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Methodology.

• Vision algorithms must deliver information with

which to make practical decisions regarding in-

terpreting the data present in an image.

• All data will need an estimate of reliability.

• Probability is the only self-consistent computa-

tional framework for data analysis.

• The most direct form of information regarding

an hypothesis is the posterior ( often condi-

tional) probability.

• There are several common models for statisti-

cal data analysis all of which can be related at

some stage to the principle of maximum likeli-

hood.

• Methods based on maximum-likelihood can pro-

vide the covariance (error) estimates we need

for practical use of the data.



Bayes Theorem.

The basic foundation of probability theory follows

from the following intuitive definition of conditional

probability.

P(AB) = P(A|B)P(B)

In this definition events A and B are simultaneous

and have no (explicit) temporal order we can write

P(AB) = P(BA) = P(B|A)P(A)

This leads us to a common form of Bayes Theory,

the equation:

P(B|A) =
P(A|B)P(B)

P(A)

which allows us to compute the probability of one

event in terms of observations of another and knowl-

edge of joint distributions.



Maximum Likelihood

Starting with Bayes theorem we can extend the

joint probability equation to three and more events

P(ABC) = P(A|BC)P(BC)

P(ABC) = P(A|BC)P(B|C)P(C)

For n events with probabilities computed assuming

a particular interpretation of the data (for example

a model Y )

P(X0X1X2...Xn|Y )P(Y ) =

P(X0|X1X2...XnY )P(X1|X2...XnY )......P(Xn|Y )P(Y )



• Maximum Likelihood statistics involves the iden-

tification of the event Y which maximises such

a probability. In the absence of any other in-

formation the prior probability P(Y ) is assumed

to be constant for all Y .

• Even if the events were simple binary variables

there are clearly an exponential number of pos-

sible values for even the first term in P(XY )

requiring a prohibitive amount of data storage.

• In the case where each observed event is inde-

pendent of all others we can write.

P(Xn|Y ) = P(X0|Y )P(X1|Y )P(X2|Y )...P(Xn|Y )



Dealing with Binary Evidence.

If we make the assumption that the event Xi is bi-

nary with probability P(Xi) then we can construct

the probability of observing a particular binary vec-

tor X as

P(X) = ΠiP(Xi)
XiP(X̃i)

X̃i

or

P(X) = Πi(P(Xi)
Xi(1 − P(Xi))

(1−Xi)

The log likelihood function is therefore

log(P) =
∑

i

Xilog(P(Xi)) + (1 − Xi)log(1 − P(Xi))

This quantity can be or directly evaluated in order

to form a statistical decision regarding the likely

generator of X. This is therefore a useful equation

for methods of statistical pattern recognition.

eg:

X = (0,1,0, ...,1)

and

P(X) = (0.1,0.2,0.05, ...,0.9)



Dealing with Data Distributions.

• The generation process for a histogram, mak-

ing an entry at random according to a fixed

probability, is described by the Poisson distri-

bution.

The probability of observing a particular num-

ber of entries hi for an expected probability of

pi is given by

P(hi) = exp(−pi)
p
hi
i

hi!

• For large expected numbers of entries this dis-

tribution approximates a Gaussian with

σ =
√

pi

• The limit of a frequency distribution for an infi-

nite number of samples and bins of infinitesimal

width defines a probability density distribution.



These two facts allow us to see that the standard

χ2 statistic is appropriate for comparing two fre-

quency distributions hi and ji for large measures.

−2 log(P) = χ2 =
∑

i

(hi − ji)
2/(hi + ji)

ie:

e−log(P ) = Πie−χ2
i /2



Dealing with Functions.

If we now define the variation of the observed mea-

surements Xi about the generating function Θ with

some random error, the probability

P(X0|X1, X2, ...XN ,Θ, Y0)

will be equivalent to P(X0|Θ, Y0).

Choosing Gaussian random errors with a standard

deviation of σi gives

P(Xi) = Aiexp(
−(Xi − f(Θ, Yi))

2

2σ2
i

)

where Ai is a normalization constant. We can now

construct the maximum likelihood function

P(X|Θ) = ΠiAiexp(
−(Xi − f(Θ, Yi))

2

2σ2
i

)

which leads to the χ2 definition of log likelihood

log(P) =
−1

2

∑

i

(Xi − f(yi))
2

σ2
i

+ const



• This expression can be maximized as a func-

tion of the parameters Θ and this process is

generally called a least squares fit.

