to be completed later. Unfortunately the project is still in its early stages of development but it

is expected to be revitalized in the near future.

As identified earlier, an IP framework consists, in general terms, of three separate modules, a core,

a set of processing libraries and some user interface tools. The following is considered in these terms

in order to simplify the ideas. Few of these should actually be considered in isolation and most will

impact on every component.

200



The basics

Definition of the internal image format needs to be flexible enough to handle almost anything. In

practice this is almost impossible and some compromise must be made. Obvious data members for

an image object, or class, are; height, width and a data pointer, ideally to avoid array of pointers to

rows in the image so that it is possible to define different data types to be used and allow maximum

flexibility for data access. This immediately introduces the choice of language. Some languages are

more strict on the specification and use of data types than others. This is both good and bad for the

development of a framework which is usually designed to handle a number of different data types an

efficient manner. Some languages are simply “non-starters” as far as image processing goes but that

is a personal opinion so the reader is free to draw their own conclusions. There is also a question

of the number of data types which should be supported. On the one hand in could be argued that

“the more the better.” However, the greater the number of data types the greater the amount of code

required to support each one. It is obvious that both integer and real data types are required and it

is sensible to use the greatest possible precision for most numerical processes. It is recommended

that both ‘complex’ and ‘pointer’ data types are also specified. The latter being particularly useful

for the construction of images of pointers to structures such as ‘Edgel’ features which could contain

useful, associated, data such as contrast, orientation, sub-pixel location, linkage and various other

user-defined properties. From the point of view of data I/O, it is far better to design flexibility into

the framework and allow for all possible data types, but then limit the internal processing to the types

with the highest precision appropriate to the numerical process. However, unnecessary casting of data

types is wasteful, especially if no useful processing takes place. Therefore the rigid definition of data

types for library functions is should be generally avoided. A sensible balance can be drawn by using

data types appropriate for the particular processing task being considered!

201



Most modern computer vision algorithms require full, random access to image data so a number of

flexible methods are required. These method need to be consistent and ideally type invariant in order

to simplify subsequent use. Apart form the usual “get-” and “put-line”, methods such as “get/put-

column” and “get/put-pixel” are extremely useful. The management of dynamic structures is also

very important and the use of various type of linked-list, including ‘tree’ and ‘graph’ structures is

highly recommended. Few languages have built in error checking and those that do are unlikely to

be versatile enough to deal with the requirements of an IP framework. Considering that most of the

use this type of software will be developing new code, robust error handling should be designed into

every level from the start. Thankfully, gone are the days when such frameworks were constrained to

operate with very limited amounts of RAM so memory management can, in many cases, be left to

the operating system. However, dedicated memory management can provide a useful method finding

memory leaks and also avoiding runaway processes. The extra effort is probably worth the effort in

the long term.

The inclusion of multi-spectra/multi-band (not necessarily just colour) images adds a new level

of complexity to the problem of designing an IP framework. While a universal framework which

treats all images the same is a desirable goal, the extra complexity it places on the system can be

extremely restrictive. Historically, most multi-spectral processing were limited to single bands, ef-

fectively treated the same as grey-scale images, but advances in multi-spectral processing techniques,

not least of which beingvector processing, has lead to a need for much more flexible methods of

data access. Apart from the obvious band access, full random access, down to pixel level, is often

required. It may be tempting to consider incorporating multi-spectral processing at a low level of the

core design, but this is not the best option. Although triple the amount (at best) of initial coding is

required, there are considerable advantages to designing a separate core (or more accurately, part-

core) module. Firstly it allows for multi-spectral processing to be “un-bolted” if not required by the
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user. Secondly, the fact that flexible data access is required suggests that decisions concerning internal

storage of image data (band, line or pixel interleaved) need careful consideration. A balance between

the abstraction of the image data and the full random access via, band, line and pixel is required that

minimizes the amount on internal packing and re-packing of data. Such a requirement is difficult to

implement in practice and would have a considerable impact on the performance of a single, standard

core for grey-scale IP.

A further complication would be the inclusion of streamed image data. Again this will have

considerable impact on the core, especially with memory management issues. It is recommended

that if such a requirement is necessary it should be treated as a separate module and implemented

through a specific interface to the core. The reason for this is similar to that given for multi-spectral

images, but also stems from concerns about flexibility and speed. Unfortunately flexibility and speed

are not compatible and one is almost always sacrificed to serve the other. If flexibility has already been

designed into the core at a low level, then it seems counter productive to add constraints in order to

service streamed data at that level, especially when a dedicated interface could be designed to handle

the stream much more efficiently.

Finally, for this section, the use ofin-line and/or macro functions can add considerable flexibility

however the implementation can sometimes appear more complex than necessary. Ultimately the

framework will be used by researchers with differing levels of programming ability so a number of

options should be made available for the most widely used functions.

Libraries

Libraries of math, IP and CV tools can be borrowed from a number of different sources, not least of

which is Numerical Recipes[PFTV93]. The use of borrowed libraries saves a considerable amount

of coding but it is dangerous to assume that all the source code is valid. Such code should be tested
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as much as possible. Flexibility is always an important issue, so offering a number of alternative

methods, especially those handling specific data types is recommended. However, trying to construct

multiples of everything should be avoided. Some versions may never be required and if they are, then

the user can generate their own from examples in the library. This last point leads to an extremely

important issue concerned with compilation. If a framework is going of any use, the addition of

new code must be quick and simple. This effectively means that regardless of the language used,

compilation must be as simple as possible, yet allow for the addition of new, or replacement, elements.

The use ofmakefilesoften helps with such concerns but it is also necessary allow for preferential

inclusion of source code files. Specification, orheader, files should not however be much more

difficult to over ride. These conflicting requirements are not always possible to implement in practice.

Excessively long functions and/or files should be avoided. Break up large, or long, algorithms into

sensible blocks. This is generally standard practice and allows for the maximum amount of code reuse.

Always try and store similar code in the same place. Again the use of macro generated or in-line code

is popular in many libraries but it is often difficult to find the definitions. Sensible distribution is

recommended but the exact interpretation of this is left to the reader.

User interface tools and algorithm analysis

The creation of interface tools, which could include versatile display, data plot and algorithms analysis

tools, for an IP framework can be the most time consuming part of the whole development. Creating

good interactive tools is far more complicated than it first appears. For a start there is the obvious

complication of dealing with event handling calls to the operating system’s windowing functions. This

is usually achieved by registeringcall-back functions for all of thewidgetsis use. Even something

relatively simple can take many lines of code to implement. With so much code being devoted to

the interface tools, it is often part of human nature that the developer would like their tools to be
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as attractive as possible. Unfortunately this often leads to a distraction from the functionality. It

seems that for every good idea for a support tool and/or utility there are probably three bad ones. All

researchers have their own interpretation of what constitutes a good tool and most would claim to be

able to implement it better. The one fact that seems constant about support tools is that “the more they

offer the worse they are”. Attempting to write a tool that does everything will probably take twice

as long, be ten times more complicated and be a hundred times less likely to be used. If “similar”

functionality can be sensibly combined into a single tool then it should be included. If not, then a

separate tool should be constructed. Again, sensible interpretation of this is required.

There are a few obvious tools that are required by all frameworks. Displaying results in an IP

framework in paramount and the framework should be able to display the result after every stage

of processing. This effectively means that all the supported image data types need to be converted

into some common format for display. This undoubtedly requires different levels of truncation on

each data type and could also include logarithmic re-scaling. Highlighting image data of interest with

colours is common place, so the specification of local colour palette is fundamental. Camera style

functions, such as zoom and pan, are particularly useful for image display in IP framework but obvi-

ously involve another level of complexity on top of basic system. Data plotting tools are extremely

useful in IP frameworks but unfortunately there are very few, good, examples available. Apart from

the usual 2D graphs and charts, 3D surface plots of image data are also useful but even harder to find.

