PERFORMANCE CHARACTERISATION IN COMPUTER VISION:
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Abstract. We consider the relationship between the performance characteristics of vision algo-
rithms and algorithm design. In the first part we discuss the issues involved in testing. A description
of good practice is given covering test objectives, test data, test metrics and the test protocol. In the
second part we discuss aspects of good algorithmic design including understanding of the statistical
properties of data and common algorithmic operations, and suggest how some common problems
may be overcome.
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1. Introduction. Some 30 years of research has produced a rich variety of meth-
ods for processing image data, but little information on how they perform beyond a
few example images. Presenting results as images rarely conveys any statistically use-
ful measure of performance, partly because the choice of test images is not justified
with any rigour, and partly because such results are in a qualitative and subjective
form. It is therefore still very hard to reuse those algorithms that are described in
the literature, let alone to build systems.

One of the criteria that appears to dominate the development of new algorithms
for publication is novelty and sophistication. However, as the sophistication of an
algorithm increases it seems likely that the specificity of the assumptions embedded
within it will increase. This gives rise to Bowyer’s conjecture [1] that performance
will tail off or even fall as sophistication increases and suggests that consideration
of the underlying assumptions and testing must be an essential part of algorithm
development.
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Many objections have been raised against carrying out empirical work in machine
vision (see [2] for an extensive list with counter arguments). One objection in partic-
ular seems especially prevalent: that performance depends on the application and so
cannot be studied independently of it. Whilst the actual choice of which algorithm to
use can generally only be made in the context of a particular task, the performance
characteristics of the algorithm may be described. If we consider another discipline,
such as electrical engineering, we realise that a component such as a transistor can
be used in an almost infinite range of circuits. However, transistors are specified in
terms of a limited range of agreed measures such as linearity, stability, sensitivity and
power handling ability, as well as speed, size, packaging and cost. This allows them
to be used in a range of applications (switching, amplification, detection etc). This
is the situation for any engineering discipline. Similarly, vision algorithms can be
described in terms of abstract conditions such a contrast, noise, object geometry etc.
The generalisability of such measures then becomes an important question for system
building and design.

Whilst there has been some debate about the relationship between theory and
empirical work, empirical work is clearly part of the scientific method and is required in
order to provide a solid experimental and scientific grounding to the subject. It is now
accepted by many in the machine vision community that a more rigorous approach
to studying the performance characteristics of vision algorithms is required [3]. This
has led in recent years to a number of special workshops and journal issues on the
topic [1, 2].

Some algorithms lend themselves to direct analytic evaluation techniques such
as covariance estimation and error propagation [4]. Linear approximations around
operating points provide an insight into performance characteristics. However, such
differential propagation techniques are inappropriate when the input errors are large
compared to the range of linearity of the function or when the input distribution is
non-Gaussian. Under such conditions empirical evaluation techniques such as Monte-
Carlo simulations may be more appropriate. These take values from the expected
input distribution and accumulate the statistical response of the output over repeated
trials. There are now many good examples of both theoretical and empirical studies
which highlight otherwise hidden properties of various algorithms [5, 6, 7, 8].

As vision techniques become more widely applied, the need to critically evaluate
new methods has also become recognised by users. In the area of biometrics, the
wide range of fingerprint, face and hand recognition systems has led to an effort to
identify best practice for testing [9] and which may be useful more widely. As we shall
see, there are several forms of performance characterisation. All of these methods are
inherently statistical, yet there is another closely related role that statistics can play
in machine vision research.

Vision algorithms must deliver information allowing practical decisions regarding
interpretation of the data present in an image. One can reasonably assert that prob-
ability is the only self-consistent computational framework for data analysis, and so
probability theory must form the basis of all algorithmic analysis processes. The most
direct form of information regarding a hypothesis is the posterior (often conditional)
probability. There are several common models for statistical data analysis, all of
which can be related at some stage to the principle of maximum likelihood. The most
effective and robust algorithms will be those that match most closely the statistical
properties of the data. An algorithm which takes correct account of all of the data
will yield an optimal result.
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In many practical situations problems cannot be easily formulated to correspond
exactly to a particular computation. Compromises have to be made, generally in
assumptions about the statistical form of the processed data, and it is the adequacy
of these compromises which will determine the success or failure of a particular algo-
rithm. Therefore, understanding these assumptions and compromises is an important
part of algorithmic development. We can conclude that algorithms which will work
best on a particular application will be those which model most closely the underly-
ing statistics of the measurement process and correctly propagate the effects of these
through to the output of the algorithm. Algorithmic robustness goes hand in hand
with getting this process correct.

