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This document provides a tutorial on performance characterization in computer
vision. It explains why learning to characterize the performances of vision tech-
niques is crucial to the discipline’s development. It describes the usual proce-
dure for evaluating vision algorithms and its statistical basis. The use of a soft-
ware tool, a so-called test harness, for performing such evaluations is described.
The approach is illustrated on an example technique.
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1 Introduction

The discipline variously known as Computer Vision, Machine Vision and Image
Analysis has its origins in the early artificial intelligence research of the late
1950s and early 1960s. Hence, roughly two generations of researchers have pit-
ted their wits against the problem. The pioneers of the first generation worked
with computers that were barely capable of handling image data — processing
had to be done line-by-line from backing store — and programs almost always
had to be run as batch jobs, ruling out any form of interaction. Even captur-
ing digital images was an impressive feat. Under such difficult conditions, the
techniques that were developed were inevitably based on the mathematics of
image formation and exploited the values of pixels in neighbouring regions. Im-
plementing them was a non-trivial task, so much so that pretty well any result
was an impressive achievement.

The second generation of researchers coincided with the birth of the work-
station. At last, an individual researcher could process images online, display
them, and interact with them. These extra capabilities allowed researchers to
develop algorithms that involved significant amounts of processing. A major
characteristic of many algorithms developed during this second generation was
the quest for optimality. By formulating and manipulating a set of equations
that described the nature of the problem, a solution can usually be obtained
by a least-squares method which, of course, is in some sense optimal. Conse-
quently, any number of techniques appeared with this ‘optimality’ tag. Sadly,
none of these papers were able to provide credible experimental evidence that
the results from the optimal technique was significantly better than existing
(presumably sub-optimal) ones.

We are now in the early years of the third generation. Computers, even
PCs, are so fast and so well-endowed with storage that it is entirely feasible to
process large datasets of images in a reasonable time — and this means it is
possible to quantify the performance of an algorithm. As a result, the vision
community has finally started to turn its attention to issues related to testing
and comparing algorithms: performance assessment. The most visible (no pun
intended) aspect of this is the competitions that are often organized in associ-
ation with major vision conferences. These essentially ask the question “which
algorithm is best?” Although a natural enough question to ask, it lacks subtlety
and is potentially rather dangerous: if the community as a whole adopts an al-
gorithm as “the standard” and concentrates on improving it further, that action
can stifle research into other algorithms.

A better approach is to make available a “strawman” algorithm which em-
bodies an approach that is known to work but does not represent the state of
the art. This might be, for example, the “eigenfaces” approach [1] without re-
finements for face recognition, the Canny edge detector, and so on. Authors can
use the strawman for comparison, and anything that out-performs it is a good
candidate for publication; conversely, anything that performs less well than the
strawman needs improvement.

If asking which algorithm is best is unsubtle, then what is a more appropri-
ate question? We believe researchers should be asking “why does one algorithm



out-perform another?” To answer the latter question, one must explore what
characteristics of the inputs affect the algorithms’ performances and by how
much. In fact, one can carry this process out on an algorithm in isolation as
well as comparing algorithms. This is what is meant by performance characteri-
zation, the subject of this tutorial, and is a closer match to the way knowledge
and understanding are advanced in other areas of science and engineering.

It may seem from the above that performance assessment and characteri-
zation are intellectual exercises, divorced from the gritty realities of applying
vision techniques to real-world problems; but nothing could be further from
the truth. Vision techniques have a well-deserved reputation for being fragile,
working well for one developer but failing dismally for another who applies
them to imagery with slightly different properties. This should not come as a
surprise, for very few researchers have made any effort to assess how well dif-
ferent algorithms work on imagery as its properties differ — say as the amount
of noise present changes — never mind making the algorithms more robust to
them. So, far from being an abstract exercise, performance characterization is
absolutely essential if computer vision is to escape from the research laboratory
and be applied to the thousands of problems that would benefit from it.