GNUhave produced library of plotting utilities3 which will aid development for unix/linux compatible

framework. Algorithm analysis is often overlooked in many IP frameworks. The simple fact that the

original author is happy with the performance of some process would seem to preclude the require-

ment for anyone else making a judgment. The liberal use of ‘message’ and ‘data formatting’ methods

greatly aids the access of existing code as does and common text I/O interface. The idea of saving
3the library can be found at:http://www.gnu.org/software/plotutils/plotutils.html
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comments to a console window which can then be edited and saved to file is particularly attractive.

Processing timing is likely to be unreliable in a flexible IP framework, especially if the processing

results are updated automatically (which is preferable), but the inclusion of a timer module, activated

by simple ‘start’ and ‘stop’ calls, is often a useful guide when developing large algorithms with a

number of component parts.

Design Strategy

A great deal of emphasis has been placed on the merits of object orientated (OO) design. In general,

the methodology which OO supports is applicable to all software and should be applied and all times.

However, while this is recommended for all commercial software, strict adherence to OO, by applying

complete data abstraction, imposes excessive constraints on the research programmer. The need to

ensure the stability of the lower level of a software framework is paramount. However, restricting

access to higher levels of data, especially the image data and the algorithm derived from it, is counter

productive. The researcher needs to be able to construct and manipulate data, at the outer most layer

of the framework, with relative ease without incurring the penalty of an excessive number of calls

to lower level functions. There is obviously a fine balance to be made between good object oriented

design practice and over enthusiastic implementation of abstraction. The application of theonion

model of the software system is a particularly useful metaphor for producing such a balance. In

essence, decrease the level of data access from the outside layers inwards toward the centre.

Closure

The above are only a few observations and are not intended as a complete specification for the devel-

opment of an image processing framework. The reader may use, or ignore, them as they see fit.
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Appendix D

Code Listing for SUSAN Edge and

Corner Detection

/* susan.h - */
#ifndef SUSAN
#define SUSAN

#define BLUTSCALE 100
#define SUSANMASK 37
#define EXPPWR 6
#define INTERCASE 600
#define ALMOST3 290
#define MINRESPNC 50
/*#define EDGE_RAW 0x00000000*/
#define EDGE_SUSAN 0x00000004

extern int *setup_blut(int **blutptr, int bth, int pwr);
extern void free_blut(int *blut);
extern void print_blut(int *blut);
extern Imrect *susan_prnc(Imrect *im, int geot, int *blut);
extern Imrect *susan_prnc2(Imrect *im, int geot, int *blut);
extern Imrect *susan_prnct(Imrect *im, int geot, int *blut);

extern Imrect *susan_corner(Imrect *im, float gthresh, int *blut);

extern Imrect *susan_edges(Imrect *im, float gthresh, float cfgmagn,
float casecond, int *blut, int lengththres);

#endif

/* susan_prnc.c - This is the principle SUSAN algorithm used by
both edge and corner detection procedures.
Eddie Moxey, last update Oct 2000.

*/
#include <stdio.h>
#include <math.h>
/* tina headers */
#include <tina/sys.h>
#include <tina/sysfuncs.h>
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#include <tina/math.h>
#include <tina/mathfuncs.h>
#include <tina/vision.h>
#include <tina/visionfuncs.h>
/* local headers */
#include "susan.h"
#include "../tina/eds_funcs.h"

static List *timed_proc_list = NULL;

int *setup_blut(int **blutptr, int bth, int pwr) {

/* sets up a brightness look-up table for SUSAN algorithms */
/* such that the similarity measure is given by: */
/* sim(I, Io) = exp((I - Io)/bth)ˆpwr */
/* where bth is a brightness threshold. */
/* The values stored range from 0 (min) to 100 (max) only! */
/* A pointer to the start of the LUT is returned but the */
/* original pointer given is used to access the LUT. */
int i;
float tmp;
int *blutfree;

blutfree = ivector_alloc(0, 516);
/* Only need 513 bytes for std 8-bit greyscale images */

if(pwr == 0) pwr = EXPPWR;

*blutptr = blutfree + 258; /* set pointer to centre to table */

for(i = -256; i <= 256; i++) {

tmp = ((float)i)/bth;
tmp = tmp * tmp; /* must be squared at least! */
switch(pwr) {
case 2 :

break;
case 4 :

tmp = tmp * tmp;
break;

case 6 :
tmp = tmp * tmp * tmp;
break;

default:
error("Invalid exp power in SUSAN BLUT\n!", non_fatal);

}
tmp = BLUTSCALE * exp(-tmp);
*(*blutptr + i) = (int)tmp;

}
return(blutfree);

}

void free_blut(int *blut) {

ivector_free((void *)blut, 0);
}
void print_blut(int *blut) {

/* test purposes only */
int i, nout;
for(i = -256; i <= 256; i++) {

fprintf(stderr, "b%d %d\t", i, *(blut + i));
if(!(nout = i % 8)) fprintf(stderr, "\n");

}
}
void format_blut(int *blut) {

/* test purposes only */
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int i, nout;
for(i = -256; i <= 256; i++) {

format("b%d %d\t", i, *(blut + i));
if(!(nout = i % 8)) fprintf(stderr, "\n");

}
}

Imrect* susan_prnc2(Imrect *im, int geot, int *blut) {
/* susan principle 2 - as above but faster for corners */
/* because it constantly checks that the usan area does */
/* not exceed the geot limit while incrementing. */
Imrect *im_out;
int *lineout, *im_lines[7];
int usanA;
int *centrep, *maskp;
int lx, ux, ly, uy;
int maskline, i, j, maski;

if(im == NULL) {
error("susan_prnc() given NULL image", non_fatal);
return (NULL);

}

usanA = 0;
lx = im->region->lx;
ux = im->region->ux;
ly = im->region->ly;
uy = im->region->uy;

im_out = im_alloc(im->height, im->width, im->region, int_v);
lineout = ivector_alloc(lx, ux);

for(maski = 0; maski < 7; maski++) {
im_lines[maski] = ivector_alloc(lx, ux);

}

for(i = ly+5; i < uy-5; i++) {

im_get_row(lineout, im_out, i, lx, ux);

maskline = 0;
for(maski = -3; maski <= 3; maski++) {

im_get_row(im_lines[maskline], im, maski+i, lx, ux);
maskline++;

}
/* NB: 37 cell mask shape */
/* is: ..###.. */
/* .#####. */
/* ####### */
/* ###X### */
/* ####### */
/* .#####. */
/* ..###.. */
for(j = lx+5; j < ux-5; j++) {

lineout[j] = 0;
usanA = BLUTSCALE; /* allow for central pixel now!*/
centrep = blut + im_lines[3][j];
/* define mask centre as an offset in the simlarity table */
maskp = im_lines[0] + j - 1;
/* Calculate USAN Area. */
/* 1st line */
usanA += *(centrep - *maskp++);
/* subtract the pix value from the table offset */
/* to find the similarity measure. */