One of the major criticisms of computer vision over the past few years has been
due to a general lack algorithmic reliability. In our opinion, this has largely been due to
the neglect of the important role that statistics must play in algorithm development.
One could state that computer vision should strictly be regarded as a branch of
applied statistics. This paper describes the dual role that statistics plays in both the
evaluation and the design of algorithms.

2. Good Practice in Algorithmic Testing. In this section we discuss the
issues involved in testing to obtain the performance characteristics. Running algo-
rithms on example data sets is commonplace, and some elements of good practice
may be identified.

It is important to understand that there are several forms of performance char-
acterisation, each with its own particular rationale and benefits:

e technology evaluation concentrates on understanding the behaviour of spe-
cific algorithms designed to do similar tasks. The testing can be carried out
off line using standardised data. The results are therefore repeatable and de-
pend on the size and scope of the test data set. The results are performance
characteristics which may be presented in terms of output parameters, their
variations and density functions.

e scenario evaluation defines a particular use application of specific algo-
rithms within a prototype system potentially including other components
which may be more or less well characterised. The input data is based on a
controlled real world and is therefore only partly reproducible. The results
are cited in terms of metrics that a system user would understand such as
reliability, accuracy and precision.

e operational evaluation concerns the utilisation of a complete system for
a specific task for an end user. It may be used as a benchmark to decide
whether or not a system meets a certain requirement. The evaluation must
be live and on line and is therefore not precisely repeatable. Small changes
in the conditions and context of use may have quite dramatic effects on the
system performance, especially when human users are involved.

2.1. Test Objectives. The objective of a technology evaluation is to understand
the performance characteristics of an algorithm. This will consist of a series of tests,
each of which will have a specific objective. It is important to carefully define the
objective of each task, since even small differences will make it change the form of the
test and make it hard to compare similar tests.

2.2. Test Data. A typology of test data has been proposed [10] and includes:
e Simulations using data without noise, allowing verifications of performance.
This corresponds to the study in [7] which revealed the stability conditions.
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Simulations using data with noise: perhaps the most common form
Empirical testing using real data with full control (technology evaluation)
Empirical testing using partially controlled test data (scenario evaluation)

e Empirical testing in an uncontrolled environment (operational evaluation)
Note that these map well onto the types of evaluation described above.

Test data consists of three elements (1) the test data, (2) the corresponding ground
truth and (3) other information about the data such as its origin and conditions of
capture. Ground truth is an estimate of what is thought to be in the test data. It may
be determined by an independent method, or it may be manually defined. Manual
annotation provides a partial ground truth in that it is somewhat subjective. In fact
unless the data is synthetically generated, ground truth will always have some residual
error rate (bias and imprecision) due to administrative or instrumental error.

Clark and Courtney reviewed issues of data set design and selection [11] for optical
character recognition (OCR), motion estimation and face recognition. They concluded
that the OCR field is perhaps the most well developed in terms of data set collection.
It is perhaps no coincidence that this is also the area for which it is easiest to obtain
ground truth. Even then, a residual error rate of better than 50 parts per million
character substitution error proves very hard to achieve.

The amount of data is a critical issue and there has been some work in this
area [12]. Robust algorithms may require huge quantities of data. An algorithm
with 99% reliability means an error rate of 1%, which in turn means that hundreds
of test images may be required. It is worth noting that algorithms which provide
a covariance matrix or confidence on the results will require less test data than one
which just produces a result. In this case all that is required is to demonstrate that the
prediction of algorithm accuracy is within some margin (which could be as large as a
factor of two) of the actual estimates. An algorithm which is capable of estimating its
own accuracy is then relatively easily incorporated into a system. Such an approach
should even be capable of identifying situations where insufficient (or too strongly
correlated) data is provided for accurate determination of the required result.

The range of data to be collected is also important. It should neither be too easy
not too hard and should be representative of the range of conditions. One class of
conditions is that which is not expected to affect the performance of an algorithm,
to ensure invariance to this change. For example paper deformation for a scanned
document [13]. This class of data can often be generated synthetically from real data
and forms a hybrid in the typology described earlier. It has the potential to vastly
increase the effective size of the test data set. Test data is often costly to collect.
OCR data was estimated to cost between $15 and $25 per page when the ground
truth was entered 4 ways to minimise the error rate. The high cost of quality data is
an argument for sharing data whenever possible.

2.3. Test Metrics. In order to carry out a test, it is necessary to define a
metric that can be used to quantify performance. The metric should be quantitative
(to permit comparison between algorithms) and objective (that is unbiased and
repeatable). Such performance metrics can usefully be associated with the failure
modes of an algorithm. The failure mode will depend on the function of an algorithm.
We can begin by considering the case of a feature detector, and realising that one
failure mode is the inability to detect.

