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Methodology.

Vision algorithms must deliver information with
which to make practical decisions regarding in-
terpreting the data present in an image.

All data will need an estimate of reliability.

Probability is the only self-consistent computa-
tional framework for data analysis.

The most direct form of information regarding
an hypothesis is the posterior ( often condi-
tional) probability.

There are several common models for statisti-
cal data analysis all of which can be related at
some stage to the principle of maximum likeli-
hood.

Methods based on maximume-likelihood can pro-
vide the covariance (error) estimates we need
for practical use of the data.



Bayes Theorem.

The basic foundation of probability theory follows
from the following intuitive definition of conditional
probability.

P(AB) = P(A|B)P(B)

In this definition events A and B are simultaneous
and have no (explicit) temporal order we can write

P(AB) = P(BA) = P(B|A)P(A)

This leads us to a common form of Bayes T heory,
the equation:

P(A|B)P(B)
P(A)
which allows us to compute the probability of one

event in terms of observations of another and knowl-
edge of joint distributions.

P(B|A) =




Maximum Likelihood

Starting with Bayes theorem we can extend the
joint probability equation to three and more events

P(ABC) = P(A|BC)P(BC)

P(ABC) = P(A|BC)P(B|C)P(C)

For n events with probabilities computed assuming
a particular interpretation of the data (for example
a model Y)

P(X0X1X0.. Xn|Y)P(Y) =

P(Xo|X1X0.. XnY)P(X1|X5..XnY).....P(Xn|Y)P(Y)



e Maximum Likelihood statistics involves the iden-
tification of the event Y which maximises such
a probability. In the absence of any other in-
formation the prior probability P(Y) is assumed
to be constant for all Y.

e Even if the events were simple binary variables
there are clearly an exponential number of pos-
sible values for even the first term in P(XY)
requiring a prohibitive amount of data storage.

e In the case where each observed event is inde-
pendent of all others we can write.

P(Xn|Y) = P(Xo|V)P(X1|Y)P(X2|V)...P(Xn|Y)



Dealing with Binary Evidence.

If we make the assumption that the event X; is bi-
nary with probability P(X;) then we can construct
the probability of observing a particular binary vec-
tor X as

P(X) = M;P(X;)XiP(X) i
or
P(X) = M;(P(X;)%i(1 — P(x;))3—X)

The log likelihood function is therefore

log(P) = ZXZ'ZOQ(P(XO) + (1 — X;)log(1 — P(X;))

This quantity can be or directly evaluated in order
to form a statistical decision regarding the likely
generator of X. This is therefore a useful equation
for methods of statistical pattern recognition.

eqg:
X = (0,1,0,...,1)
and

P(X) = (0.1,0.2,0.05,...,0.9)



Dealing with Data Distributions.

e T he generation process for a histogram, mak-
ing an entry at random according to a fixed
probability, is described by the Poisson distri-
bution.

The probability of observing a particular num-
ber of entries h; for an expected probability of
p; IS given by

h;

p.
P(h;) = exp(—p;)=*
h!

e For large expected numbers of entries this dis-
tribution approximates a Gaussian with

o= \/D;

e [ he limit of a frequency distribution for an infi-
nite number of samples and bins of infinitesimal
width defines a probability density distribution.



These two facts allow us to see that the standard
2 statistic is appropriate for comparing two fre-
quency distributions h; and j; for large measures.

~210g(P) = x* =3 (hi—ji)*/(hi + 52)

ie:

c—log(P) — pig—x2/2



Dealing with Functions.

If we now define the variation of the observed mea-
surements X; about the generating function © with
some random error, the probability

P(Xo|X1, X2, ... XN, ©,Y)p)
will be equivalent to P(Xp|©,Y)).

Choosing Gaussian random errors with a standard
deviation of og; gives

—(X; — f(©,Y))?

2
QO'Z-

P(X;) = Ajexp( )

where A; is a normalization constant. We can now
construct the maximum likelihood function
—(X; — f(©,Y)))?