• Least squares fits are susceptible to fliers (out-

liers).

• The correct way to deal with these leads to the

methods of robust statistics.



Maximum Likelihood - Revisited.

The most common approach for algorithm devel-

opment is based on the idea of MAXIMUM LIKELI-

HOOD, which is derived from the joint probability:

P(Y X) = (ΠiP(Xi|Y ))P(Y )

Least squares (as we have seen) is derived from

Probability theory on the assumption of indepedent

Gaussian errors and that the prior probability of the

model P(Y ) can be ignored.

such that:

log(P(X|Y )) =
∑

i

log(P(Xi|Y ))

= −
∑

i

(Xi − f(i, Y ))2/σ2
i



The best choice for Y is the one which maximises

this likelihood. There are several key failings of

such an approach when used as the basis for ma-

chine vision algorithms.

Much research is thus directed (sometimes unknow-

ingly) to overcoming these limitations.

Understanding what problems are being addressed

and how is fundamental to making use of the re-

sults from other peoples research.



Non-Gaussian Errors.

Machine Vision is full of data that cannot be as-

sumed to be from a Gaussian distribution.

There are two forms of problem:

• The error distribution may be relatively com-

pact but badly skewed.

• There may be outliers caused by data “con-

tamination”.

The general technique for coping with the first

problem is to transform the data to remove skew-

ing.

eg:

Dx = f(x)

so we seek a function g which will give us

Dg(x) = const



using error propagation

Dg(x) = Dx dg/dx = f(f) dg/dx = const

ie: integrate the reciprocal of the error depen-

dence:

g =
∫

const

f(x)
dx

example. Stereo data.

z = fI/(xl − xr)

errors in Pos(x, y, z) are badly skewed.

Attempting a LSF with these measures directly (eg
for model location) is unstable due to large errors

for large z.

However, errors on disparity space

Pos(x, y, fI/(
√

2z)

are uniform and can be used for fitting.

The technique can be considered as applying the
inverse of error propagation (such as in image pro-

cessing) in order to work back to a uniform distri-
bution.



Dealing with Outliers.

This area of algorithm design is generally referred

to as Robust Statistics. The simplest technique

involves limiting the contribution of any data point

to the total LSF ie:

−log(P) =
∑

i

min((Xi − f(i, Y ))2/σ2
i ,9.0)

The choice of 9.0 as the limit on the contribution

is approximate and may depend on the problem.

This technique is not particularly good for methods

which use derivatives during optimisation, as it in-

troduces discontinuities which can introduce local

minima.

Alternative involve replacing the Gaussian with a

continuous distribution with long tails.

The most common of these is the double sided

exponential.

−log(P) =
∑

i

|(Xi − f(i, Y ))/σi|

This is adequate for most applications.



More complex techniques which attempt to model

slightly more realistic distributions can be found in

the literature eg: Caucy distribution

P(Xi|Y ) =
1

1 + (Xi − f(i, Y ))/σi)
2/2

so that our log probability is now

−log(P) =
∑

i

log(1 + 1/2(Xi − f(i, Y ))/σi)
2)

The price we pay for this is that, unlike standard

least squares, such cost functions can rarely (never?)

be optimised by direct solution so we have to use

iterative techniques which take more time.



Non-Independent Measurements.

Under any practical circumstance the data deliv-

ered by a system may be correlated. It is then that

we may need to preprocess the data to remove

these correlations. This process is often called

PRINCIPAL COMPONENT ANALYSIS.

We can define the correlation matrix

R =
∑

i

(Xj − Xm) ⊗ (Xj − Xm)

where Xj is an individual measurement vector from

a data set and Xm is the mean vector for that set.

It can be shown that orthogonal (linearly indepen-

dent) axes correspond to the eigenvectors Vk of the

matrix R. Solution of the eigenvector equation

RVk = λkVk

The method known as Singular Value Decompo-

sition (SVD) approximates a matrix by a set of

orthogonal vectors Wl and singular values wl.