2.3.1. Feature Detection Reliability. Feature detection reliability has two
elements: the probability of the detection of a true feature (True Acceptance Rate or
TAR), and the probability of the detector signalling a feature which is in fact absent
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(False Acceptance Rate or FAR). These may be represented as two probability density
functions (pdf): the signal and the non-signal pdfs.
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Fic. 2.1. signal and non-signal detection pdfs

A feature detector generally has a threshold which allows a trade off to be made
between the two types of error. For a given threshold the true acceptance rate will be
the area under the curve of the signal pdf and to the right of the threshold, whereas
the false acceptance rate is the area under the curve of the non-signal pdf and to the
right of the threshold. This gives rise to two extreme situations. If the threshold is
set to the far left, the detector will accept all the signal but also all non-signal, so
both TAR and FAR will be high. If the threshold is set to the far right, the detector
will reject all non-signals, but also reject all true signals, so both TAR and FAR will
be low. It is important to appreciate that for detection algorithms there is always a
trade off between true and false detection.

An understanding the behaviour of a feature detection algorithm as the threshold
is varied can be obtained by plotting an ROC (receiver operating characteristic) curve.

In the ROC curve !, one axis represents the True Acceptance Rate (TAR) and
the other represents the False Acceptance Rate (FAR) 2. Each runs from 0% to 100%.
The performance of a given detection algorithm may be described in terms of a line
passing through various combinations of TAR and FAR. The ideal algorithm would
be one with a line that passes as close as possible to the point TAR=100% and
FAR=0%. The precise location along the line is determined by the setting of the
threshold parameter described earlier. The setting of the threshold is made on the
basis of the consequence of each type of error (Bayes risk), and this will depend on
the use of the results and thus the application, subject to prior probabilites of the
signal and non-signal.

The performance of detection algorithms is sometimes quoted in terms of the
equal error rate (EER). This is the point at which the FAR is equal to the True
Reject Rate (TRR=1-TAR). This may be appropriate for some applications in which
the cost of each type of error is equal. However this is not generally the case so access
to the entire ROC curve is preferred.

In contrast to the earlier pdf diagram, the performance of different algorithms
may be presented on the same plot and thus compared. For a given application
(and thus TAR/FAR trade off) one algorithm may be superior to another according

Inote that there appear to be no conventions as to the orientation of the plot
2a number of alternative forms are used such as reject rate which is (1 - acceptance rate)
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to the desired position along the ROC curve. For instance algorithm B may be
superior to algorithm A when a low FAR is required. Conversely algorithm A will
be preferred when a high TAR is required. Algorithm C on the other hand provides
superior performance to both algorithm A and algorithm B since for each value of
FAR, algorithm C will have a higher level of TAR.

Notice the difference between the ROC plot that presents the performance char-
acteristics of a number of algorithms (the result of a technology evaluation), and the
decision as to which is the best and how it should be tuned, which is based on the use
of this information (scenario evaluation). Of course the ROC curve is only as good as
the data used to generate it, and a curve produced using unrepresentative data will
not be applicable to the task.

There are variants of the ROC curve. If the task is to identify the features in
an image, and it is possible that there will be more than one, then a fractional ROC
(FROC) is more appropriate. This plots the total number of false detection (since
there may be more than one) against the probability of a true detection as before.

The fact that every detection algorithm involves a trade off between true and
false detections has the consequence that false detections must be tolerated by the
subsequent processing stages if any reasonable level of true detection is to be expected.
We will pick up on this point again later on.

2.3.2. Other Metrics. Other types of algorithms have their own appropriate
performance metrics according to the function they perform. Although a definitive
list has yet to appear, it might include the following:

e feature localisation may be described in terms of the parameters of that
feature, including location accuracy and bias. In the case of edges this might
include orientation [14].

e matching algorithms such as those employed in stereo or motion estimation
may be specified in terms of true and false matches [15]. The lack of a gold
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standard can be finessed by appealing to reproducibility [16].

parameter estimation problems such as motion estimation, registration
and calibration estimation, should present results together with a covariance
on the parameters [3].

supervised classification performance, for example object recognition, can
be specified in terms of the confusion matrix. This is table that describes the
probabilities that an item of class ¢ will be misclassified as an item of class j
for each of a set of classes. The sum of each of the rows and columns should
add up to 1.0.

class 1 | class 2 | class 3 | class 4
class 1 1.0 0.0 0.0 0.0
class 2 0.0 0.8 0.15 0.05
class 3 0.0 0.15 0.35 0.5
class 4 0.0 0.05 0.5 0.45

Table 1: Confusion Matrix

A perfect classifier would have value of 1.0 along the diagonal where ¢ = j
and zero elsewhere. However, a real classifier would have some off-diagonal
elements, as in this example. Note that the table is not necessarily symmetri-
cal. The classification algorithm might also specify a rejection rate at which
it will refuse to produce a valid class output.