The process conventionally adopted for performance assessment and char-
acterization has not yet been expounded; that is done in Section 2. Section 3
and Section 4 then describe the underlying statistical principles and describes
those statistical tests, displays and graphs in common use for characterizing an
individual algorithm and for comparing algorithms respectively. As testing is
an onerous task when carried out manually, Section 5 describes a software tool
that can be used to automate much of the work. These tests and tools are put
to good work in Section 6, which shows how a simple image analysis technique
can be characterized. Finally, Section 7 gives some concluding remarks.

2 The Performance Assessment and Characterization
Processes

There are few occasions when it is possible to predict the performance of an
algorithm analytically: there are normally too many underlying assumptions,
or the task is just too complicated (but see [2] for a rare exception). So per-
formance is almost universally assessed empirically, by running the program on
a large set of input data whose correct outputs are known and counting the
number of cases in which the program produces correct and incorrect results.
Each individual test that is performed can yield one of four possible results:

True positive: (also known as true acceptance or true match) occurs when a
test that should yield a correct result does so.

True negative: (also known as true rejection or true non-match) occurs when a
test that should yield an incorrect result does so.

False negative: (also known as false rejection, false non-match or type I error)
occurs when a test that should yield a correct result actually yields an
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Figure 1: An object against a plain background

incorrect one.

False positive: (also known as false acceptance, false match, false alarm or
type II error) occurs when a test that should yield an incorrect result ac-
tually yields a correct one.

There is occasionally some confusion in the literature over the terms “false
negative” and “false positive,” which is why their meanings have been given
here. “False negative,” for example, can be thought of as a case in which a test
should have given a true negative but failed to do so. The testing procedure
involves keeping track of these four quantities. Performance assessment work
normally uses them with little additional consideration: the algorithm with the
highest true rate (or, equivalently, the lowest false rate) is normally taken in
comparisons and competitions to be the best.

To be able to perform testing in this way, each individual test requires three
pieces of information:

1. the input to the program under test;
2. the corresponding expected output from the program under test;
3. whether this output corresponds to a success or a failure.

Vision researchers rarely test explicitly for failures, e.g. by running a vision
algorithm on an image whose pixels are all set to the same value.

To fix these ideas in our minds, let us consider the example of using a proce-
dure to try detecting in an image an object surrounded by a plain background.
Specifically, Figure 1(a) shows a vase against a plain background. A template
image, Figure 1(b), can be constructed to determine which pixels are to be re-
garded as ‘vase’ pixels; the rest would be regarded as ‘background’. On applying
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the procedure, if a pixel is classed as ‘vase’ and it is known from the template
to be part of the vase, then this pixel is a true positive. If a pixel is classed as
‘background’ and it is known to be part of the background (i.e., not vase), then
this pixel is a true negative. If a pixel is classed as ‘vase’ but it is known to be
part of the background, then this pixel is a false positive. If a pixel is classed
as ‘background’ but it is known to be part of the vase, then this pixel is a false
negative.

While it is obvious that the performance depends on how accurately the
template has been determined, these values give a measure of algorithm perfor-
mance. In particular, we should expect both false positives and false negatives
to occur most frequently in the region where the object meets the background
because there will be pixels where there are contributions from both the object
and its background, as illustrated in Figure 1(c). It would be wise to weight
errors in this region less than errors elsewhere in the image.

It must be appreciated that there is always a trade-off between true positive
and false positive detection. If a procedure is set to detect all the true positive
cases then it will also tend to give a larger number of false positives. Conversely,
if the procedure is set to minimize false positive detection then the number
of true positives it detects will be greatly reduced. However, tables of true
positives etc. are difficult to analyze and compare, so results are frequently
shown graphically using ROC or DET curves (see Section 3).

It should in principle be possible to compare the success rates of algorithms
obtained using different datasets; but in practice this does not work. This is, in
effect, the same as saying that the datasets used in performing the evaluations
are not large and comprehensive enough, for if they were it would be possible
simply to compare success rates. The number of ways in which image data may
vary is probably so large that it is not feasible to encompass all of them in a
dataset, so it is currently necessary to use the same datasets when evaluating
algorithms — and that means using the same training data as well as the same
test data. Sadly, little effort has been expended on the production of standard
datasets for testing vision algorithms until recently; the FERET dataset (e.g.,
[3]) is probably the best example to date.