R =
∑

l

1

w2
l

Wl ⊗ Wl



If we multiply both sides of the equation by one of

these vectors Wk

RWk =
∑

l

1

w2
l

Wl ⊗ Wl.Wk

we see that the singular vectors satisfy the eigen-

vector equation with

λk =
1

w2
k



Identifying Correlations.

Correlation produces systematic changes in one para-

mater due to changes in another.

This can be visualised by producing a scatter-plot

of the two variables f(x, y).

In general for any two variables to be un-correlated

knowledge of one must give no information regard-

ing the other.

In terms of the scatter plot this means that the

structure seen must be entirely modelable in terms

of the outer-product of the two marginal distribu-

tions.

f(x, y) = f(x) ⊗ f(y)

ie: decomposable.

Principle component analysis works by rotating the

axes of the space to align along the axes of major

variance of the data.



This may not necessarily de-correlate the data.

(Sozou et.al.1995)



Common Data Models.

Once good data models have been identified they

can be used again in the design of new algorithms.

Data Error Assumption

Images Uniform random Gaussian
+ other

Histograms Poisson sampling statistics
Edge features Gaussian perpendicular to edge
Corner features Circular (Eliptical) Gaussian

Line fits Uniform Gaussian on end-points
3D Stereo data Uniform in disparity space

Table 1 Standard error model assumptions.

Example; Object Location.



Demo: Pairwise geometric histogram model loca-
tion (Ashbrook et. al. 1995)



Various transforms and algorithms can be used to

achieve more uniform errors.

Some assumptions, such as uniform random errors

on results from shape from optical flow methods,

are not good models.

All models will probably need acceptance of out-

liers.

The old saying.... Junk in; junk out, could be bet-

ter restated as:

Unknown statistical distributions in; Unknown

statistical distributions out.
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Covariance Estimation.

(Haralick 1996) For locally linear fit functions f we

can approximate the variation in a χ2 metric about

the minimum value as a quadratic. We will examine

the two dimensional case first, for example:

z = a + bx + cy + dxy + ex2 + fy2

This can be written as

χ2 = χ2
0+∆XTC−1

x ∆X with ∆X = (x−x0, y−y0)

where C−1
x is defined as the inverse covariance ma-

trix

C−1
x =

u v
w s

Comparing with the above quadratic equation we

get

χ2 = χ2
0 + x2u + yxw + xyv + sy2

where

a = χ2
0, b = 0, c = 0, d = w + v, e = u, f = s

Notice that the b and c coefficients are zero as

required if the χ2 is at the minimum.



Starting from the χ2 definition using the same no-

tation as previously.

χ2 =
1

2

N
∑

i

(Xi − f(yi, a))
2

σ2
i

We can compute the first and second order deriva-

tives as follows:

∂χ2

∂an
=

N
∑

i

(Xi − f(yi, a))

σ2
i

∂f

∂an

∂2χ2

∂an∂am
=

N
∑

i

1

σ2
i

(
∂f

∂an

∂f

∂am
− (Xi − f(yi, a))

∂2f

∂an∂am
)

The second term in this equation is expected to be

negligible giving

=
N
∑

i

1

σ2
i

(
∂f

∂an

∂f

∂am
)

The following quantities are often defined.

βn =
1

2

∂χ2

∂an

αnm =
1

2

∂2χ2

∂an∂am



As these derivatives must correspond to the first

coefficients in a polynomial (Taylor) expansion of

the χ2 function then,

C = α−1

And the expected change in χ2 for a small change

in model parameters can be written as

∆χ2 = ∆aTα∆a

(Press et. al. 1988)



Error Propagation.

In order to use a piece of information f(X) derived

from a set of measures X we must have information

regarding its likely variation.

If X has been obtained using a measurement sys-

tem then we must be able to quantify measurement

accuracy.