A technology evaluation would provide an unweighted table, but a scenario
evaluation would weight the entries to take account of the prior probabilities
of the various objects, according to a particular application and the cost of
various types of error, to produce an overall number for ranking.

A problem arises if the task involves both recognition and localisation,
or involves multiple or parameterised objects. This is the situation
in document image analysis, where graphical symbols and regions must be
recognised and where there exists potential ambiguity in for example the
classification of a feature as a long dashed line or a series of short colinear
lines. Metrics defined in this area (see [17]) typically involve some measure
of overlap and some tradeoff in the mis-recognition of simple and complex
objects.

segmentation: A review of segmentation evaluation techniques [18] iden-
tified two classes of empirical evaluation: goodness methods that attempt
to quantify the quality of the output image based on measures of region
shape, uniformity and contrast; and discrepancy methods that compare the
segmentation results with some ground truth based on measures of pixel mis-
classification (number or location) and number of regions. Studies in [19]
utilise measures of true and false regions with a specified overlap compared
to a manual segmentation as a way of determining the degree of over and un-
der segmentation. For unsupervised classification only goodness methods
seem applicable, but these are unsatisfactory (biased) if they correspond to
the optimisation criteria used in the segmentation algorithm being evaluated.
Other metrics have been suggested [20].

closed loop systems: Little work has been carried out into the performance
of such systems (but see [21]) though systems of this kind may be able draw
upon stability parameters from control theory.
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2.4. Test Protocols. The apparent performance of an algorithm in a test will
depend on the test data used and, in many cases, the training data used to train the
algorithm. It is hoped that the training data will be sufficiently large so as to be fully
representative of the test data, but in reality a finite amount of data is available and
must be partitioned into training and testing sets. In order to control generalisation of
the training data and to avoid overlearning, the training data itself may be partitioned
into training and validation sets. Several test protocols have been proposed (see [22]
for a recent review):

e The leave all in approach involves using all the available data for training
and all the data again for testing. This ensures that the training is as complete
as possible with the available data. However, it will produce an optimistic
view of performance since there is total overlap between the training and test
data which is unrealistic. This technique is not able to detect an algorithm
with poor generalisation ability.

e cross validation methods involve keeping part of the data for training and
using the rest for testing. There are several variants:

— holdout techniques suggest testing with a fixed fraction of the data.
The estimate produced is pessimistic in that there is strictly no overlap
between the training and test data, which again is unrealistic.

— The leave one out method suggests training with all the data except
one item, and testing with that item. This will be more representative
than the holdout, but the metric will suffer from high variance due to
the chance of selecting an easy or difficult test item.

— rotation involves repeatedly generating training and test sets by ran-
dom partitions of the available data. This allows a picture to be built
up of average performance and the confidence intervals for the metrics
used. The problem with this technique is that it can require an inordi-
nate amount of time, since they use all the data and an entire training
cycle for each test.

e resampling methods involve generating a training set and a test set by re-
sampling the entire data set at random. This gives training and test sets
which are of arbitrary size and may contain no, one, or more than one in-
stance of a given data item. Variants include the bootstrap and the jack
knife [23]. These are cheaper than the leave one out technique with rotation,
and appear to provide better error rate estimates than the leave all in and
holdout techniques. They are especially useful when only small data sets are
available.

It has been suggested that for limited amounts of test data, an unbiased estimate
of performance may be obtained by taking the average of the leave all in and leave
one out estimates [24] on the basis that the the error measure for the two protocols
converge at infinite data.

2.5. Test Administration. Another important issue is that of how testing is
organised. Whilst it is perfectly feasible for an individual group to define and perform
a test, there are a number of alternatives:

e Testing by an independent body: Examples include the testing of opti-
cal character recognition system for use in the US census [25, 26] and the
FERET tests of face recognition algorithms by the US Army [27]. The in-
volvement of developers at workshops and open feedback played an important
role in encouraging the improvement of the technology.
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e Collaborative testing

— A test of image registration of medical image sets was reported in [28].
Metrics for defining registration accuracy were agreed, and 14 pairs of
image set were provided to 12 sites for processing by 16 techniques, the
results of which were collated by a central site. Whilst some methods
gave lower median errors than others, the methods were not required to
produce covariance matrices and so were not able to predict their own
accuracy. The small number of data sets used did not make it possible
to determine the most suitable methods for a given task.