When the performances of algorithms are compared, it is not enough simply
to see which has the better success rate, for this takes no account of the number
of tests that has been performed: the size of the dataset may be sufficiently
small that any difference in performance could have arisen purely by chance.
Instead, a standard statistical test, M®Nemar’s test (see Section 4), should be
used as it takes this into account. M“Nemar’s test requires that the results of
applying both algorithms on the same dataset are available, so this fits in well
with the comments in the previous paragraph.

An argument that is often put forward is that vision algorithms are designed
to perform particular tasks, so it only makes sense to test an algorithm on data
relating precisely to the problem, i.e. on real rather than simulated imagery.
While this is true to a certain extent — the range of applications of vision tasks is
indeed vast — it ignores the fact that there are generic algorithms that underlie
practically all problem-specific techniques, e.g. edge detection. Indeed, this
really illustrates the distinction between two different types of testing:



technology evaluation: the response of an algorithm to factors such as adjust-
ment of its tuning parameters, noisy input data, etc.;

application evaluation: how well an algorithm performs a particular task;

where the terminology has been adapted from [4]. Technology evaluation is
one example of performance characterization.

To illustrate the distinction between technology and application evaluation,
let us consider an example that will be familiar to most computer vision re-
searchers, namely John Canny’s edge detector [5]. Technology evaluation in-
volves identifying any underlying assumptions (e.g., additive noise) and assess-
ing the effects of varying its tuning parameters (e.g., its thresholds, the size of
its Gaussian convolution mask). This is best done using simulated data, as it
provides the only way that all characteristics of the data can be known. Con-
versely, application evaluation assesses the effectiveness of the technique for a
particular task, such as locating line-segments in fMRI datasets. This second
task must, of course, be performed using real data. If the former is performed
well, the researcher will have some idea of how well the algorithm is likely to
perform on the latter simply by estimating the characteristics of the fMRI data
— how much and what type of noise, and so on.

3 Assessing an Individual Algorithm

Tables of true positives etc. are difficult to analyse and compare. Hence, re-
searchers have introduced methods of presenting the data graphically. We shall
consider two of these, the receiver operating characteristic (ROC) curve and the
detection error trade-off (DET) curve. We shall also consider a display that is
frequently used in describing the performance of classification studies, namely
the confusion matrix. Other measures and displays do exist, of course; many of
them are described in [6].

3.1 The Receiver Operating Characteristic Curve

A ROC curve is a plot of false positive rate against true positive rate as some
parameter is varied. ROC curves were developed to assess the performance of
radar operators during the second World War. These operators had to make
the distinction between friend or foe targets, and also between targets and
noise, from the blips they saw on their screens. Their ability to make these vital
distinctions was called the receiver operating characteristic. These curves were
taken up by the medical profession in the 1970s, who found them useful in
bringing out the sensitivity (true positive rate) versus specifity (1 — false positive
rate) of, for example, diagnosis trials. ROC curves are as interpreted as follows
(see Figure 2):

e the closer the curve approaches the top left-hand corner of the plot, the
more accurate the test;

e the closer the curve is to a 45° diagonal, the worse the test;
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Figure 2: Examples of ROC Curves

e the area under the curve is a measure of the accuracy of the test;

e the plot highlights the trade-off between the true positive rate and the
false positive rate: an increase in true positive rate is accompanied by an
increase in false positive rate.

It should be noted that there does not appear to be a convention as to the orien-
tation of the plot, so one encounters a variety of orientations in the literature;
in such cases, the above interpretation must be adjusted accordingly.

Figure 2 shows ROC curves for a very good, a good and a very poor (worth-
less) test. As stated above, the area under each curve gives a measure of accu-
racy. An area of unity represents a perfect test, while a measure of 0.5 (e.g., a
45° diagonal) represents a failed test (random performance). Various methods
of estimating the area under the curves have been suggested, including using
a maximum likelihood estimator to fit the data points to a smooth curve, us-
ing Simpson’s rule, and fitting trapezoids under the curve. There are, however,
more effective ways of assessing the overall accuracy of an algorithm, as we
shall see.