Then

∆f2(X) = ∇fT CX∇f

example 1: the Poisson distribution s

t =
√

s

then we can show, using a simplified form of error

propagation for one parameter, that the expected

variance on t is given by

∆t =
∂t

∂s
∆s

=
−1

2

Thus the distribution of the square-root of a ran-

dom variable drawn from a Poisson distribution

with large mean will be constant.



example 2: Stereo Measurement

Using rectified images, the distance, Z between the

feature and the camera plane can be found with the

equation:

Z =
fI

x1 − x2

where:

f is the focal length of the lenses

I is the inter-occular seperation

x1 and x2 are positions of the features on the epipo-

lars

We can determine the sensitivity of Z with changes

in x1 and x2 thus,

∆Z2 =

(

δZ

δx1
∆x1

)2

+

(

δZ

δx1
∆x2

)2

where,

δZ

δx1
= − fI

(x1 − x2)
2

and
δZ

δx2
=

fI

(x1 − x2)
2

∆x is the feature position error in the image and

can be assumed to be equal in each image, so

∆x1 = ∆x2 = ∆x



Solving for ∆Z yields the result,

∆Z =

√
2fI∆x

(x1 − x2)
2

or w.r.t. Z, ∆Z =

√
2Z2∆x

fI



Image Processing Stability.

In simple image processing the requirements of an

image processing algorithm may be purely to en-

hance the image for viewing.

But; the aim of advanced image processing to pro-

duce an image that makes certain information ex-

plicit in the resulting image values for automated

data extraction.

eg: edge strength maps.

Generally, high values located over features of in-

terest. The process which determines a good al-

gorithm is its behaviour in the presence of noise,

in particular does the resulting image give results

which really can be interpreted purely on the basis

of output value.

ie: is a high value genuine or just a product of the

propagated noise.

In this lecture we will cover two ways of assessing

algorithms: Error Propagation and Monte-Carlo

techniques.



Image Processing Errors.

General Approach for Error Propagation (Recap).

∆f2(X) = ∇fT CX∇f

where ∇f is a vector of derivatives

∇f = (
∂f

∂X1
,

∂f

∂X2
,

∂f

∂X3
, ....)

and ∆f(X) is the standard deviation on the com-

puted measure

If we apply this to image processing assuming that

images have uniform random noise then we can

simplify this expression to

∆f2
xy(I) =

∑

nm
σ2

nm(
∂fxy

∂Inm
)2

ie: the contribution to the output from each in-

dependent variance involved in the calculation is

added in quadrature.



Image Arithmetic.

We can drop the xy subscript as it is not needed.

Addition:

O = I1 + I2

∆O2 = σ2
1 + σ2

2

Division:

O = I1 / I2

∆O2 =
σ2
1

I2
2

+
I2
1σ2

2

I4
2

Multiplication:

O = I1 . I2

∆O2 = I2
2σ2

1 + I2
1σ2

2



Square-root:

O =
√

(I1)

∆O2 =
σ2
1

I1

Logarithm:

O = log(I1)

∆O2 =
σ2
1

I2
1

Polynomial Term:

O = In
1

∆O2 = (nIn−1
1 )2σ2

1



Square-root of Sum of Squares:

O =
√

I2
1 + I2

2

∆O2 =
I2
1σ2

1 + I2
2σ2

2

I2
1 + I2

2

Notice that some of these results are independent

of the image data. Thus these algorithms preserve

uniform random noise in the output image.

Such techniques form the basis of the most useful

building blocks for image processing algorithms.

Some however, (most notably multiplication and

division) produce a result which is data dependent,

thus each output pixel will have different noise

characteristics. This complicates the process of

algorithmic design.

Complicated image processing algorithms are likely

to have complicated derivatives (c.w. Bowyers Con-

jecture).



Linear Filters.

For Linear Filters we initially have to re-introduce

the spatial subscript for the input and output im-

ages I and O.

Oxy =
∑

nm
hnmIx+n,y+m

where hnm are the linear co-efficients.

Error propagation gives:

∆O2
xy =

∑

nm
(hnmσx+n,y+m)2

for uniform errors this can be rewritten as

∆O2
xy = σ2

∑

nm
(hnm)2 = K σ2

Thus linear filters produce outputs that have uni-

form errors.



Unlike image arithmetic, although the errors are

unform they are no-longer independent because the

same data is used in the calculation of the output

image pixels. Thus care has to be taken when

applying further processing.

For the case of applying a second linear filter this

is not a problem as all sequences of linear filter

operations can be replaced by a combined linear

filter operation, thus the original derivation holds.



Histogram Equalisation.

For this algorithm we have a small problem as the

differential of the processing process is not well

defined.