— A test of range image segmentation techniques [19] was performed
on a set of range and reflection images. Four groups compared their
algorithms on a set of 30 training images and 10 (manual) ground truth
test images from two scanners. The data and scoring code have been
made available [30].

— A series of tests on stereo matching was carried out involving 15
groups [29] and similar types of tests have been organised for graph-
ics recognition. In each case the developers are presented with a set of
images and given a certain amount of time to process the data with their
algorithms.

e Closed competitive tests are run by developers demonstrating their own
techniques. They may use commonly available techniques as their baseline,
or reimplementations of a state of the art algorithm. The later may be quite
problematic, as it is hard to ensure that the implementations are correct and
this may detract from the credibility of the tests. One solution is to make
available open source versions of code such as the Barron and Fleet optical
flow code [31] and the TINA software package [32]

Some other examples are listed on the ECVNet website [33].

Although performance metrics and protocols can be agreed, they may have a
wide range of interpretations which means that it is very easy to generate results
that are not directly comparable. For example accuracy may be defined as absolute
or relative, precision in terms of the number of standard deviations or percentage
confidence intervals. One solution is to prepare a software package that automatically
and objectively calculate the metrics and prepares the required tables and plots. This
would include the task specification, data set with annotation or ground truth, the
test metric scoring code and baseline algorithm. Such a package can then be made
available on the internet as in [30].

3. Algorithmic Design Principles. We turn our attention now to the role
that statistical methodology can play in algorithm design. In this final section we
discuss aspects of good algorithmic design including understanding of the statistical
properties of data and common algorithmic operations. We show how the method of
error propagation can be used to assess the stability of image processing algorithms,
and how knowledge of the origins of the method of least squares can lead to evaluation
techniques and modifications which result in better algorithms. Familiarity with the
common forms of the equations used in computer vision often allows the statistical
assumptions regarding the data to be deduced®. Knowledge of the adequacy of these
assumptions has a direct and beneficial effect on algorithmic effectiveness. Successful
assumptions in one algorithm will generally be of use in other algorithms, allowing

3clearly, good papers will already have identified and validated the underlying assumptions
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rapid algorithmic development for new problems.

3.1. Property of Common Image Arithmetic Operations. In simple im-
age processing, the requirements of an image algorithm may be purely to enhance
the image for viewing. However, the aim of image operations for image analysis and
computer vision is to produce an image that make certain information explicit in the
resulting image to assist in automated data extraction. Generally, final stages of the
algorithm result in high values over features of interest which are then thresholded
to define a set of features or regions. Leaving aside the definition of the feature, one
criteria which determines a good feature detection algorithm is its behaviour in the
presence of noise. In particular, that the resulting image gives results that really can
be interpreted purely on the basis of the output values. This ensures that a high
value is likely to be genuine and not just a consequence of propagated noise. Only
stable techniques can form the basis of the useful building blocks for image analysis
algorithms.

It is therefore useful to examine the properties of some common image operations
using error propagation. Following the general approach for error propagation, which
assumes error distributions which are well characterised by variances which are small
in comparison to the typical range of linearity of the processing functions, we recall
that:

AFH(X) = VTOxVS

where C'x is the covariance on the measured values and V f is a vector of derivatives:

of of of
Vi = (55 == 5o, )
0X1 0Xy 0X3
and Af2?(X) is the variance on the computed measure. If we apply this to image
processing operations, and assume that images have uniform independent random
noise, then we can simplify this expression to:

Ofz
AL/ = Y o222

nm

That is, the contribution to the output from each variance involved in the calculation
is added in quadrature and weighted with the linearised approximation to function
stability. Applying this analysis to a set of common image operations for input image
I, output image O and output image variance AO2. we get the following results:

Process Calculation Theoretical Error
Addition O=1 + I, AO? = 0} + o3
o e . T 0_2 120,2
Division 0 = ﬁ AO2 = é + 1132
Multiplication O =1I1.I, AO? = IZo? + [0}
Square-root 0 = /() AO? = ‘;—?
Logarithm O = log(L) AO? = %;
1
Polynomial Term O =1 AO? = (nI? )20}

Table 2. Error Propagation in Image Processing Operations.
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Notice that for only one of the operators (addition) is the output variance inde-
pendent of the image data. This algorithm preserves uniform random noise in the
output image. Many of the very common image arithmetic operations, most notably
multiplication and division, produce a result which is data dependent. This means
that each output pixel will have different noise characteristics. So the noise level in
one part of the image will be different from that in another part of the image, ac-
cording to the image content. This complicates the process of interpretation since it
makes it much harder to set a threshold which has any statistical meaning.