209



usanA += *(centrep - *maskp++);
usanA += *(centrep - *maskp);
maskp = im_lines[1] + j - 2; /* move on to next line */
/*2nd line */
usanA += *(centrep - *maskp++);
usanA += *(centrep - *maskp++);
usanA += *(centrep - *maskp++);
usanA += *(centrep - *maskp++);
usanA += *(centrep - *maskp);
maskp = im_lines[2] + j - 3; /* move on to next line */
/* 3rd line */
usanA += *(centrep - *maskp++);
usanA += *(centrep - *maskp++);
usanA += *(centrep - *maskp++);
usanA += *(centrep - *maskp++);
usanA += *(centrep - *maskp++);
usanA += *(centrep - *maskp++);
usanA += *(centrep - *maskp);
maskp = im_lines[3] + j - 3; /* move on to next line */
/* 4th and centre line */
usanA += *(centrep - *maskp++);
usanA += *(centrep - *maskp++);
usanA += *(centrep - *maskp++);
/* check usan area early and save computation */
if(usanA > geot) continue;
maskp ++; /* skip centre pixel */
usanA += *(centrep - *maskp++);
if(usanA > geot) continue;
usanA += *(centrep - *maskp++);
if(usanA > geot) continue;
usanA += *(centrep - *maskp);
if(usanA > geot) continue;
maskp = im_lines[4] + j - 3; /* move on to next line */
/* 5th line */
usanA += *(centrep - *maskp++);
if(usanA > geot) continue;
usanA += *(centrep - *maskp++);
if(usanA > geot) continue;
usanA += *(centrep - *maskp++);
if(usanA > geot) continue;
usanA += *(centrep - *maskp++);
if(usanA > geot) continue;
usanA += *(centrep - *maskp++);
if(usanA > geot) continue;
usanA += *(centrep - *maskp++);
if(usanA > geot) continue;
usanA += *(centrep - *maskp);
if(usanA > geot) continue;
maskp = im_lines[5] + j - 2; /* move on to next line */
/* 6th line */
usanA += *(centrep - *maskp++);
if(usanA > geot) continue;
usanA += *(centrep - *maskp++);
if(usanA > geot) continue;
usanA += *(centrep - *maskp++);
if(usanA > geot) continue;
usanA += *(centrep - *maskp++);
if(usanA > geot) continue;
usanA += *(centrep - *maskp);
if(usanA > geot) continue;
maskp = im_lines[6] + j - 1; /* move on to next line */
/* 7th and last line */
usanA += *(centrep - *maskp++);
if(usanA > geot) continue;
usanA += *(centrep - *maskp++);
if(usanA > geot) continue;
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usanA += *(centrep - *maskp);

if(usanA < geot) {
lineout[j] = (geot - usanA);

}
}
/* end of row - put the mask lines back */
maskline = 0;
for(maski = -3; maski <= 3; maski++) {

im_put_row(im_lines[maskline], im, maski+i, lx, ux);
maskline++;

}
im_put_row(lineout, im_out, i, lx, ux);

}
for(maski = 0; maski < 7; maski++) {

ivector_free((void *)im_lines[maski], lx);
}
ivector_free((void *)lineout, lx);
return (im_out);

}
/* End of File */

/* susan_edges.c
* Smallest Univalue Segment Assimilating Nucleus(SUSAN)
* Edge detection. Code is rather lengthy but efficient!
* Eddie Moxey, May 2000.

*/

static Imrect *susan_edgmnts(Imrect *prncim, Imrect *im, int geot,
float cfgmagn, float casecond, int* blut) {

/* calc the usan area moments for subsequent edge orientation */
Imrect *maxim;
int cgx, cgy;
long cgxsq, cgysq, xycfg;
long sqsum, cfgvecmag;
int *prnclines[5], *im_lines[7];
int siml, usanA, usanR;
int *centrep, *maskp;
int lx, ux, ly, uy;
int maskline, i, j, maski, a, b, w;
Bool do_secndmnts = false;
float cheapatan, posoff, drow, dcol;
Vec2 pos = {Vec2_id};
Edgel *eptr, *edge_alloc();

if (im == NULL || prncim == NULL) {
error("susan_edgmnts() given NULL image", non_fatal);
return (NULL);

}
cgx = cgy = cgxsq = cgysq = sqsum = xycfg = 0;
siml = usanA = usanR = 0;

lx = im->region->lx;
ux = im->region->ux;
ly = im->region->ly;
uy = im->region->uy;

maxim = im_alloc(im->height, im->width, im->region, ptr_v);

for(maski = 0; maski < 7; maski++) {
im_lines[maski] = ivector_alloc(lx, ux);

}
for(maski = 0; maski < 3; maski++) {

prnclines[maski] = ivector_alloc(lx, ux);
}
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/* Only need to process the centre area of im,*/
/* so allow some spare lines around the edge! */
for(i = ly+7; i < uy-7; i++) {

maskline = 0;
for(maski = -3; maski <= 3; maski++) {

im_get_row(im_lines[maskline], im, maski+i, lx, ux);
maskline++;

}
maskline = 0;
for(maski = -1; maski <= 1; maski++) {

im_get_row(prnclines[maskline], prncim, maski+i, lx, ux);
maskline++;

}
for(j = lx+7; j < ux-7; j++) {

usanR = prnclines[1][j];
if(usanR < 50) continue;
/* Skip if original edge no response! */
usanA = geot - usanR;
if(usanA < 200) continue;
/* Skip if original usanA was too small ! */
centrep = blut + im_lines[3][j];

if(usanA > casecond) {
/* Calculate 1st Moments for Centre of Gravity */
/* of USAN area. casecond replaced INTERCASE */
cgx = cgy = 0;
maskp = im_lines[0] + j - 1;
/* 1st line */
siml = *(centrep - *maskp++);
cgx -= siml; cgy -= 3*siml;
siml = *(centrep - *maskp++);
cgy -= 3*siml;
siml = *(centrep - *maskp);
cgx += siml; cgy -= 3*siml;
maskp = im_lines[1] + j - 2; /* move on to next line */
/* 2nd line */
siml = *(centrep - *maskp++);
cgx -= 2*siml; cgy -= 2*siml;
siml = *(centrep - *maskp++);
cgx -= siml; cgy -= 2*siml;
siml = *(centrep - *maskp++);
cgy -= 2*siml;
siml = *(centrep - *maskp++);
cgx += siml; cgy -= 2*siml;
siml = *(centrep - *maskp);
cgx += 2*siml; cgy -= 2*siml;
maskp = im_lines[2] + j - 3; /* move on to next line */
/* 3rd line */
siml = *(centrep - *maskp++);
cgx -= 3*siml; cgy -= siml;
siml = *(centrep - *maskp++);
cgx -= 2*siml; cgy -= siml;
siml = *(centrep - *maskp++);
cgx -= siml; cgy -= siml;
siml = *(centrep - *maskp++);
cgy -= siml;
siml = *(centrep - *maskp++);
cgx += siml; cgy -= siml;
siml = *(centrep - *maskp++);
cgx += 2*siml; cgy -= siml;
siml = *(centrep - *maskp);
cgx += 3*siml; cgy -= siml;
maskp = im_lines[3] + j - 3; /* move on to next line */
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/* 4th line */
siml = *(centrep - *maskp++);
cgx -= 3*siml;
siml = *(centrep - *maskp++);
cgx -= 2*siml;
siml = *(centrep - *maskp++);
cgx -= siml;
maskp ++; /* skip centre pixel */
siml = *(centrep - *maskp++);
cgx += siml;
siml = *(centrep - *maskp++);
cgx += 2*siml;
siml = *(centrep - *maskp++);
cgx += 3*siml;
maskp = im_lines[4] + j - 3; /* move on to next line */
/* 5th line */
siml = *(centrep - *maskp++);
cgx -= 3*siml; cgy += siml;
siml = *(centrep - *maskp++);
cgx -= 2*siml; cgy += siml;
siml = *(centrep - *maskp++);
cgx -= siml; cgy += siml;
siml = *(centrep - *maskp++);
cgy += siml;
siml = *(centrep - *maskp++);
cgx += siml; cgy += siml;
siml = *(centrep - *maskp++);
cgx += 2*siml; cgy += siml;
siml = *(centrep - *maskp);
cgx += 3*siml; cgy += siml;
maskp = im_lines[5] + j - 2; /* move on to next line */
/* 6th line */
siml = *(centrep - *maskp++);
cgx -= 2*siml; cgy += 2*siml;
siml = *(centrep - *maskp++);
cgx -= siml; cgy += 2*siml;
siml = *(centrep - *maskp++);
cgy += 2*siml;
siml = *(centrep - *maskp++);
cgx += siml; cgy += 2*siml;
siml = *(centrep - *maskp);
cgx += 2*siml; cgy += 2*siml;
maskp = im_lines[6] + j - 1; /* move on to next line */
/* 7th and last line */
siml = *(centrep - *maskp++);
cgx -= siml; cgy += 3*siml;
siml = *(centrep - *maskp++);
cgy += 3*siml;
siml = *(centrep - *maskp);
cgx += siml; cgy += 3*siml;