If however we take the limiting case of the algo-

rithm for a continuous signal then the output image

can be defined as:

Oxy =

∫ Ixy

0
fdI/

∫ ∞

0
fdI

where f is the frequency distribution of the grey

levels (ie the histogram.

This can now be differentiated giving

∂Oxy

∂Ixy
= K fIxy

ie: the derivative is proportional to the frequency of

occurrence of grey level value Ixy and the expected

variance is:

∆O2
xy = K σ2

xyf2
Ixy



Clearly this will not be uniform across the image,

nor would it be in the quantized definition of the

algorithm.

Thus although histogram equalisation is a popular

process for displaying results (to make better use

of the dynamic range available in the display) it

should generally be avoided as part of a Machine

Vision algorithm.



Monte-Carlo Techniques.

Differential propagation techniques are inappropri-

ate when:

• Input errors are large compared to the range of

linearity of the function.

• Input distribution is non-Gaussian.

The most general technique for algorithm analysis

which is still applicable under these circumstances

is known as the Monte-Carlo technique.

This techniques takes values from the expected in-

put distribution and accumulates the statistical re-

sponse of the output distribution.

The technique requires simply a method of gen-

erating random numbers from the expected input

distribution and the algorithm itself.



Edge Detection.

Edge detection is a combination of operations and

the simplest approach to testing is likely to be

Monte-Carlo.

Canny was designed to combine optimal noise sup-

pression with location accuracy, but does this ac-

count for its stability?

The sequence of processing involves;

• convolution with the noise filter

(eg: ⊗ Gaussian)

• calculation of spatial derivatives

(eg: ⊗ (-1, 0, 1))

• calculation of edge strength

(eg:
√

(∇2
x + ∇2

y))

• thresholding and peak finding

The final stage will be reliable provided that we

have stability after the first three image processing

steps.



Feature Detection Reliability.

Generally, when locating features, we are interested

in a limited set of performance characteristics.

• Position and orientation accuracy

• Detection reliability

• False Detection rate

The first of these can be performed using a Monte-

Carlo repeatability experiment.

The last two require a gold standard against which

to make a comparison.

In addition, most feature detection algorithms have

a sensitivity threshold (which corresponds to the

probability level of the null hypothesis). The best

value will be data dependent.

The way to deal with this is to produce curves

which describe the detection and false detection

rates as a function of threshold (ie: ROC as de-

scribed in the earlier part of this tutorial).



Invalid Assumptions.

We have reviewed some of the more common as-

sumptions made regarding the statistical charac-

teristics of data, but there are many more.

For example in our own TINA machine vision sys-

tem a series of processes are used to extract stereo

data at features and then locate an object in the

scene.

Algorithm Assumptions

Edge Detection Edges present as expected

2D Fitting Curves and lines can be linked
and fitted

Stereo Matching Accurate camera geometry
metrics

3D Geometry Accurate camera calibration

Wireframe Matcher Gaussian errors

3D Locator Closed form appropriate

Sequential Model Accurate features
Builder

Algorithmic assmuptions for the original 3DMM

Closing the vision loop can improve on object loca-

tion accuracy by eliminating invalid assumptions.

Demo: Closed Loop Validation. (Lacey et. al.

2001)



Conclusions.

Statistical assumptions underpinning algorithmic ap-

proaches should be understood and data tested to

confirm that it conforms to the expected distribu-

tions.

The most effective/robust algorithms will be those

that match most closely the statistical properties

of the data.

An algorithm which takes correct account of all of

the data will yield an optimal result (Lorusso et.al.

1995)

Robust approaches, which take account of outliers,

are generally needed in any practical algorithm.

We can use statistical methods to estimate the

errors on estimated quantities.

These errors are generally needed to make practical

use of the data.



We can use methods such as error propagation to

evaluate algorithmic functions analytically.

Monte-carlo methods can be applied where the an-

alytic methods are inappropriate.

Complex functions generally have complex error

characteristics, this is a theoretical justification for

Bowyers Conjecture.

Algorithms which make many assumptions have

more chance of one of them being invalid.

if assumptions match

application characteristics

if assumptions do not match

application characteristics

level of 

performance

in real

application

number and specificity of assumptions made in the mathematics underlying a vision algorithm

Algorithmic complexity should be increased only

when it is justified by the data.
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