On the whole, more complicated functions will result in more complicated noise
characteristics and this gives another theoretical motivation for Bowyer’s conjecture.
However, this is not always the case. For example: Square-root of Sum of Squares:

O = /I + I?

I?6? + I202
I+ I3
This calculation contains several arithmetic components which we have already

shown to be unstable. Yet in the case of equal variances o7 = o3 this reduces to the
stable form:

AO? =

AO? = 2

Such results give us the motivation to continue investigating sophisticated approaches
to data analysis.

3.2. Linear Filters. For linear filters we introduce the spatial subscript for the
input and output images I and O:

Owy = Z hnme-l-n,y-i-m
nm
where h,,,, are the linear co-efficients. Error propagation gives:
AO?cy = Z(hnmaw+n,y+m)2
nm

For uniform errors this can be rewritten as:

AOgy = g2 Z(hnm)2 = K o2

So that for example a simple filter with:
h = (=1,0,1)
This would give:
AO? = 20°

Thus linear filters produce outputs that have uniform errors. However, whilst
these errors have the desirable property of being uniform, they are no longer inde-
pendent, unlike those from image arithmetic. This is because the same data is used
several times in the calculation of the output image pixels. So care must be taken
when applying further processing.

If further linear filtering stages are used, the principle of superposition means
that all the operations can be replaced by a combined linear filter and the original
derivation still holds.
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3.3. Combining Image Operations. Algorithm design has conventionally pro-
gressed by developing and applying a number of data manipulation processes that
attempt to extract some set of values from an image. The Central Limit Theorem
shows that as multiple noisy processes are combined, they will tend towards a Gaus-
sian distribution. Whilst this may be so in the limiting case, one cannot rely on this
when dealing with small numbers of poorly behaved distributions. This is especially
so in non-linear processes such as image processing steps since even very small devia-
tions from the Gaussian distribution on the input data can have catastrophic effects
on algorithm performance and thus on the output data. As modules are chained
together, they produce a set of partial results which may become more and more
non-linear and have increasingly non-uniform error properties as one moves down the
chain. The final output of such a system is likely to be data that is fragile, frag-
mented and unstable. The combined effects of data dependent calculations and local
correlations can mean that the results of feature detection algorithms often visually
resemble maggots squirming about on the screen. Saying, that the results have “gone
to maggots” would not be a bad analogy.

non—uniform errors really non—uniform maggots

J@) K@) L)

F1G. 3.1. Propagation of errors though an unstable algorithm

An alternative approach to algorithmic development would be to try to maintain
the distribution of errors such that they are of some known and manageable form.
An example might be uniform errors.

uniform errors uniform errors uniform errors

F(1) G() H(1)

F1G. 3.2. Propagation of errors though a stable algorithm

Edge detection is an example of one such processing chain which comprises a
sequence of processing steps:

e a convolution with a linear noise filter: ® Gaussian
¢ a calculation of spatial derivatives V,, V, with local differences: ® (-1, 0, 1)
e 3 calculation of edge strength: \/ng + ng;)

This is followed by a thresholding and peak finding stage. This final stage will be
reliable provided that we have stability after the first three image processing steps.
From our analysis of the basic elements, filtering and sum of squares appear to be
stable and one can conclude that edge detection is a stable operation.

The Canny edge detector [34] follows this sequences of steps. The success and
wide use of this operator is often though to be due to the application of optimality
criteria in its design. In reality the Gaussian smoothing used is sub-optimal and the
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success of the operator may have more to do with the error preserving properties of
the constituent steps.

However, it should now be clear that such stability may not be exhibited by other
image extraction operations. Such arguments may explain why it has proven difficult
to design reliable corner detectors.

3.4. Maximum Likelihood. We turn now to the problem of interpretation of

data using a model. We start with some basic definitions of probability

e P(A) probability of event A.

e P(AB) probability of simultaneous events A and B.

e P(A|B) probability of event A given event B.

e P(A|B,(C) probability of event A given events B and C.
The basic foundation of probability theory follows from the following intuitive defini-
tion of conditional probability.