/* Compare abs distance of cofg from nucleus */
cgxsq = SQR(cgx);
cgysq = SQR(cgy);
sqsum = cgxsq + cgysq;
cfgvecmag = (long)(cfgmagn * SQR(usanA));

if( sqsum > cfgvecmag ) {
/* i.e is cofg vector magnitude > 0.? * usanA */
/* If cofg NOT too close to nucleus then can */
/* calculate edgel with 1st moments. */
/* NB: Original range from 0.5 to 0.9 but */
/* this appears to be tight. Problem with */
/* edges at sharp corners where usuaA is small */
do_secndmnts = false;
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if( cgx == 0 )
/* must be horizontal */
cheapatan = 100.0; /* anything greater than 2.0 */

else
cheapatan = ((float)cgy)/((float)cgx);

/* check which sector CofG is in */
if( cheapatan < 0 ) {

cheapatan = -cheapatan;
w = -1;

}
else

w = 1;
/* each sector divided into: < 26.6 deg ( atan(0.5) )*/
/* > 63.4 deg ( atan(2.0) ), or 26.6 > < 63.4 deg. */
/* These are the only sensible args to atan which */
/* give a symetrical division between vertical, */
/* horizontal or diagonal orientation !! */
if( cheapatan < 0.5 ) { /* vertical edge, a=0,b=1 */

/* do NMS across the edge then set sub-pix pos */
a = prnclines[1][j-1];
b = prnclines[1][j+1];
if( (usanR < a) || (usanR <= b) )

continue;

posoff = (float)(a - b)/(2 * (a + b - 2*usanR));
/* 1D quadratic curve fit across the edge which does */
/* not give very accurate position for adjacent pixls */
/* with the same initial response but will do for now.*/
/* 2D quadratic surface fit would be better! */
drow = 0.5;
dcol = posoff + 0.5;

}
else {

if( cheapatan > 2.0) { /* horizontal edge, a=1,b=0*/
/* NB: get pixels at 90 degree to edge! */
a = prnclines[0][j];
b = prnclines[2][j];
if( (usanR < a) || (usanR <= b) )

continue;

posoff = (float)(a - b)/(2 * (a + b - 2*usanR));
drow = posoff + 0.5;
dcol = 0.5;

}
else { /* diagonal edge (0.5 < z < 2.0) */

if ( w > 0 ) { /* -ve diagonal, a=1,b=1*/
/* NB: edge in line with diag cofg vector */
a = prnclines[0][j-1];
b = prnclines[2][j+1];
if( (usanR < a) || (usanR <= b) )

continue;

posoff = (float)(a - b)/(2 * (a + b - 2*usanR));
drow = posoff + 0.5;
dcol = posoff + 0.5;

}
else { /* -ve W but +ve diagonal, a=-1,b=1 */

a = prnclines[2][j-1];
b = prnclines[0][j+1]; /* swapped here! */
if( (usanR <= a) || (usanR < b) )

continue;

posoff = (float)(a - b)/(2 * (a + b - 2*usanR));
drow = 0.5 - posoff;
dcol = posoff + 0.5;

}
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}
}
pos = vec2(j + dcol, i + drow);
eptr = edge_alloc(EDGE_SUSAN);
eptr->pos = pos;
eptr->contrast = (float)usanR;

/* determine edge orientation */
if( ABS(cgx) < MINRESPNC ) {

/* cofg is nearly vertical */
if( cgy < 0 )

eptr->orient = PI;
else

eptr->orient = 0;
}
else if( ABS(cgy) < MINRESPNC ) {

/* cofg is nearly horizontal */
if( cgx < 0 )

eptr->orient = PIBY2;
else

eptr->orient = -PIBY2;
}
else {

if ( SAME_SIGN(cgx, cgy) )
eptr->orient = atan2(CHX_SIGN((double)cgy), (double)cgx);

else
eptr->orient = atan2((double)cgy, CHX_SIGN((double)cgx));

}
IM_PTR(maxim, i, j) = (void *)eptr;

}
else {

do_secndmnts = true;
}

} /* end of - if(usanA > INTERCASE) */
else /* Must be small USAN Area, 1st momnts no good */

do_secndmnts = true;

if( do_secndmnts ) {

cgxsq = cgysq = xycfg = 0;
/* Calculate 2nd Moments */
maskp = im_lines[0] + j - 1;
/* 1st line */
siml = *(centrep - *maskp++);
cgxsq += siml; cgysq += 9*siml; xycfg += 3*siml;
siml = *(centrep - *maskp++);
cgysq += 9*siml;
siml = *(centrep - *maskp);
cgxsq += siml; cgysq += 9*siml; xycfg -= 3*siml;
maskp = im_lines[1] + j - 2; /* move on to next line */
/* 2nd line */
siml = *(centrep - *maskp++);
cgxsq += 4*siml; cgysq += 4*siml; xycfg += 4*siml;
siml = *(centrep - *maskp++);
cgxsq += siml; cgysq += 4*siml; xycfg += 2*siml;
siml = *(centrep - *maskp++);
cgysq += 4*siml;
siml = *(centrep - *maskp++);
cgxsq += siml; cgysq += 4*siml; xycfg -= 2*siml;
siml = *(centrep - *maskp);
cgxsq += 4*siml; cgysq += 4*siml; xycfg -= 4*siml;
maskp = im_lines[2] + j - 3; /* move on to next line */
/* 3rd line */
siml = *(centrep - *maskp++);
cgxsq += 9*siml; cgysq += siml; xycfg += 3*siml;
siml = *(centrep - *maskp++);
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cgxsq += 4*siml; cgysq += siml; xycfg += 2*siml;
siml = *(centrep - *maskp++);
cgxsq += siml; cgysq += siml; xycfg += siml;
siml = *(centrep - *maskp++);
cgysq += siml;
siml = *(centrep - *maskp++);
cgxsq += siml; cgysq += siml; xycfg -= siml;
siml = *(centrep - *maskp++);
cgxsq += 4*siml; cgysq += siml; xycfg -= 2*siml;
siml = *(centrep - *maskp);
cgxsq += 9*siml; cgysq += siml; xycfg -= 3*siml;
maskp = im_lines[3] + j - 3; /* move on to next line */
/* 4th line */
siml = *(centrep - *maskp++);
cgxsq += 9*siml;
siml = *(centrep - *maskp++);
cgxsq += 4*siml;
siml = *(centrep - *maskp++);
cgxsq += siml;
maskp ++; /* skip centre pixel */
siml = *(centrep - *maskp++);
cgxsq += siml;
siml = *(centrep - *maskp++);
cgxsq += 4*siml;
siml = *(centrep - *maskp++);
cgxsq += 9*siml;
maskp = im_lines[4] + j - 3; /* move on to next line */
/* 5th line */
siml = *(centrep - *maskp++);
cgxsq += 9*siml; cgysq += siml; xycfg -= 3*siml;
siml = *(centrep - *maskp++);
cgxsq += 4*siml; cgysq += siml; xycfg -= 2*siml;
siml = *(centrep - *maskp++);
cgxsq += siml; cgysq += siml; xycfg -= siml;
siml = *(centrep - *maskp++);
cgysq += siml;
siml = *(centrep - *maskp++);
cgxsq += siml; cgysq += siml; xycfg += siml;
siml = *(centrep - *maskp++);
cgxsq += 4*siml; cgysq += siml; xycfg += 2*siml;
siml = *(centrep - *maskp);
cgxsq += 9*siml; cgysq += siml; xycfg += 3*siml;
maskp = im_lines[5] + j - 2; /* move on to next line */
/* 6th line */
siml = *(centrep - *maskp++);
cgxsq += 4*siml; cgysq += 4*siml; xycfg -= 4*siml;
siml = *(centrep - *maskp++);
cgxsq += siml; cgysq += 4*siml; xycfg -= 2*siml;
siml = *(centrep - *maskp++);
cgysq += 4*siml;
siml = *(centrep - *maskp++);
cgxsq += siml; cgysq += 4*siml; xycfg += 2*siml;
siml = *(centrep - *maskp);
cgxsq += 4*siml; cgysq += 4*siml; xycfg += 4*siml;
maskp = im_lines[6] + j - 1; /* move on to next line */
/* 7th and last line */
siml = *(centrep - *maskp++);
cgxsq += siml; cgysq += 9*siml; xycfg -= 3*siml;
siml = *(centrep - *maskp++);
cgysq += 9*siml;
siml = *(centrep - *maskp);
cgxsq += siml; cgysq += 9*siml; xycfg += 3*siml;

