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Abstract

This paper identifies the important role that covariance estimation has to play in the

construction of analysis systems. The problem of co-registration for inter-modality clinical
volumes is often solved by maximising the so-called mutual information measure. This

paper extends the existing theory in this area and suggests a viable way of constructing co-

variances for mutual information approaches by treating this algorithm as a bootstrapped
likelihood based approach. We provide both theoretical and practical tests of the validity

of this method. In doing so we identify important subtleties in the current use of these
measures for coregistration. These issues suggest potential improvements in the way that

such measures might be constructed and used.

Introduction

Co-registration is a cornerstone of many medical image analysis processes. It is often required

as a precursor to the analysis of change or for the construction of multi-dimensional data [1].

When constructing systems from separate analysis modules it is crucially important to know

the accuracy of the data passing between them and to make appropriate use of this knowledge

in subsequent processing. The most common way to represent such data is the covariance

matrix. Confirmation that the covariance matrix agrees with the theoretical prediction on

sample data is also a very good way of confirming the validity of the assumptions made in

the parameter estimation technique. All aspects of the quantitative statistical method must be

understood in order to achieve agreement between the theroretical and empirical estimates

of parameter accuracy. In achieving this the algorithm module is tested to a level that allows

full exploitation in a larger system.

Defining p(i, j) as the joint probability distribution for grey level values i and j at equiva-

lent locations in two images I, J , this measure is defined as;

I (I , J ) =
∑

i

∑

j

p(i, j)log
p(i, j)

p(i)p(j)

which has been shown [2] to be monotonically related to the negative log probability of the

equivalence between image values;

−log(P ) = − N
∑

i

∑

j

p(i, j)log
p(i, j)

p(j)
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via

−log(P ) = N(H(I) − I (I , J ))

where N is the number of voxels and H(I) is the entropy of image I and is fixed. Thus the

maxima of a mutual information measure is also the minima of the log probability of the

similarity between the two images. The measure is perhaps more easily recognised when

written as a sum over voxels vij in the original data rather than over the histogram.

−log(P ) = −
∑

v

log
p(i, j)

p(j)

We would like to be able to compute a covariance for the estimated parameters from such

an optimisation, but in fact the log probability term identified here is not appropriate for

this process because it uses probabilities of obtaining particular i j combinations within some

interval, rather than a likelihood. As a consequence, redefinition of the grey level intervals

produces a scaling of this measure. In order to get the log probability into an invariant form

we need to rewrite it as follows;

−log(P ) = −
∑

v

log
p(i, j) p(jmax)

p(jmax) p(j)

= −
∑

v

log
p(i, j)

p(jmax)
−

∑

v

log
p(jmax)

p(j)

where p(jmax) is the maximum probability within the distribution. Written in this way the

behaviour of the mutual entropy algorithm now becomes explicit. The first term in this equa-

tion now corresponds to the conventional χ2 likelihood statistic which is minimised to achieve

alignment. The second term explicitly optimises the “peakiness” of the estimated distribution

in order to achieve the maximum correlation between equivalent structure. Unfortunately,

this second term is not a true statistic, as it is dependent upon the specific quantisation of the

data. However, it is legitimate to ignore bias due to this term at the optimal co-registration of

two data sets, provided the likelihood term has sufficient information to generate an accurate

estimate of the parameters It is the quadratic approximation of the variation of this first term

about the estimated minima which defines the covariance matrix.

Method

We can now make an association between individual data terms and more conventional log-

likelihood approaches. In particular we can express the negative log-likelihood in the form;

χ2 =
∑

v

χ2
v =

∑

v

−log(fv) =
∑

v

(
√

−log(fv))
2

where fv is the underlying continuous likelihood distribution which gives rise to our quantised

estimate p(i, j)/p(jmax) 1.

1this function needs to be defined as continous and differentiable in order to make any attempt at covariance

estimation
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We can now use conventional techniques from the numerical literature [3] as a basis for

the estimation of an inverse covariance C−1

Θ
on a set of coregistration parameters Θ as follows

C−1

Θ
=

∑

v

(∇Θχv)
T ⊗ (∇Θχv)

We can estimate this expression using the chain rule as

C−1

Θ
=

∑

v

(∂χv/∂fv)
2(∂fv/∂Jv)

2(∇ΘJv)
T ⊗ (∇ΘJv)

Which expresses the covariance in terms of image derivatives ∇ΘJv derivatives of the likeli-

hood estimation ∂χv/∂fv and the derivative of the likelihood function ∂fv/∂Jv . Notice that

this has the expected properties for image alignment that the maximum contribution to the

inverse covariance is made by data which are close to edge features.

From our expression for χv we get

∂χv/∂fv =
1

2fv

√

−log(fv)

The inverse covariance

C−1

Θ
=

∑

v

−(∂fv/∂Jv)
2

4f2
v log(fv)

(∇ΘJv)
T ⊗ (∇ΘJv) (1)

can be considered a general result for the calculation of covariances on parameters θ for any

image based bootstrapped likelihood [4]. The equation illustrates that low probability data

points will have the main influence over location and stability of the minima. Notice also the

lack of scaling due to inherrent image noise, as this information is already encoded in the

sampled likelihood distribution.