2
202-

which leads to the x?2 definition of log likelihood

X; — f(y:))?
Z( f(y))

az

)

P(X|©) = M;A;exp(

~+ const

log(P) = —



e [ his expression can be maximized as a func-
tion of the parameters © and this process is
generally called a least squares fit.

e | east squares fits are susceptible to fliers (out-
liers).

e [ he correct way to deal with these leads to the
methods of robust statistics.



Maximum Likelihood - Revisited.

The most common approach for algorithm devel-
opment is based on the idea of MAXIMUM LIKELI-
HOOD, which is derived from the joint probability:

P(YX) = (MP(X|Y))P(Y)

Least squares (as we have seen) is derived from
Probability theory on the assumption of indepedent
Gaussian errors and that the prior probability of the
model P(Y) can be ignored.

such that:

log(P(X|Y)) = »_ log(P(Xi|Y))

= = Y(Xi— f(,Y))?/07



The best choice for Y is the one which maximises
this likelihood. There are several key failings of

such an approach when used as the basis for ma-
chine vision algorithms.

Much research is thus directed (sometimes unknow-
ingly) to overcoming these limitations.

Understanding what problems are being addressed
and how is fundamental to making use of the re-
sults from other peoples research.



Non-Gaussian Errors.

Machine Vision is full of data that cannot be as-
sumed to be from a Gaussian distribution.

There are two forms of problem:

e [ he error distribution may be relatively com-
pact but badly skewed.

e [ here may be outliers caused by data ‘‘con-
tamination”.

The general technique for coping with the first
problem is to transform the data to remove skew-

ing.
eg:
Dy = f(x)

so we seek a function g which will give us

Dy(z) = const



using error propagation

Dy(z) = Dy dg/de = f(f) dg/dx = const

ie: integrate the reciprocal of the error depen-

dence:
const

O

g:

example. Stereo data.

z = fI/(x; — =)
errors in Pos(x,y, z) are badly skewed.

Attempting a LSF with these measures directly (eg
for model location) is unstable due to large errors
for large z.

However, errors on disparity space

Pos(z,y, f1/(V/22)

are uniform and can be used for fitting.

The techniqgue can be considered as applying the
inverse of error propagation (such as in image pro-
cessing) in order to work back to a uniform distri-
bution.



Dealing with Outliers.

This area of algorithm design is generally referred
to as Robust Statistics. The simplest technique
involves limiting the contribution of any data point
to the total LSF ie:

—log(P) = > min((X; — f(i,Y))?/0?,9.0)
i
The choice of 9.0 as the limit on the contribution
IS approximate and may depend on the problem.

This technique is not particularly good for methods
which use derivatives during optimisation, as it in-
troduces discontinuities which can introduce local
minima.

Alternative involve replacing the Gaussian with a
continuous distribution with long tails.

The most common of these is the double sided
exponential.

—log(P) = ¥ (X, = (i, Y))/ail

This is adequate for most applications.



More complex techniques which attempt to model
slightly more realistic distributions can be found in
the literature eg: Caucy distribution

1
1+ (X — f(,Y))/0:)?/2

P(X;|Y) =

so that our log probability is now

—log(P) = Y log(1 + 1/2(X; — f(i,Y))/03)?)

The price we pay for this is that, unlike standard

least squares, such cost functions can rarely (never?)
be optimised by direct solution so we have to use

iterative techniques which take more time.



Non-Independent Measurements.

Under any practical circumstance the data deliv-
ered by a system may be correlated. It is then that
we may need to preprocess the data to remove
these correlations. This process is often called
PRINCIPAL COMPONENT ANALYSIS.

We can define the correlation matrix
R=) (X; — Xm) Q@ (X; — Xm)
i

where Xj is an individual measurement vector from
a data set and X,, is the mean vector for that set.

It can be shown that orthogonal (linearly indepen-
dent) axes correspond to the eigenvectors V}, of the
matrix R. Solution of the eigenvector equation

RV = A\ V3,

The method known as Singular Value Decompo-
sition (SVD) approximates a matrix by a set of
orthogonal vectors W; and singular values wj.