Error considerations can be indicated on these plots. For example, if a single
test is run on many different sets of images, then the mean false-positive rate
can be plotted against the mean true-positive rate. The assessed confidence
limits can then be plotted as error bars or error ellipses around the points.

3.2 The Detection Error Trade-off Curve

A DET curve is a plot of false positive rate versus false negative rate and thus
gives equal emphasis to both types of error; see Figure 3. The plot usually has
logarithmic scales on both axes, so DET curves tend to be more spread out than
ROC curves, making it easier to distinguish individual algorithms’ results. The
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Figure 3: Examples of DET Curves

curves also tend to be close to linear. DET curves can be used to plot match-
ing error rates and decision error rates as well as confidence intervals/boxes.
Figure 3 shows an example of a DET curve plot for three tests.

The DET curve plot highlights the trade-off between the false-positive and
false-negative rates, which is useful in areas where trade-offs between the two
error types are important. If a ‘curve’ is a straight line then this shows that
the underlying likelihood distributions from the procedure are Normal: a bell-
shaped curve plotted on linear axes results in a straight line when plotted on
logarithmic axes. Also, the diagonal y = —x on the Normal deviate scale (i.e.,
plotted on linear axes) represents a failed test (random performance).

Some researchers refer to the equal error rate (EER) of a particular test. The
EER is the point at which the false positive rate is equal to the false negative
rate. This may be of use in applications where the cost of each type of error
is equal. The smaller the EER, the better. However, in general the whole DET
curve is considered.

We have seen that ROC and DET curves are useful in assessing how different
parameters applied to an algorithm affect performance. The following section
describes how algorithms can be compared.

3.3 Confusion Matrices

A confusion matrix [7] contains information on the actual and predicted clas-
sifications performed by a system. For example, for the digit-recognition task
described in Section 6, a confusion matrix like that in Table 1 might arise.
Numbers along the leading diagonal of the table represent digits that have
been classified correctly, while off-diagonal values show the number of mis-
classifications. Hence, small numbers along the leading diagonal show cases in
which classification performance has been poor, as with ‘8’ in the table. Here,
the actual digit ‘0’ has been mis-classified as ‘8’ ten times and as ‘6’ once, while
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Table 1: Confusion Matrix for a Digit Recognition Task

the digit ‘1’ mis-classified as 7’ six times. Conversely, the digit 2’ has never
been mis-classified. There is no reason, of course, why the matrix should be
symmetric.

In the particular case that there are two classes, success and failure, the
confusion matrix just reports the number of true positives, etc. as shown below.

predicted | predicted
negative | positive
actual N FP
negative
actual FN TP
positive

4 Comparing Algorithms

4.1 Using ROC and DET curves

The most common way that algorithms are compared in the literature is by
means of their ROC or DET curves. This is acceptable to some extent; but the
problem is that researchers hardly ever indicate the accuracy of the points in
the curve using error bars or equivalent, and hence one cannot tell whether any
differences in performance are significant.

ROC curves tend not to be as straightforward as those shown in Figure 2.
Often the curves to be compared cross each other, and then it is up to the user
to decide which curve represents the best method for their application. For
example, Figure 4, shows that al g1 may be superior to al g2 when a high true-
positive rate is required but al g2 may be preferred when a low false-positive
rate is required.

As the accuracy of vision algorithms tends to be highly data-dependent,
comparisons of curves obtained using different data sets should be treated with
suspicion. Hence, the only viable way to compare algorithms is to run them
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Figure 4: Crossing ROC Curves

on the same data. In principle, one could generate ROC or DET curves for any
number of algorithms, plot them with error bars, and perform visual compar-
isons. Even in this case, however, it is usually difficult to be sure whether one
algorithm out-performs another significantly.

Hence, comparisons of algorithms tend to be performed with a specific set
of tuning parameter values. (Running them with settings that correspond to
the equal error rate is probably the most sensible.) When this is done, perhaps
under the control of a test harness such as the one described in Section 5, an
appropriate statistical test can be employed. This must take into account not
only the number of false positives etc. but also the number of tests: if one
algorithm obtains 50 more false positives than another in 100,000 tests, the
difference is not likely to be significant; but the same difference in 100 tests
almost certainly is.