if( cgysq == 0 )
/* must be horizontal line, 1 pixel wide */
cheapatan = 100.0; /* anything greater than 2.0 */
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else
cheapatan = ((float)cgxsq)/((float)cgysq);

if( cheapatan < 0.5 ) { /* vertical edge */
a = prnclines[1][j-1];
b = prnclines[1][j+1];
if( (usanR < a) || (usanR <= b) )

continue;
posoff = (float)(a - b)/(2 * (a + b - 2*usanR));
drow = 0.5;
dcol = posoff + 0.5;

}
else {

if( cheapatan > 2.0) { /* horizontal edge */
a = prnclines[0][j];
b = prnclines[2][j];
if( (usanR < a) || (usanR <= b) )

continue;

posoff = (float)(a - b)/(2 * (a + b - 2*usanR));
drow = posoff + 0.5;
dcol = 0.5;

}
else { /* diagonal edge */

if ( xycfg > 0 ) { /* -ve diagonal, a=-1,b=1 */
a = prnclines[2][j-1];
b = prnclines[0][j+1];
if( (usanR <= a) || (usanR < b) )

continue;

posoff = (float)(a - b)/(2 * (a + b - 2*usanR));
drow = 0.5 - posoff;
dcol = posoff + 0.5;

}
else { /* +ve diagonal, a=1,b=1 */

a = prnclines[0][j-1];
b = prnclines[2][j+1];
if( (usanR < a) || (usanR <= b) )

continue;
posoff = (float)(a - b)/(2 * (a + b - 2*usanR));
drow = posoff + 0.5;
dcol = posoff + 0.5;

}
}

}
pos = vec2(j + dcol, i + drow);
eptr = edge_alloc(EDGE_SUSAN);
eptr->pos = pos;
eptr->contrast = (float)usanR;

if( cgxsq < MINRESPNC )
eptr->orient = PIBY2;

else if( cgysq < MINRESPNC )
eptr->orient = 0;

else {
if( xycfg == 0 ) {

if( (cgxsq - cgysq) <= 0 )
eptr->orient = PIBY2;

else
eptr->orient = 0;

}
else

eptr->orient = 0.5 * asin(xycfg/
sqrt(SQR(xycfg) + SQR(cgxsq-cgysq)));

}
IM_PTR(maxim, i, j) = (void *)eptr;
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}
}
maskline = 0;
for(maski = -1; maski <= 1; maski++) {

im_put_row(prnclines[maskline], prncim, maski+i, lx, ux);
maskline++;

}
maskline = 0;
for(maski = -3; maski <= 3; maski++) {

im_put_row(im_lines[maskline], im, maski+i, lx, ux);
maskline++;

}
}
for(maski = 0; maski < 3; maski++) {

ivector_free((void *)prnclines[maski], lx);
}
for(maski = 0; maski < 7; maski++) {

ivector_free((void *)im_lines[maski], lx);
}
return (maxim);

}

Imrect* susan_edges(Imrect* im, float geothresh, float cfgmagn,
float casecond, int *blut, int lengththres) {

Imrect *prnc_im, *edge_im;
int lx, ux, ly, uy;
int gthresh = 0;

if (im == NULL) return (NULL)
lx = im->region->lx;
ux = im->region->ux;
ly = im->region->ly;
uy = im->region->uy;

gthresh = (int)(SUSANMASK * BLUTSCALE * geothresh - BLUTSCALE);
/*(37 x 100 x 0.75)-100 = 2675, original magic num was 2650 */

/* do susan principle pass */
prnc_im = susan_prnc(im, gthresh, blut);

edge_im = susan_edgmnts(prnc_im, im, gthresh, cfgmagn, casecond, blut);
er_find_edge_strings(edge_im);
/**er_find_simple_edge_strings(edge_im);**/
er_rm_edges(edge_im, EDGE_GET_CONN_MASK, EDGE_NOLINK);
/**er_edge_strings_thres(edge_im, lengththres, upthres);NOT REQ’D!**/
er_set_row_index(edge_im);

im_free(prnc_im);
return(edge_im);

}
/* EOF */

/* susan_crns.c
Corner detection using the SUSAN algorithm.
Eddie Moxey, version 2.0, updated October 2000

*/

static Imrect *susan_cnrmnts(Imrect *prncim, Imrect *im,
int geot, int* blut,
Imrect **cofgx, Imrect **cofgy) {

/* calc the usan area moments and c/o the centroid and */
/* contiguity tests for true corners */
Imrect *im_out;
int *lineout, *cgxline, *cgyline;
int cgx, cgy, cgxsq, cgysq, sqsum, cofgn;
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float cofgd = 0.0;
int *prncline, *im_lines[7];
int siml, usanR;
int *centrep, *maskp;
int lx, ux, ly, uy;
int maskline, i, j, maski;

if (im == NULL) {
error("susan_cnrmnts() given NULL image", non_fatal);
return (NULL);

}
cgx = cgy = cgxsq = cgysq = sqsum = 0;
siml = usanR = 0;

lx = im->region->lx;
ux = im->region->ux;
ly = im->region->ly;
uy = im->region->uy;

im_out = im_alloc(im->height, im->width, im->region, int_v);
lineout = ivector_alloc(lx, ux);
prncline = ivector_alloc(lx, ux);
cgxline = ivector_alloc(lx, ux);
cgyline = ivector_alloc(lx, ux);

for(maski = 0; maski < 7; maski++) {
im_lines[maski] = ivector_alloc(lx, ux);

}
/* No need to process around the edge of image. */
for(i = ly+5; i < uy-5; i++) {

im_get_row(prncline, prncim, i, lx, ux);
im_get_row(cgxline, *cofgx, i, lx, ux);
im_get_row(cgyline, *cofgy, i, lx, ux);
im_get_row(lineout, im_out, i, lx, ux);

maskline = 0;
for(maski = -3; maski <= 3; maski++) {

im_get_row(im_lines[maskline], im, maski+i, lx, ux);
maskline++;

}
for(j = lx+5; j < ux-5; j++) {

/* NB: Zero outputs first! */
lineout[j] = cgxline[j] = cgyline[j] = 0;

usanR = prncline[j];
/* Check principle response for possible corner */
/* NB: could be from combined principle response! */
if( usanR < 200 ) continue;
/* Check for noise pixels - V large org response! */
if( usanR > (geot - 200) ) continue;