1
RZZ—QWZ@)WZ

1 Wi



If we multiply both sides of the equation by one of
these vectors W,

1
RW, = Z—QWZ QK W;. Wy
]
we see that the singular vectors satisfy the eigen-

vector equation with

N 1
k— >
Wk



Identifying Correlations.

Correlation produces systematic changes in one para-
mater due to changes in another.

This can be visualised by producing a scatter-plot
of the two variables f(x,y).

In general for any two variables to be un-correlated
knowledge of one must give no information regard-
ing the other.

In terms of the scatter plot this means that the
structure seen must be entirely modelable in terms
of the outer-product of the two marginal distribu-
tions.

fl@,y) = fz)® f(y)

ie: decomposable.

Principle component analysis works by rotating the
axes of the space to align along the axes of major
variance of the data.



This may not necessarily de-correlate the data.

(Sozou et.al.1995)



Common Data Modaels.

Once good data models have been identified they
can be used again in the design of new algorithms.

Data Error Assumption
Images Uniform random Gaussian
—+ other
Histograms Poisson sampling statistics

Edge features Gaussian perpendicular to edge

Corner features Circular (Eliptical) Gaussian
Line fits Uniform Gaussian on end-points

3D Stereo data Uniform in disparity space

Table 1 Standard error model assumptions.

Example; Object Location.




Demo: Pairwise geometric histogram model loca-
tion (Ashbrook et. al. 1995)



Various transforms and algorithms can be used to
achieve more uniform errors.

Some assumptions, such as uniform random errors
on results from shape from optical flow methods,
are not good models.

All models will probably need acceptance of out-
liers.

The old saying.... Junk in; junk out, could be bet-
ter restated as:

Unknown statistical distributions in; Unknown
statistical distributions out.
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Covariance Estimation.

(Haralick 1996) For locally linear fit functions f we
can approximate the variation in a Xz metric about
the minimum value as a quadratic. We will examine
the two dimensional case first, for example:

z=a—|—b:1:—|—cy—|—da:y—|—ea:2—|—fy2

This can be written as
2 zxg—I—AXTCx_lAX with AX = (z—x0,y—Y0)

where C 1 is defined as the inverse covariance ma-
trix

u v
w S

c;l =

Comparing with the above quadratic equation we
get

X2 = X% —|—:1:2u + yrxw + zyv + sy2

where

azxg,bzO,c=0,d=w—|—v,e=u,f=s

Notice that the b and c¢ coefficients are zero as
required if the x2 is at the minimum.



Starting from the y2 definition using the same no-
tation as previously.

2 1% (Xi — f(yi,a))?
D L o2
(/ (/
We can compute the first and second order deriva-

tives as follows:

82 N Xz'_ 7y Q@ o
L:Z( f2(y )) Of

aa/n, i O'Z aa/n,

022 N o1 af of

2
(X — flyna)) =2

aanaam 2 aa/na am, aaxnaam

The second term in this equation is expected to be
negligible giving

T 1

T he following quantities are often defined.

1 8)(
5/” 2 aa/n,
1 82X2
Onm — <

2 aaxnaam



As these derivatives must correspond to the first
coefficients in a polynomial (Taylor) expansion of
the y2 function then,

C=a 1

And the expected change in X2 for a small change
in model parameters can be written as

sz = AalalAa

(Press et. al. 1988)



Error Propagation.

In order to use a piece of information f(X) derived
from a set of measures X we must have information
regarding its likely variation.

If X has been obtained using a measurement sys-
tem then we must be able to quantify measurement
accuracy.