4.2 M°Nemar’s Test

The appropriate test to employ for this type of comparison is M*Nemar’s test.
This is a form of chi-square test for matched paired data. Consider the following
2 x 2 table of results for two algorithms:

Algorithm A | Algorithm A
Failed Succeeded
Algorithm B Ny Ny
Failed
Algorithm B Ny Ngs
Succeeded

M¢Nemar’s test is:

2

(INsy = Nyg| = 1)

1
(st—l-Nfs) M
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Z value | Degree of confidence | Degree of confidence
Two-tailed prediction | One-tailed prediction

1.645 90% 95%
1.960 95% 97.5%
2.326 98% 99%
2.576 99% 99.5%

Table 2: Converting Z Scores onto Confidence Limits

where the —1 is a continuity correction. We see that MNemar’s test employs
both false positives and false negatives, rather than just one of them.

If the number of tests is greater than about 30 then central limit theorem
applies. The central limit theorem states that if the sample size is moderately
large and the sampling fraction is small to moderate, then the distribution is
approximately Normal. In such a case, the Z score (standard score) is obtained
from (1) as:

(|st - Nfs| - 1)
st + Nfs

If Algorithm A and Algorithm B give very similar results then Z will tend to
Z = 0. As their results, diverge Z will increase. Confidence limits can be
associated with the Z value as shown in Table 2. Values for two-tailed and one-
tailed predictions are shown in the table as either may be needed depending on
the hypothesis used: if we assessing whether two algorithms differ, a two-tailed
test should be used; and if we are determining whether one algorithm is better
than another, a one-tailed test should be used.

Further information can also be gleaned from N,y and Ny,: if these values
are both large, then tends to Algorithm A succeed where Algorithm B fails and
vice versa. This is valuable to know, as we can devise a new algorithm that uses
both in parallel and takes the value of Algorithm B where Algorithm A fails,
and vice versa — this should yield an overall improvement in accuracy. This
is actually a rather significant statement with regard to the design of vision
systems: rather than combining the results from algorithms in the rather ad hoc
manner that usually takes place, M*Nemar’s test provides a principled approach
that tells us not only how to do it but also when it is appropriate to do it on the
basis of technology evaluation — in other words, technology evaluation needs
to be an inherent part of the algorithm design process.

7 —

(2)

5 Automating the Testing Process

As performance characterization involves running an algorithm on hundreds,
and perhaps even thousands, of test cases, it is obviously not feasible to carry
it out by hand. Consequently, individual researchers tend to write software
to automate the process, often in the form of a short “script” for one of the
Unix shells, or in the Perl, Python or Tcl programming languages. Such scripts
typically do little more than execute the program, saving the result in a file
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for separate analysis. If one is performing such tests in isolation, this is fine;
but when the test results are to be used for comparison, perhaps as part of a
competition, then care is needed. Although competitions frequently (though
not always) specify a text “protocol,” such protocols are described in words,
and there are inevitable differences in ambiguities and interpretation, such as
the “false positive” interpretation alluded to above. Hence, the best way to
perform testing, especially when the results are to be used for comparison, is to
use specially-designed software: a “test harness.”

The problem with a test harness for performance characterization is that it
must be possible for researchers spread around the world to use it with their
own software, and that is difficult to achieve. There are two basic ways in
which it can be achieved:

e researchers upload their software to a central site, where it is executed
and the results made available;

e researchers download the test harness and use it locally.

The first of these is certainly easier and has the advantage that comparisons
may include execution time, memory usage etc. in addition to performance. It
also avoids problems in releasing to the public datasets that may be sensitive
(e.g., medical imagery). An excellent example of this approach is Algoval [8],
though that is restricted to class libraries written in Java. The largest problem
with this approach is that researchers may not be happy for their software,
even in compiled form, to be “given out.” This is especially true for industrial
researchers and out-weighs the technical advantages of the approach. As a
result, distributed testing, in which researchers execute the tests on their own
computers, is likely to gain more acceptance in the vision research community.
The particular test harness that we shall consider here is HATE [9].