P(A, B) = P(A|B)P(B)

In this definition events A and B are simultaneous and have no (explicit) temporal
order we can write:

P(A,B) = P(B,A) = P(B|A)P(A)
This leads us to a common form of Bayes Theorem, the equation:

P(B|4) = LADILE) (Aga]; B)

which allows us to compute the probability of one event in terms of observations of
another and knowledge of joint distributions. We can extend the joint probability
equation to three or more events:

P(A,B,C) = P(A|B,C)P(B,C)

P(A,B,C) = P(A|B,C)P(B|C)P(C)

For n events with probabilities computed assuming a particular interpretation of the
data (for example a model ©):

P(X(),Xl,XzXn|®)P(®) =

P(Xo|X1, X2.. X0, 0)P(X{|X;.. X, 0)......P(X,|0) P(©)

Maximum Likelihood statistics involves the identification of the model ® which
maximises such a probability. In the absence of any other information the prior
probability P(0) is assumed to be constant for all ©.

In the case where each observed event is independent of all others we can write:

P(X|0) = P(Xo]0)P(X1|0) P(X;(0)...P(X,|0)

Clearly this is a more practical definition of joint probability. However, it does assume
data independence. Probability independence is such an important concept it is worth
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defining carefully. If knowledge of the probability of one variable A allows us to gain
knowledge about another event B then these variables are not independent.

If we define the variation of the observed measurements X; about the generating
function (at Y;) with some random error, the probability:

P(Xo|X1,X2.. XN, 0,Yp)

will be equivalent to P(X|0,Yp). As selection of data point X, automatically speci-
fies Yy this latter term can safely be dropped. Choosing Gaussian random errors with
a standard deviation of o; gives:

—(X; —
P(X/[6) = Aeap(—
where A; is a normalization constant. This may be used as the basis for the maximum
likelihood which is derived from the joint probability:
P(X,0) = (II;P(X;|0))P(®)
We can now construct the maximum likelihood function:

log(P(X|0)) = Z log(P(X;|©))

such that:
_(Xi - f(®5}/;))2

P(X|0) = II;A;exp( 557

)
which leads to the x? definition of log likelihood:

2
log(X|0) = —% ; w + const
This expression can be maximized as a function of the parameters ©® and this process
is generally known as a least squares fit. The importance of this to machine vision is
that the majority of all algorithms can be traced back to this single estimation tech-
nique. In particular, any solution of sets of linear equations by matrix inverse, many
neural network training algorithms, and generally most optimality criteria. However,
there are several key failings of such an approach when used as the basis for machine
vision algorithms. It is based on the assumptions of independent measurements and
Gaussian errors. This can break down in a number of ways:
e non-Gaussian data
e non-independence in the measurement parameter space
e non-linearity in the measurement parameter space
Much effort is directed, sometimes unknowingly, into overcoming these limitations.
What follows below are simple suggestions for investigative plots which can be gener-
ated to test the adequacy of these assumptions and suggestions for modifications to
the basic approach should poorly conforming data be identified.

3.4.1. Non-Gaussian Errors. Whereas least squares implicitly assumes a Gaus-
sian distribution in the measurement variable, machine vision is full of data for which
this cannot be assumed. There are two forms of the problem:
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(a) skew (b) outliers
F1G. 3.3. data distributions featuring skew and outliers

e The error distribution may be relatively compact but badly skewed
e There may be outliers caused by data “contamination”.
One technique for coping with the first problem is to transform the data to remove
skewing. This can be done if we have a relationship between the measurement and
its standard deviation:

A, = f(@)
we can seek a function g which will give us:
Ayz)y = const
Using error propagation:
Ayy = Ay dg/de = f(x) dg/dx = const
That is, integrate the reciprocal of the error dependence:

const
=) Tm®
The technique can be considered as applying the inverse of error propagation in order
to work back to a uniform distribution.
If we take stereo data as an example, we have depth z related to feature locations
in the left ; and right z, images so:

fI

ST

Errors in position p = (z,y, 2) are therefore badly skewed. Attempting a least mean
squared solution with these measures directly (eg for model location) is unstable due
to large errors for large 2. However, errors in disparity space d = (z,y,1/(v/22) are
uniform and can be used for fitting.

3.4.2. Dealing with Outliers. As discussed earlier under the performance of
detection algorithms, there is a trade off between true and false detection, such that
for any reasonable level of reliability (true detection rate) there will always be some
rate of false signal. This will manifest itself as outliers in the data. So any algorithm
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processing features will have to deal with outliers. This problem can be recognised in
any practical problem by simply producing a histogram of the residuals from fitted
values. What to do about such outliers once the problem has been identified is a
fundamental research issue.

The area of Robust Statistics offers a number of techniques which can help [35].
The simplest involves limiting the contribution of any data point to the total least
mean square:

2
—log(P) = Z min(—(Xz f(z(a,Yz)) ,9.0)
i i
The choice of 9.0 (3 o) as the limit on the contribution is approximate and may be
adapted to the problem.