/* Calculate 1st and 2nd Moments */
cgx = cgy = 0;
centrep = blut + im_lines[3][j];
maskp = im_lines[0] + j - 1;
/* 1st line */
siml = *(centrep - *maskp++);
cgx -= siml; cgy -= 3*siml; /* inc cgw here ?? */
siml = *(centrep - *maskp++);
cgy -= 3*siml;
siml = *(centrep - *maskp);
cgx += siml; cgy -= 3*siml;
maskp = im_lines[1] + j - 2; /* move on to next line */
/* 2nd line */
siml = *(centrep - *maskp++);
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cgx -= 2*siml; cgy -= 2*siml;
siml = *(centrep - *maskp++);
cgx -= siml; cgy -= 2*siml;
siml = *(centrep - *maskp++);
cgy -= 2*siml;
siml = *(centrep - *maskp++);
cgx += siml; cgy -= 2*siml;
siml = *(centrep - *maskp);
cgx += 2*siml; cgy -= 2*siml;
maskp = im_lines[2] + j - 3; /* move on to next line */
/* 3rd line */
siml = *(centrep - *maskp++);
cgx -= 3*siml; cgy -= siml;
siml = *(centrep - *maskp++);
cgx -= 2*siml; cgy -= siml;
siml = *(centrep - *maskp++);
cgx -= siml; cgy -= siml;
siml = *(centrep - *maskp++);
cgy -= siml;
siml = *(centrep - *maskp++);
cgx += siml; cgy -= siml;
siml = *(centrep - *maskp++);
cgx += 2*siml; cgy -= siml;
siml = *(centrep - *maskp);
cgx += 3*siml; cgy -= siml;
maskp = im_lines[3] + j - 3; /* move on to next line */
/* 4th line */
siml = *(centrep - *maskp++);
cgx -= 3*siml;
siml = *(centrep - *maskp++);
cgx -= 2*siml;
siml = *(centrep - *maskp++);
cgx -= siml;
maskp ++; /* skip centre pixel */
siml = *(centrep - *maskp++);
cgx += siml;
siml = *(centrep - *maskp++);
cgx += 2*siml;
siml = *(centrep - *maskp++);
cgx += 3*siml;
maskp = im_lines[4] + j - 3; /* move on to next line */
/* 5th line */
siml = *(centrep - *maskp++);
cgx -= 3*siml; cgy += siml;
siml = *(centrep - *maskp++);
cgx -= 2*siml; cgy += siml;
siml = *(centrep - *maskp++);
cgx -= siml; cgy += siml;
siml = *(centrep - *maskp++);
cgy += siml;
siml = *(centrep - *maskp++);
cgx += siml; cgy += siml;
siml = *(centrep - *maskp++);
cgx += 2*siml; cgy += siml;
siml = *(centrep - *maskp);
cgx += 3*siml; cgy += siml;
maskp = im_lines[5] + j - 2; /* move on to next line */
/* 6th line */
siml = *(centrep - *maskp++);
cgx -= 2*siml; cgy += 2*siml;
siml = *(centrep - *maskp++);
cgx -= siml; cgy += 2*siml;
siml = *(centrep - *maskp++);
cgy += 2*siml;
siml = *(centrep - *maskp++);
cgx += siml; cgy += 2*siml;
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siml = *(centrep - *maskp);
cgx += 2*siml; cgy += 2*siml;
maskp = im_lines[6] + j - 1; /* move on to next line */
/* 7th and last line */
siml = *(centrep - *maskp++);
cgx -= siml; cgy += 3*siml;
siml = *(centrep - *maskp++);
cgy += 3*siml;
siml = *(centrep - *maskp);
cgx += siml; cgy += 3*siml;

/* Compare abs distance of cofg from nucleus */
cgxsq = SQR(cgx);
cgysq = SQR(cgy);
sqsum = cgxsq + cgysq;

if( (float)sqsum > (0.5*SQR(geot-usanR)) ) {
/* i.e is cofg vector magnitude > 0.707 * z*/
/* If cofg NOT too close to nucleus then */
/* must be a corner - So Check contiguity */
if(cgysq < cgxsq) {

/* More Lateral */
cofgd = (float)cgy/ABS(cgx);
cofgn = ABS(cgx)/cgx; /* normalise +/-1 */
sqsum = *(centrep -

*(im_lines[3+FTOI(cofgd)] + j+cofgn)) +
*(centrep - *(im_lines[3+FTOI(2*cofgd)] + j+2*cofgn)) +
*(centrep - *(im_lines[3+FTOI(3*cofgd)] + j+3*cofgn));

/* reuse sqsum as straight line strength */
}
else {

/* More Longitudal */
cofgd = (float)cgx/ABS(cgy);
cofgn = ABS(cgy)/cgy;
sqsum = *(centrep -

*(im_lines[3+cofgn] + j+FTOI(cofgd))) +
*(centrep - *(im_lines[3+2*cofgn] + j+FTOI(2*cofgd))) +
*(centrep - *(im_lines[3+3*cofgn] + j+FTOI(3*cofgd)));

}
if(sqsum > ALMOST3) {

/* To be a true corner 3 pixels in usan must be in */
/* a straight line radiating out from the nucleus */
lineout[j] = prncline[j];
cgxline[j] = cgx;
cgyline[j] = cgy;

}
}

}
maskline = 0;
for(maski = -3; maski <= 3; maski++) {

im_put_row(im_lines[maskline], im, maski+i, lx, ux);
maskline++;

}
im_put_row(prncline, prncim, i, lx, ux);
im_put_row(cgxline, *cofgx, i, lx, ux);
im_put_row(cgyline, *cofgy, i, lx, ux);
im_put_row(lineout, im_out, i, lx, ux);

}
for(maski = 0; maski < 7; maski++) {

ivector_free((void *)im_lines[maski], lx);
}
ivector_free((void *)prncline, lx);
ivector_free((void *)cgxline, lx);
ivector_free((void *)cgyline, lx);
ivector_free((void *)lineout, lx);
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return(im_out);
}

static Imrect* check_cornim(Imrect *cornim) {
/* Test function only! */
Imrect *max_im;
int pix;
int ncnrs = 0;
int lx, ux, ly, uy;
int i, j;
Edgel *eptr;

if (cornim == NULL) return (NULL);

lx = cornim->region->lx;
ux = cornim->region->ux;
ly = cornim->region->ly;
uy = cornim->region->uy;

max_im = im_alloc(cornim->height, cornim->width, cornim->region, ptr_v);

for(i = ly+5; i < uy-5; i++) {
for(j = lx+5; j < ux-5; j++) {

if( (pix = im_get_pix(cornim, i, j)) < 200 ) continue;
/* Only process non-zero responses; */

eptr = edge_alloc(EDGE_SUSAN);
eptr->contrast = (float)pix;
eptr->pos = vec2(j + 0.5, i + 0.5);
eptr->orient = PI;
eptr->type &= EDGE_SET_CONN_MASK;
eptr->type |= EDGE_ISOLATED;

IM_PTR(max_im, i, j) = (void *)eptr;
}

}
return(max_im);

}

static Imrect* susan_locatcnr(Imrect *cornim, Imrect *prncim,
Imrect *cofgx, Imrect *cofgy) {

Imrect *max_im;
int *masklines[5];
int *cgxline, *cgyline;
int cgx, cgy, pix;
float dx, dy;
Vec2 pos = {Vec2_id};
int lx, ux, ly, uy;
int maskline, i, j, maski;
Edgel *eptr;

if ((cornim == NULL)||(prncim == NULL)) return (NULL);

lx = cornim->region->lx;
ux = cornim->region->ux;
ly = cornim->region->ly;
uy = cornim->region->uy;

max_im = im_alloc(cornim->height, cornim->width, cornim->region, ptr_v);
cgxline = ivector_alloc(lx, ux);
cgyline = ivector_alloc(lx, ux);

for(maski = 0; maski < 5; maski++) {
/* use a 5x5 mask to identify centre of smoothed corner profile, */
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/* i.e. centre of a banded edge! */
masklines[maski] = ivector_alloc(lx, ux);

}

for(i = ly+7; i < uy-7; i++) {
im_get_row(cgxline, cofgx, i, lx, ux);
im_get_row(cgyline, cofgy, i, lx, ux);

maskline = 0;
for(maski = -2; maski <= 2; maski++) {

/* use 5x5 mask to isolate from other corners near by!*/
im_get_row(masklines[maskline], cornim, maski+i, lx, ux);
maskline++;