5.1 The HATE Test Harness

HATE is an acronym for Harness for algorithm Testing and Exploration, though its
name perhaps describes more accurately the emotion people feel when faced
with having to perform tests. It was designed with the requirements of dis-
tributed performance characterization in mind and, as a result, has several
unique features:

e it allows tests to be specified independently of the software being tested
in a test script;

e it allows software written in any programming language to be used with
the harness by means of an interface script;

e it is Internet-friendly, able to download test scripts and datasets as re-
quired.

This separation of the interface to the program under test, the test script, and
the harness itself means that they can be written by different people — which
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is both desirable and what happens in practice. HATE is written in Perl, so both
interface and test scripts must also be written in Perl; however, interface scripts
are typically only a few lines, while test scripts are straightforward and often
generated by software. The algorithm developer writes the interface script, so
he or she can use his or her algorithm with HATE. The test developer writes the
test script independently of any particular piece of software that may be tested,
effectively expressing the test protocol as software. The test harness provides
the software “glue” that brings these parts together; and, as it works out what
is a true positive etc., there is a consistent interpretation of terminology.

HATE can, of course, be used with test scripts written locally. Its true power,
however, is when it is used with scripts that are designed specifically for charac-
terizing and comparing algorithms. Such scripts are made available at a central
site (its URL is built into HATE) and can be downloaded and executed simply
by specifying their name. HATE will also download data files needed by the test
if they are not already available locally.

In its most straightforward form, HATE executes the series of tests specified
in the test script and reports the number of true positives etc. obtained from the
program under test. However, as we have seen, such information is of limited
value. So HATE can be told to generate data for plotting ROC or DET curves
(in forms compatible with Gnuplot [10], R [11] and most spreadsheets). In-
deed, HATE can systematically vary not just one but any number of parameters,
though plotting the result may prove difficult.

HATE can also generate a “transcript” in which it reports the result of each
individual test in an easy-to-parse form. Transcript files obtained from different
algorithms can then be compared, and such comparisons are performed in a
statistically-valid way using M“Nemar’s test, and the output tells the researcher
whether any difference in success or failure rates is statistically significant.

6 An Illustrative Example

The easiest to see how HATE works is to show how it is used. To do so, let us
consider the classification of images of handwritten digits. One of the simplest
algorithms for this kind of task is WISARD. An outline of the algorithm and
some features of the particular implementation we shall consider are given in
Appendix A. (The software may be downloaded from the HATE web-site.) As-
suming HATE is installed on your computer, which is connected to the Internet,
you find out whether there is an appropriate test already available by typing
the command

hate -npde |ist-tests

This tells HATE to give the name and a one-line synopsis for each test that it
knows about, either locally or on the central HATE web-site. You will find there
is a script called hdi gi t s. hat e for precisely the kind of algorithm you have
developed. You then type the command

hat e -node describe hdigits
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to receive a description of the test. (HATE downloads the test script and caches
it for subsequent use.) HATE outputs a description the dataset that should be
used for training your algorithm, so you download it and train WISARD appro-
priately. The final step of preparation is to write an interface routine, stored
in the file i nt er f ace. pl in the directory in which you intend to perform the
tests.

The series of tests described in the script is executed by the command

hate hdigits
which results in the following output

# tests TP TN FP FN
1434 450 320 300 364

Here, TP stands for “true positive” etc., so for 1434 tests, 450 of them resulted
in true positives, etc..
To generate the data for an ROC curve, one would type the command

hate -node roc -param "threshol d=0, 1, 2,3,4" hdigits

which causes the series of tests to be performed several times, each with the
value of some symbol called t hr eshol d being set to the successive values
listed. (The value of a symbol defined on the command line can be picked up
in the interface script.) In the context of WISARD, the threshold is the amount
by which the highest score must exceed all other scores on a particular test in
order to be deemed a success. The resulting output is

# tests TP TN FP FN
1434 450 320 300 364
1434 140 100 594 600
1434 15 14 700 705
1434 1 1 706 726
1434 0 0 706 728

which can be fed into Gnupl ot , for example, to produce an ROC or DET curve.