This technique is not particularly good for methods which use derivatives during
optimisation, as it introduces discontinuities that may lead to local minima. An
alternative involves replacing the Gaussian with a continuous distribution with long
tails. The most common of these is the double sided exponential which is adequate

for most applications:

(3

More complex techniques which attempt to model slightly more realistic distributions
can be found in the literature. One example is the Caucy distribution:

1
1+ B g

P(Xi[0) =

so that our log probability is now:

- f(G)a 1/1))2

2
207

—log(P) = Zlog(l + (i )

These are continuous, so we can use derivative methods for optimisation. However,
the price we pay is that, unlike standard least squares, such cost functions can rarely
(or perhaps never) be optimised by direct solution so we have to use iterative tech-
niques which tend to be slower and can also result in local rather than global optima.
Interestingly, a link between the highly robust technique of the Hough transform and
maximum likelihood has been shown in [36] and this provides one method of locating
global minima using a robust statistic.

3.4.3. Non-Independent Measurements. Under practical circumstances the
data delivered to an algorithm may be correlated. Correlation produces systematic
changes in one parameter due to changes in another. This can be visualised by
producing a scatter-plot of the two variables f(z,y). In general for any two variables
to be un-correlated knowledge of one must give no information regarding the other. In
terms of the scatter plot this means that the structure seen must be entirely modelable
in terms of the outer-product of the two marginal distributions:

fz,y) = f(z)® f(y)
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that is, decomposable. We may wish to preprocess the data to remove these correla-
tions using Principal Component Analysis in order to conform to the assumption
of independence.

We can define the correlation matrix:

R=) (X; = Xp) ® (X; — Xm)

where X is an individual measurement vector from a data set and X, is the mean
vector for that set.

(a) original (b) rotated

F1G. 3.4. original and rotated data distributions

It can be shown that orthogonal (linearly independent) axes correspond to the
eigenvectors Vi of the matrix R. So the solution of the eigenvector equation:

RV = MVy

defines the axes of a co-ordinate system V}, which decorrelates the data. The method
known as Singular Value Decomposition (SVD) approximates a matrix by a set of
orthogonal vectors and singular values, and it can be shown that the singular vectors
satisfy the eigenvector equation with:

1
M = —
k 'U]]%

3.4.4. Identifying Non-linear Correlations. Whilst principal component anal-
ysis works by rotating the axes of the space to align along the axes of major variance
of the data, this may not necessarily de-correlate the data. In particular if there are
non-linear relationships within the data no amount of rotation will achieve this.

There exist techniques for decorrelating non-linear relationships. These include
bottleneck neural networks [37], kernel PCA [38], and support vector machines [39],
but these methods are often quite difficult to use.
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Fi1G. 3.5. non linear data distribution

4. Conclusions.

4.1. Rigorous Testing is Feasible. Unless algorithms are evaluated in a man-
ner that can be used to predict the capabilities of a technique on an arbitrary data set,
it is unlikely to be successfully reimplemented and used. The subject cannot advance
without a scientific methodology, which it will not have without an acknowledged sys-
tem for evaluation, characterisation and the ability to reimplement (or at least share)
algorithms. We maintain that algorithms which cannot be tested will never be used
in anger. Rigorous approaches to testing exist, and we have listed here some of the
main evaluation criteria for common groups of algorithm, but the main obstacle may
be largely psychological.

4.2. Algorithmic Design Principles Produce Better Algorithms. We
have shown that the properties of common image operator are not all the same and
that some are more stable and thus safer to use than others. The assumptions under-
lying maximum likelihood have been given and some techniques presented for ensur-
ing that the data to be processed will conform to the constraints imposed by these
assumptions. Robust Statistics will probably be needed for all practical problems,
though covariances can still be computed. Error propagation can be used to assess
the effects of noise and guide the design of stable algorithms. Monte-Carlo techniques
can be used when all other methods are unsuitable.

Design methodologies such as these make explicit the assumptions embedded in an
algorithm and therefore go to the heart of problems arising due to Bowyer’s conjecture.
Explicit evaluation of each algorithmic assumption gives us at least the possibility of
controlling these effects. On the other hand we have also demonstrated that problems
of algorithmic stability can give rise to additional sources of unreliability. In these
cases perhaps only simple techniques or very carfully designed algorithms will allow
us to avoid the undesirable consequences of Bowyer’s conjecture. If this is the case
then, contrary to the popular trend, researchers should avoid undue sophistication in
algorithms until it is warrented by the characteristics of the data.
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