}

for(j = lx+7; j < ux-7; j++) {

if((pix = masklines[2][j]) < 200) continue;
/* Only process non-zero responses; */
/* find strongest corner */
if(pix < *(masklines[0] + j-2)) continue;
if(pix < *(masklines[0] + j-1)) continue;
if(pix < *(masklines[0] + j )) continue;
if(pix < *(masklines[0] + j+1)) continue;
if(pix < *(masklines[0] + j+2)) continue;
/* 2nd line */
if(pix < *(masklines[1] + j-2)) continue;
if(pix < *(masklines[1] + j-1)) continue;
if(pix < *(masklines[1] + j )) continue;
if(pix < *(masklines[1] + j+1)) continue;
if(pix < *(masklines[1] + j+2)) continue;
/* 3rd line */
if(pix < *(masklines[2] + j-2)) continue;
if(pix < *(masklines[2] + j-1)) continue;
/* skip centre */
if(pix < *(masklines[2] + j+1)) continue;
if(pix < *(masklines[2] + j+2)) continue;
/* 4th line */
if(pix < *(masklines[3] + j-2)) continue;
if(pix < *(masklines[3] + j-1)) continue;
if(pix < *(masklines[3] + j )) continue;
if(pix < *(masklines[3] + j+1)) continue;
if(pix < *(masklines[3] + j+2)) continue;
/* last line */
if(pix < *(masklines[4] + j-2)) continue;
if(pix < *(masklines[4] + j-1)) continue;
if(pix < *(masklines[4] + j )) continue;
if(pix < *(masklines[4] + j+1)) continue;
if(pix < *(masklines[4] + j+2)) continue;
/* pix must be the local max */

eptr = edge_alloc(EDGE_SUSAN);
eptr->contrast =

im_get_quadmaxi(prncim,(float)j,(float)i,&dx,&dy);
/*new func from ./imintfns.c */
eptr->pos = vec2(dx,dy);
eptr->type &= EDGE_SET_CONN_MASK;
eptr->type |= EDGE_ISOLATED;

cgx = cgxline[j];
cgy = cgyline[j];

if( ABS(cgx) < MINRESPNC ) {
/* cofg is nearly vertical */
if( cgy < 0 )

eptr->orient = PIBY2;
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else
eptr->orient = -PIBY2;

}
else if( ABS(cgy) < MINRESPNC ) {

/* cofg is nearly horizontal */
if( cgx < 0 )

eptr->orient = 0;
else

eptr->orient = PI;
}
else {

eptr->orient = atan2(CHX_SIGN((double)cgy),
CHX_SIGN((double)cgx) );

}
IM_PTR(max_im, i, j) = (void *)eptr;

}
maskline = 0;
for(maski = -2; maski <= 2; maski++) {

im_put_row(masklines[maskline], cornim, maski+i, lx, ux);
maskline++;

}
}
for(maski = 0; maski < 5; maski++) {

ivector_free((void *)masklines[maski], lx);
}
ivector_free((void *)cgxline, lx);
ivector_free((void *)cgyline, lx);
return(max_im);

}

Imrect* susan_corner(Imrect *im, float geothresh, int *blut) {

Imrect *corn_im, *prnc_im;
Imrect *cofgx, *cofgy, *maxim;
int lx, ux, ly, uy;
int gthresh = 0;

if (im == NULL) return (NULL);

lx = im->region->lx;
ux = im->region->ux;
ly = im->region->ly;
uy = im->region->uy;

gthresh = (int)(SUSANMASK * BLUTSCALE * geothresh);
/* should be 37 x 100 x 0.5 = 1850 */

cofgx = im_alloc(im->height, im->width, im->region, int_v);
cofgy = im_alloc(im->height, im->width, im->region, int_v);

/* do susan principle pass */
prnc_im = susan_prnc2(im, gthresh, blut);
/* find true corners from principle image and also find centre */
/* of gravtiy of usan areas at those max positions.*/
corn_im = susan_cnrmnts(prnc_im, im, gthresh, blut, &cofgx, &cofgy);
/* find corner position to sub-pix accuracy and its orientation */
maxim = susan_locatcnr(corn_im, prnc_im, cofgx, cofgy);

im_free(prnc_im);
im_free(corn_im);
im_free(cofgx);
im_free(cofgy);
return(maxim);

}
/* EOF */
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Appendix E

Camera Models used in Tina

typedef struct camera {

Ts_id ts_id; /* Tina structure identifier */
unsigned int type;
unsigned int label;

/** physical parameters **/
float f; /* focal length */
float pixel; /* notional pixel size */
float ax, ay; /* x and y expansion factors (aspect ratio ) */
float cx, cy; /* x and y image centre coordinates */
int width, height; /* image height and width for which relevant */

Transform3 *transf; /* transformation from world to camera frame */

void *distort_params; /** optical distortion **/
void *(*copy_dist_func)( );
Vec2 (*distort_func)( );
Vec2 (*correct_func)( );

Mat3 cam_to_im; /* projection from unit camera to image coordinates */
Mat3 im_to_cam; /* projection from image to unit camera coordinates */

} Camera;
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typedef struct parcam {

Ts_id ts_id; /* Tina structure identifier */
unsigned int type;
unsigned int label;

float f; /* notional focal length */
float I; /* interocular separation */
float pixel; /* notional pixel size */

/* cameras and rectified counter parts */
struct camera *cam1; /* original camera 1 */
struct camera *rcam1; /* rectified camera 1 */
struct camera *cam2; /* original camera 2 */
struct camera *rcam2; /* rectified camera 2 */

struct mat3 rect1; /* rectification matrix for camera 1 */
struct mat3 derect1; /* derectification matrix for camera 1 */
struct mat3 rect2; /* rectification matrix for camera 2 */
struct mat3 derect2; /* derectification matrix for camera 2 */

struct mat3 e; /* epipolar colineation matrix */

} Parcam;
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Appendix F

Quaternion Encoded 3D Rotations

In Cartesian form, a quaternion is usually represented as,

q = w + x i+ y j + z k (F.1)

wherew, x, y andz are all real andi, j andk are the complex operators which obey,

i2 = j2 = k2 = ijk = −1 and ij = k, jk = i,ki = j, ji = −k,kj = −i, ik = −j

(F.2)

The quaternion representation for the rotation of a 3D coordinate frame is given by:

Rq =
[
q0, q1, q3

]
from Q =

[
q0, q1, q2, q3

]
(F.3)

where,

q0 = cos (θ/2) , q1 = r0 sin (θ/2) (F.4)

and

q2 = r1 sin (θ/2) , q3 = r2 sin (θ/2) (F.5)

r is the vector defining the axis of rotation andθ is the angle of rotation this axis.

A rotation matrixR is parameterized as:

R =


q2

0 + q2
1 − q2

2 − q2
3 2 (q1q2 + q0q3) 2 (q1q3 − q0q2)

2 (q1q2 − q0q3) q2
0 − q2

1 + q2
2 − q2

3 2 (q2q3 + q0q1)

2 (q1q3 + q0q2) 2 (q2q3 − q0q1) q2
0 − q2

1 − q2
2 − q2

3

 (F.6)
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Camera calibration and euclidean reconstruction from known translations.

presented at Computer Vision and Applied Geometry Workshop, Nordfjordeid, Norway, 1–7

Aug 1995.

[PH97] S Peleg and J Herman.

Panoramic mosaics by manifold projection.

In CVPR97 [CVP97], pages 338–343.

[PKVvG98] M Pollefeys, R Koch, M Vergauwen, and L van Gool.

Metric 3D surface reconstruction from uncalibrated image sequence.

In Koch and van Gool [KvG98], pages 139–154.

[PMF85] S B Pollard, J E W Mayhew, and J P Frisby.

PMF - A stereo correspondence algorithm using a disparity gradient limit.

Perception, 14:449–470, 1985.

[Pol00] M Pollefeys.

3D modelling from images - A tutorial.

Technical report, Katholieke Universiteit, Leuven, presented at ECCV00 in Dublin, Ireland, Jun

2000.

[Pra00] T Pratt.

From photo to 3D model.

IEE Review, 46(1):9–12, Jan 2000.

[PZ98] P Pritchett and A Zisserman.