The information from a single run of HATE, or an ROC curve produced
by varying a parameter, is useful during the algorithm development process
as one can see in a few minutes whether or not an “improvement” actually
does improve performance. Similarly, we would like to see if an algorithm
under development out-performs existing ones developed by other researchers.
Although one can do this manually, a far better way is to use HATE to perform
the comparison.

Let us imagine there are two other digit-classification algorithms, WARLOCK
and WITCH, with which we would like to compare WISARD. To do this, one first
tells HATE to record a “transcript” during execution, saving the output in a file.

hate -format transcript hdigits > w sard. out
Similar command lines are used to produce transcripts from WARLOCK and

WITCH. The three transcripts are then compared with a single command
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hat e - node conpare w sard. out warl ock.out w tch. out

As with other files, war | ock. out and wi t ch. out may be downloaded over
the Internet by HATE if they do not exist locally. HATE checks that the same
version of the same test script was used in all cases; if it does, it performs case-
by-case comparisons and produces a series of tables in textual or BIgX format;
the specific output for the above comparison is listed in Figure 5.

The first table summarizes how well each algorithm performed. In this
example WISARD gave better results than WITCH in 1254 cases but was only
better than WARLOCK in 130 cases. WITCH was better than WISARD and
WARLOCK in 180 cases. In no case was WARLOCK better than WISARD but it
did manage to be better than witch in 1124 cases.

Following this are tables where pairs of algorithms are compared in the
style described in Section 4. In this example, the first pair to be compared
are WISARD and WITCH. We can see that in no case did both WISARD and
WITCH fail for the same test. WISARD succeeded in 1254 cases where WITCH
failed while WITCH succeeded in 180 cases where WISARD failed. In no case
did both WITCH and WISARD succeed. Tables for comparison of WISARD and
WARLOCK and WITCH and WARLOCK are then given.

If we consider the 2 x 2 table for the comparison of WISARD and WITCH
then:

g (1254180 - 1) o,
V1254 + 180

We can look up this Z score in Table 2 to find the associated confidence limit.
As 28.34 > 2.576 we can say with more than 99% confidence that algorithm A
(WISARD) and algorithm B (WITCH) do not give equivalent results. As algo-
rithm A (WISARD) gave a larger number we can say with more than 99.5%
confidence that algorithm A (WISARD) was indeed superior to algorithm B
(WITCH) for these tests.

7 Concluding Remarks

This document has given an overview of performance characterization. It started
with a discussion of why this topic has received little attention by the computer
vision research community to date and explains that more effort must be put
into it if the discipline is to mature. The motivation for carrying out perfor-
mance characterization studies should hence be clear.

The document goes on to describe how performance is currently assessed,
by accumulating performance against a set of test data, and distinguished be-
tween technology evaluation, the performance of an algorithm in isolation, and
application evaluation, the performance of an algorithm on a specific type of
data with a particular problem in mind. Those measures and graphics most
commonly used to display performance results were then presented, both for
an individual algorithm and for the comparison of algorithms.

The use of test harnesses for taking the hard work out of performance stud-
ies was then considered and the benefits, not all of which are obvious, noted.
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BETTER

WORSE

w sard. out | witch.out | warl ock. out
wi sar d. out XXXXXXXXXX 1254 130
wi t ch. out 180 XXXXXXXXXX 180
war | ock. out 0 1124 XXXXXXXXXX

wi sar d. out

w sar d. out

failed succeeded
wi t ch. out 0 1254
failed
Wi t ch. out 180 0
succeeded

Z score is 28.335
99% confident that Wi sar d. out and wi t ch. out do not give equivalent

results

99.5% confident that Wi sar d. out was superior to wi t ch. out

wi sard. out | wi sard. out
failed succeeded
war | ock. out 180 130
failed
war | ock. out 0 1124
succeeded

Z score is 11.314
99% confident that wi sar d. out and war | ock. out do not give equivalent

results

99.5% confident that Wi sar d. out was superior to war | ock. out

witch.out | witch. out
failed succeeded
war | ock. out 130 180
failed
war | ock. out 1124 0
succeeded

Z score is 26.114
99% confident that wi t ch. out and war | ock. out do not give equivalent

results

99.5% confident that war | ock. out was superior to wi t ch. out
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The use of the HATE test harness was then described in assessing a simple vision
algorithm and comparing it with two others. This can reduce the time required
literally to ten minutes and represents the state of the testing art at the time of
writing.