Results

Theoretical Testing

We can check that this result is sensible by appling it to a naive gaussian model where fv

= exp(−(Ijmax − Iv)
2/(2σj)). The covariance estimated using equation (1) is then given as

C−1

Θ
=

∑

v

(∇ΘJv)
T ⊗ (∇ΘJv)

2σ2
j

This is the same as would have been defined directly for the corresponding gaussian likelihood

model, proving the theoretical validity of our derivation.

The Gaussian model results in a pure quadratic form for the log-likelihood function, this

covariance estimate is therefore exact in this case. For non-Gaussian data the estimated like-

lihood functions fv must be linear over a range determined by the stability of the estimated

parameters θ. This can be expected to be true for smoothly varying likelihood functions and

large quantities of voxel data. However, as the true probability distributions fv are unknown,

they are generally bootstrapped from the data itself. This problem will now be addressed in

the next section.
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Experimental Testing

Derivatives of the likelihood function can be estimated to second order using finite differences

as can the ∇ΘJv term. In order to confirm our method for the estimation of covariances we

have performed a Monte-Carlo study. The alignemnt technique used selects three orthogonal

panels from the first (reference) data set and aligns these within the second (reslice) data

set using the mutual information measure. Two data sets were selected on CT and MR for

overlapping regions of the head and brain. These were then co-registered to give an initial

estimate of the alignment and the covariance estimated. The variation of the alignment

as a function of perturbative noise was then explored by repeating the alignment multiple

times while adding random gaussian noise to the resliced (MR) data at a level estimated to

be in the original data. The distribution of parameter estimates was then compared to the

covariance estimate by taking the error function of the scaled mahalanobis distance for each

noisy alignment. This produces a series of probability curves (one for each scaling) figure 1.

If the covariance estimate matches a particular scaled estimate of the parameter stability then

the corresponding distribution will be uniform (flat). For this curve the estimated parameter

deviations are tabulated in table 1.

Discussion and Conclusions

The key stage in this analysis is the realisation that the standard mutual information measure

is not a true likelihood statistic. Though it is true that it can be written in the form of a log-

probability this is not enough so that it can be used for covariance estimation. This is a subtle

but important point. Attempting to compute a covariance from the log probability directly

would introduce undesirable scaling between data-points. This can be proved quite easily

using the Gaussian model with varying σj and the standard probability p(j) scaling instead of

p(jmax). The resulting covariance estimate then includes an additional log(∆i/
√

2πσj) where

∆i is the histogram interval.

This analysis illustrates that although the log-likelihood function can be related to a mea-

sure similar in form to mutual information, as with many image processing algorithms which

borrow equations from physics, this is not the theoretical foundation of the approach. While

it is convenient to refer to the resulting algorithm as maximisation of “mutual information”

the similarity of the underlying statistical theory and true mutual information is purely co-

incidental. Indeed the body of theory from which true mutual information measures arise

would not be capable of defining a covariance. It is therefore important that algorithmic

design choices are not made on the basis of this chance similarity in the misguided belief

that this interpretation is in some way optimal. For example, the quantisation of data nec-

essary for the constuction of a correlation histogram is not only theoretically unnecessary

but algorithmically unsound (as it leads to local minima in the cost function). It is probably

better to strive to work with approximations to continuous distributions wherever possible,

as in the original work [5]. The second term remaining in the standard approach relating

to the “peakiness” of the data distribution is a particular cause for concern and can only be

reconciled with statistics by interpreting it as a badly normalised second likelihood or a prior

probability distribution. Although this term has sensible behaviour it does not have a fully

justifiable form. It is issues such as this which may have caused some researchers to have

difficulty in implementing these algorithms despite the apparent simplicity of the approach.
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This should perhaps lead us to consider alternative formulations which have more validity.

The covariance expression has been derived assuming uncorrelated data terms χv in the

log-likelihood formulation. Spatial correlation in the data will inevitably reduce the effective

number of degrees of freedom, thereby scaling the estimated covariances. Agreement be-

tween theory and experiment has been achieved here using only a fraction of the data avail-

able for coregistration (three orthogonal panels rather than the entire volume). In general

comparison of the true localisation error versus that estimated using the above covariances

is likely to behave in a similar manner to all data fitting processes. The estimated errors on

the covariances are likely to be smaller than practically observed until the model complexity

matches the data. Before this point the main contribution to the error on localisation will

be due to an inability of the model to fit the data rather than the stability of estimated pa-

rameters. The work of West et al [6] would seem to suggest for example that medical data

sets are only rigid to an accuracy of 0.1 voxels. Estimates of covariances for rigid coregis-

tration which predict voxel alignments with accuracy much greater than this are therefore

likely to be optimistic. Techniques which attempt deformable coregistration will of course

have may more free parameters, the statistical error on these parameters would be expected

to dominate accuracy.
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