Matching and reconstruction from widely separated views.

In Koch and van Gool [KvG98], pages 78–92.

[PZH96] J Ponce, A Zisserman, and M Hebert, editors.

Proc.Int.Workshop on Object Representation in Computer Vision, LNCS 1144, Cambridge, UK,

13–14 Apr 1996. part of ECCV96, Springer-Verlag.

[QK96] L Quan and T Kanade.

A factorization method for affine structure from line correspondence.

Computer Vision and Pattern Recognition, pages 803–808, 1996.

[Roc99] P Rockett.

The accuracy of sub-pixel localisation in the canny edge detector.

In T Pridmore and D Elliman, editors,Proc.British Machine Vision Conference, pages 392–401,

Uni. of Nottingham, UK, 13–16, Sept. 1999. BMVA.

[RRT01] M J Rendas, S Rolfes, and A Tenas.

Autonomous mapping of natural and unstructured environments.

In Proc.Int.Workshop on Underwater Robotics for Sea Exploitation and Environment Monitor-

ing, pages 22–33, Rio de Janeiro, Brasil, Oct. 2001.

[San92] G Sandini, editor.

233



Proc.European Conf.on Computer Vision, LNCS vol.588, Santa Marghertia Ligure, Italy, 19–22

May 1992. Springer-Verlag.

[SB97] S M Smith and J M Brady.

SUSAN - A new approach to low level image processing.

Int. Journal of Computer Vision, 23(1):45–78, 1997.

[SHB99] M Sonka, V Hlavac, and R Boyle.

Image Processing, Analysis and Machine Vision.

PWS Pub., 2nd edition, 1999.

[SK52] J. G. Semple and G. T. Kneebone.

Algebraic Projective Geometry.

Re-pub. under Oxford Classics. Oxford University Press, reprinted 1979 edition, 1952.

[Smi97] S Smith.

Review of optic flow, motion segmentation, edge finding and corner finding.

Technical Report TR97SMS1, Oxford Centre for Functional Magnetic Resonance Imaging of

the Brain (FMRIB), Dept. of Clinical Neurology, Oxford University, 1997.

for CVOnline.

[Spa96] G Sparr.

Simultaneous reconstruction of scene structure and camera locations from uncalibrated image

sequences.

In ICPR96 [ICP96], pages 328–333.

[ST98] R Szeliski and P H S Torr.

Geometrically constrained structure from motion: Points on planes.

In Koch and van Gool [KvG98], pages 171–186.

[Sze96] R Szeliski.

Video mosaics for virtual environments.

IEEE Computer Graphics and Applications, 16(2):22–30, 1996.

[TC92] N A Thacker and P Courtney.

Statistical analysis of stereo matching algorithm.

In Hogg and Boyle [HB92], pages 316–326.

[TC96] N A Thacker and T F Cootes.

Vision through optimization.

Tutorial written for BMVA, Uni. of Manchester, 1996.

available atCVOnline.

[TFB80] J M Tenenbaum, M A Fischler, and H G Barrow.

Scene modeling: A structural basis for image description.

In A. Rosenfeld, editor,Image Modeling, pages 371–389. Academic Press, 1980.

[TJNU97] G A Thomas, J Jin, T Niblett, and C Urquhart.

A versatile camera position measurement for virtual reality TV production.

In Proc.International Broadcasting Convention, pages 284–289, Amsterdam, 12–16 Sept. 1997.

IEE.

[TM91] N A Thacker and J E W Mayhew.

Optimal combination of stereo calibration from arbitary stereo images.

234



Image and Vision Computing, 9(1):27–32, Feb 1991.

[TM93] P H S. Torr and D W Murray.

Outlier detection and motion segmentation.

In P. S. Schenker, editor,Proc.Sensor Fusion VI, pages 432–443. SPIE vol.2059, 1993.

[TM97] P H S Torr and D W Murray.

The development and comparison of robust methods for estimating the fundamental matrix.

Int. Journal of Computer Vision, 24(3):271–300, 1997.

[Tri87] H P Trivedi.

Estimation of stereo and motion parameters using a variational principle.

Int. Journal of Computer Vision, 5(2):181–183, May 1987.

[Tri97a] B Triggs.

Autocalibration and the absolute quadric.

In CVPR97 [CVP97], pages 609–614.

[Tri97b] B Triggs.

Linear projective reconstruction from matching tensors.

Image and Vision Computing, 15(8):617–625, Jun 1997.

[Tsa87] R Y Tsai.

A versatile camera calibration technique for high-accuracy 3d machine vision metrology using

off-the-shelf cameras and lens.

IEEE Trans: Robotics and Automation, 3(4):323–344, Aug 1987.

[Wil94] R G Willson.

Modeling and calibration of automated zoom lenses.

In Proc.of the SPIE: Videometrics III, volume 2350, pages 170–186, Boston MA, Oct 1994.

[YK90] Y Yagi and S Kawato.

Panorama scene analysis with conic projection.

In Proc.IEEE Int.Workshop on Intelligent Robotic Systems, pages 181–187. IEEE, 1990.

[ZDFL95] Z Zhang, R Deriche, O Faugeras, and Q T Luong.

A robust technique for matching two uncalibrated images through the recovery of the unknown

epipolar geometry.

Artificial Intelligence, 78:87–119, Oct 1995.

[ZFD97] Z Zhang, O D Faugeras, and R Deriche.

An effective technique for calibrating a binocular stereo through projective reconstruction using

both a calibration object and the environment.

Journal of Computer Vision Research (MIT Press), 1(1):58–68, 1997.

[Zha98] Z Zhang.

Determining the epipolar geometry and its uncertainty - A review.

Int. Journal of Computer Vision, 27(2):161–195, Mar 1998.

235


	Introduction
	Research Objectives and Structure of this Thesis

	Review of Relevant Work and Background Information
	Overview of Scene Reconstruction
	Review of Influential Work in Scene Reconstruction
	Review of Major Research Projects 

	Choice of Image Processing and Computer Vision Software Framework
	Summary

	Periscopic Stereo Vision
	Virtual Camera Geometry
	Removing the Tumbling Motion
	Depth from Periscopic Stereo
	Design, Construction and Operation of a Periscopic Stereo Head
	Closing Remarks

	Feature Extraction for 3D Reconstruction
	The Problem with Derivative Based Feature Extraction
	The SUSAN Algorithm of Feature Extraction
	Edge Detection Using SUSAN
	Corner Detection Using SUSAN

	Performance Review of SUSAN Edge Detection
	Analysis of the Threshold Problems in the SUSAN Edge Detection Algorithm
	Tuning the SUSAN Edge Detection Algorithm

	Integrating SUSAN with TINA
	Summary

	Solving the Correspondence Problem for Periscopic Stereo
	Constraining the Problem
	Point Correspondence for the Calibration of Periscopic Stereo
	Support Measures for Correspondence Matching

	Assessment of Image Patch Correlation Techniques
	Correspondence for Reconstruction
	Concluding Remarks

	Calibration of Periscopic Stereo
	Grid Calibration
	Tsai's Method
	The Design of Calibration Grids
	Problems with Tsai's Method
	Alternative Method of Grid Calibration

	Epipolar Calibration
	The Variational Principle and Epipolar Calibration

	Maintaining Calibration and Propagating Error
	Modelling the Axial Error

	Combining Grid and Epipolar Calibration
	Comparing the Order of the Combined Calibration Methods

	Concluding Remarks and Future Work

	Reconstructing the Scene
	Multiple Disparity Images
	Late Correction of the Periscopic Rotation
	Multiple Periscopic Scans
	Closing Remarks

	Conclusions and Future Work
	Perspective Projection, Coordinate Systems and Epipolar Geometry
	People and Projects in 3D Scene Reconstruction
	General Considerations when Choosing a Framework for Image Processing Software for Computer Vision Research
	Code Listing for SUSAN Edge and Corner Detection
	Camera Models used in Tina
	Quaternion Encoded 3D Rotations