T hen
AfA(X)=Vloxvy

example 1: the Poisson distribution s

t=+/s
then we can show, using a simplified form of error

propagation for one parameter, that the expected
variance on t is given by

At = @As

0s

—1

2

Thus the distribution of the square-root of a ran-
dom variable drawn from a Poisson distribution
with large mean will be constant.



example 2: Stereo Measurement

Using rectified images, the distance, Z between the
feature and the camera plane can be found with the
equation:

g _J

r] — I

where:

f is the focal length of the lenses

I is the inter-occular seperation

x1 and xo are positions of the features on the epipo-
lars

We can determine the sensitivity of Z with changes

in 1 and x> thus,

2 2
57 57
AZ? = <—Aa;1> + (6—Aa:2>

0x1 x1
where,
04 I 04 I
— = — f 5 and = f 5
dx1 (1 — x2) ox2  (r1 — x2)

Ax is the feature position error in the image and
can be assumed to be equal in each image, so

Ax1 = Axr = Ax



Solving for AZ yields the result,

AZ

. V2 FIAx

(21— 22)?2

or w.r.t. Z, AZ =

\/§ZQA:C

fI




Image Processing Stability.

In simple image processing the requirements of an
image processing algorithm may be purely to en-
hance the image for viewing.

But; the aim of advanced image processing to pro-
duce an image that makes certain information ex-
plicit in the resulting image values for automated
data extraction.

eg. edge strength maps.

Generally, high values located over features of in-
terest. The process which determines a good al-
gorithm is its behaviour in the presence of noise,
in particular does the resulting image give results
which really can be interpreted purely on the basis
of output value.

ie: is a high value genuine or just a product of the
propagated noise.

In this lecture we will cover two ways of assessing
algorithms: Error Propagation and Monte-Carlo
techniques.



Image Processing Errors.

General Approach for Error Propagation (Recap).
AfA(X) =VfiCxVf

where V f is a vector of derivatives

of JOf OJOf
vf — ( Y Y 7"")
0X1 0Xo 0X3
and Af(X) is the standard deviation on the com-
puted measure

If we apply this to image processing assuming that
images have uniform random noise then we can
simplify this expression to

ot
Af2(1) =Y o2, (2w

)2

ie: the contribution to the output from each in-
dependent variance involved in the calculation is
added in quadrature.



Image Arithmetic.

We can drop the xy subscript as it is not needed.

Addition:
O =1 + I
AO? = 0% -+ O’%
Division:
O =1/1I
2 2 2
AO2 = 91 4 1io3
I3 15
Multiplication:
O = 1. 1>

AO? = I507 + Ifo%



Square-root:

Logarithm:

Polynomial Term:



Square-root of Sum of Squares:

O = 12 + I3

> 2 2 2
Ifo7 + 1505
7 + I3

>
2
|

Notice that some of these results are independent
of the image data. Thus these algorithms preserve
uniform random noise in the output image.

Such techniques form the basis of the most useful
building blocks for image processing algorithms.

Some however, (most notably multiplication and
division) produce a result which is data dependent,
thus each output pixel will have different noise
characteristics. This complicates the process of
algorithmic design.

Complicated image processing algorithms are likely
to have complicated derivatives (c.w. Bowyers Con-
jecture).



Linear Filters.

For Linear Filters we initially have to re-introduce
the spatial subscript for the input and output im-
ages I and O.

Ogy = Zhnm[a?-l-n,y—l-m
nm

where hnm are the linear co-efficients.

Error propagation gives:

2 2
AOz, = Z(hnm‘jﬂc-I-n,y-l—m)
nm

for uniform errors this can be rewritten as

nm

T hus linear filters produce outputs that have uni-
form errors.



Unlike image arithmetic, although the errors are
unform they are no-longer independent because the
same data is used in the calculation of the output
image pixels. Thus care has to be taken when
applying further processing.

For the case of applying a second linear filter this
is not a problem as all sequences of linear filter
operations can be replaced by a combined linear
filter operation, thus the original derivation holds.



Histogram Equalisation.

For this algorithm we have a small problem as the
differential of the processing process is not well
defined.

If however we take the limiting case of the algo-
rithm for a continuous signal then the output image
can be defined as:

Oy = /O " rdr /O = fdr

where f is the frequency distribution of the grey
levels (ie the histogram.