We are a long way from solving all the problems associated with perfor-
mance characterization. The major technical problems lie in automating the
production of histograms that show how algorithms react to changes in the
properties of their inputs, and in optimizing parameter settings for an algo-
rithm. Both topics are being worked on by the developers of the HATE test
harness and will appear in due course.

Characterizing the performance of algorithms is now feasible. The charac-
terization may not be perfect but will undoubtedly be a vast improvement on
having no idea how algorithms react to the properties of the data presented
to them. A valuable resource would be a “data sheet” for popular algorithms,
somewhat analogous to the data books that describe electronic components. A
major problem then is in devising a methodology that describes how algorithms
can be joined together in a way that is statistically valid. A start to this problem
has been made [4] but there is far to go.

However, by far the greatest short-term problem is in convincing the com-
puter vision community as a whole of the importance of evaluation and char-
acterization. We encourage you to help do so, and there are several ways you
can contribute:

e use existing test scripts when evaluating your algorithms, and say so in
publications;

e make available transcript files of the results of test for your algorithms;
e make the code and interface file for your algorithms available;

e if there isn’t a test script for your particular research, make available one
and its accompanying data;

e encourage others to participate in performance studies too.

Together we can really crack the vision problem.

A The WISARD Neural Network

WISARD is a simple pattern recognition scheme, devised in the 1970s by Wilkie,
Stonham and Aleksander; the name stands for Wilkie, Stonham and Aleksander’s
Recognition Device [12]. It is usually described as a neural network, though
some do not regard so as it is weightless and can be trained by a single data
presentation. It is occasionally described as an “associative memory,” which
is closer to how it actually works, and as an “n-tuple” network. However, we
don’t need to get ourselves bogged down in such pedantry here; WISARD is an
approach to pattern recognition and there is an implementation of it that needs
to be examined and assessed.
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Figure 6: Illustration of the Operation of a WISARD Network

The operation of WISARD is illustrated in Figure 6. The system consists of
a frame buffer, a register or discriminator element and a 1-bit RAM. (The sim-
plicity of the architecture is because WISARD was designed to be implemented
in hardware.) WISARD is intended to operate on binary images, i.e.ones whose
pixels may take only the values zero and unity.

Initially, every element of the RAM is cleared (set to zero). Several pixel
locations, four in Figure 6, are chosen at random and connected to the bits of
the register. When an image is loaded into the frame buffer, the values held
in those four locations determine the value in the register. What happens next
depends on whether WISARD is being trained or tested (used for recognition):

e when being trained, the value in the RAM addressed by the register is set;

e when being tested, the value in the RAM addressed by the register is
compared with unity.

Fairly obviously, when the test pattern is identical to the training pattern, at
least in the selected locations, a match will be found.

Of course, if WISARD used only four samples from an image, it would not be
particularly robust; hence, several other sets of four randomly-chosen pixels are
used in the same way. The number of comparisons from groups of four pixels
that produce a match are added up, resulting in a “score” that determines how
close the overall match is.

The particular implementation that we shall consider is used in one of two
ways:

Training. To train a network you execute the program as follows:

wisard train wi z1. net <data>train/1-+.ppm
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Here, t r ai n is a keyword that tells the program to run in training mode,
wi z1. net is the file in which the trained network is saved, and the files
on the remainder of the command line are used for training.

Testing. To test a network you execute the program as follows:
w sard test wi z1. net <data>test/1l-+*.ppm

Here, t est is a keyword that tells the program to run in testing mode,
wi z1. net is the file from which a trained network is loaded, and the
files on the remainder of the command line are used for testing.

In both cases, <dat a> is the top of the directory tree in which the training and
test data are kept.
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