This can now be differentiated giving

80xy
ie: the derivative is proportional to the frequency of

occurrence of grey level value Iy and the expected
variance is:

= K fr,,

AO;, = K oz, f7,



Clearly this will not be uniform across the image,
nor would it be in the quantized definition of the
algorithm.

Thus although histogram equalisation is a popular
process for displaying results (to make better use
of the dynamic range available in the display) it
should generally be avoided as part of a Machine
Vision algorithm.



Monte-Carlo Techniques.

Differential propagation techniques are inappropri-
ate when:

e Input errors are large compared to the range of
linearity of the function.

e Input distribution is non-Gaussian.

The most general technique for algorithm analysis
which is still applicable under these circumstances
iIs known as the Monte-Carlo technique.

This techniques takes values from the expected in-
put distribution and accumulates the statistical re-
sponse of the output distribution.

The technique requires simply a method of gen-
erating random numbers from the expected input
distribution and the algorithm itself.



Edge Detection.

Edge detection is a combination of operations and
the simplest approach to testing is likely to be
Monte-Carlo.

Canny was designed to combine optimal noise sup-
pression with location accuracy, but does this ac-
count for its stability?

T he sequence of processing involves;

e convolution with the noise filter
(eg: ® Gaussian)

e calculation of spatial derivatives
(eg: ® (-1, 0, 1))

e calculation of edge strength
(eg: /(V2 + V2))

e thresholding and peak finding

The final stage will be reliable provided that we
have stability after the first three image processing
steps.



Feature Detection Reliability.

Generally, when locating features, we are interested
in a limited set of performance characteristics.

e Position and orientation accuracy

e Detection reliability

e False Detection rate

T he first of these can be performed using a Monte-
Carlo repeatability experiment.

The last two require a gold standard against which
to make a comparison.

In addition, most feature detection algorithms have
a sensitivity threshold (which corresponds to the
probability level of the null hypothesis). The best
value will be data dependent.

The way to deal with this is to produce curves
which describe the detection and false detection
rates as a function of threshold (ie: ROC as de-
scribed in the earlier part of this tutorial).



Invalid Assumptions.

We have reviewed some of the more common as-
sumptions made regarding the statistical charac-
teristics of data, but there are many more.

For example in our own TINA machine vision Sys-
tem a series of processes are used to extract stereo
data at features and then locate an object in the
scene.

Algorithm Assumptions
Edge Detection Edges present as expected
2D Fitting Curves and lines can be linked
and fitted
Stereo Matching Accurate camera geometry
metrics
3D Geometry Accurate camera calibration
Wireframe Matcher | Gaussian errors
3D Locator Closed form appropriate
Sequential Model | Accurate features
Builder

Algorithmic assmuptions for the original 3SDMM

Closing the vision loop can improve on object loca-
tion accuracy by eliminating invalid assumptions.

Demo: Closed Loop Validation. (Lacey et. al.
2001)



Conclusions.

Statistical assumptions underpinning algorithmic ap-
proaches should be understood and data tested to

confirm that it conforms to the expected distribu-

tions.

The most effective/robust algorithms will be those
that match most closely the statistical properties
of the data.

An algorithm which takes correct account of all of
the data will yield an optimal result (Lorusso et.al.
1995)

Robust approaches, which take account of outliers,
are generally needed in any practical algorithm.

We can use statistical methods to estimate the
errors on estimated quantities.

T hese errors are generally needed to make practical
use of the data.



We can use methods such as error propagation to
evaluate algorithmic functions analytically.

Monte-carlo methods can be applied where the an-
alytic methods are inappropriate.

Complex functions generally have complex error
characteristics, this is a theoretical justification for
Bowyers Conjecture.

Algorithms which make many assumptions have
more chance of one of them being invalid.

level of if assumptions match 7

performance application characteristi cs/ g

inreal K

application 7 if assumptions do not match

-
/ -
-

©__--~~7---_ _application characteristics

"\

number and specificity of assumptions made in the mathematics underlying a vision algorithm

Algorithmic complexity should be increased only
when it is justified by the data.
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