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Abstract

This paper identifies the important role that covariance estimation has to play in the
construction of analysis systems. The problem of co-registration for inter-modality clinical
volumes is often solved by maximising the so-called mutual information measure. This
paper extends the existing theory in this area and suggests a viable way of constructing co-
variances for mutual information approaches by treating this algorithm as a bootstrapped
likelihood based approach. We provide both theoretical and practical tests of the validity
of this method. In doing so we identify important subtleties in the current use of these
measures for coregistration. These issues suggest potential improvements in the way that
such measures might be constructed and used.

Introduction

Co-registration is a cornerstone of many medical image analysis processes. It is often required
as a precursor to the analysis of change or for the construction of multi-dimensional data [1].
When constructing systems from separate analysis modules it is crucially important to know
the accuracy of the data passing between them and to make appropriate use of this knowledge
in subsequent processing. The most common way to represent such data is the covariance
matrix. Confirmation that the covariance matrix agrees with the theoretical prediction on
sample data is also a very good way of confirming the validity of the assumptions made in
the parameter estimation technique. All aspects of the quantitative statistical method must be
understood in order to achieve agreement between the theroretical and empirical estimates
of parameter accuracy. In achieving this the algorithm module is tested to a level that allows
full exploitation in a larger system.

Defining p(i, j) as the joint probability distribution for grey level values i and j at equiva-
lent locations in two images I, .J, this measure is defined as;

I(1,7) = Y Zp(i’j)logz%

which has been shown [2] to be monotonically related to the negative log probability of the
equivalence between image values;
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via

—log(P) = N(H(I) — I(I,J))
where N is the number of voxels and H([) is the entropy of image I and is fixed. Thus the
maxima of a mutual information measure is also the minima of the log probability of the

similarity between the two images. The measure is perhaps more easily recognised when
written as a sum over voxels v;; in the original data rather than over the histogram.
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We would like to be able to compute a covariance for the estimated parameters from such
an optimisation, but in fact the log probability term identified here is not appropriate for
this process because it uses probabilities of obtaining particular : j combinations within some
interval, rather than a likelihood. As a consequence, redefinition of the grey level intervals
produces a scaling of this measure. In order to get the log probability into an invariant form
we need to rewrite it as follows;
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where p(jmaz) is the maximum probability within the distribution. Written in this way the
behaviour of the mutual entropy algorithm now becomes explicit. The first term in this equa-
tion now corresponds to the conventional x? likelihood statistic which is minimised to achieve
alignment. The second term explicitly optimises the “peakiness” of the estimated distribution
in order to achieve the maximum correlation between equivalent structure. Unfortunately,
this second term is not a true statistic, as it is dependent upon the specific quantisation of the
data. However, it is legitimate to ignore bias due to this term at the optimal co-registration of
two data sets, provided the likelihood term has sufficient information to generate an accurate
estimate of the parameters It is the quadratic approximation of the variation of this first term
about the estimated minima which defines the covariance matrix.

Method

We can now make an association between individual data terms and more conventional log-
likelihood approaches. In particular we can express the negative log-likelihood in the form;

dYoxi = Y —log(fy) = Y (/—log(f))?

where f, is the underlying continuous likelihood distribution which gives rise to our quantised
estimate p(i, j)/p(jmaz) !

Ithis function needs to be defined as continous and differentiable in order to make any attempt at covariance
estimation



We can now use conventional techniques from the numerical literature [3] as a basis for
the estimation of an inverse covariance C’élon a set of coregistration parameters © as follows

C(Sl = Z(VGXU)T ® (VGXU)

v

We can estimate this expression using the chain rule as
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Which expresses the covariance in terms of image derivatives VgJ, derivatives of the likeli-
hood estimation dy,/df, and the derivative of the likelihood function 0f,/9.J,. Notice that
this has the expected properties for image alignment that the maximum contribution to the
inverse covariance is made by data which are close to edge features.

From our expression for y, we get
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The inverse covariance
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can be considered a general result for the calculation of covariances on parameters 6 for any
image based bootstrapped likelihood [4]. The equation illustrates that low probability data
points will have the main influence over location and stability of the minima. Notice also the
lack of scaling due to inherrent image noise, as this information is already encoded in the
sampled likelihood distribution.

Results

Theoretical Testing

We can check that this result is sensible by appling it to a naive gaussian model where f,
= exp(—(Ijmaz — Iy)?/(20;)). The covariance estimated using equation (1) is then given as
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This is the same as would have been defined directly for the corresponding gaussian likelihood
model, proving the theoretical validity of our derivation.

The Gaussian model results in a pure quadratic form for the log-likelihood function, this
covariance estimate is therefore exact in this case. For non-Gaussian data the estimated like-
lihood functions f, must be linear over a range determined by the stability of the estimated
parameters 6. This can be expected to be true for smoothly varying likelihood functions and
large quantities of voxel data. However, as the true probability distributions f, are unknown,
they are generally bootstrapped from the data itself. This problem will now be addressed in
the next section.



Experimental Testing

Derivatives of the likelihood function can be estimated to second order using finite differences
as can the VgJ, term. In order to confirm our method for the estimation of covariances we
have performed a Monte-Carlo study. The alignemnt technique used selects three orthogonal
panels from the first (reference) data set and aligns these within the second (reslice) data
set using the mutual information measure. Two data sets were selected on CT and MR for
overlapping regions of the head and brain. These were then co-registered to give an initial
estimate of the alignment and the covariance estimated. The variation of the alignment
as a function of perturbative noise was then explored by repeating the alignment multiple
times while adding random gaussian noise to the resliced (MR) data at a level estimated to
be in the original data. The distribution of parameter estimates was then compared to the
covariance estimate by taking the error function of the scaled mahalanobis distance for each
noisy alignment. This produces a series of probability curves (one for each scaling) figure 1.
If the covariance estimate matches a particular scaled estimate of the parameter stability then
the corresponding distribution will be uniform (flat). For this curve the estimated parameter
deviations are tabulated in table 1.

Discussion and Conclusions

The key stage in this analysis is the realisation that the standard mutual information measure
is not a true likelihood statistic. Though it is true that it can be written in the form of a log-
probability this is not enough so that it can be used for covariance estimation. This is a subtle
but important point. Attempting to compute a covariance from the log probability directly
would introduce undesirable scaling between data-points. This can be proved quite easily
using the Gaussian model with varying ¢; and the standard probability p(j) scaling instead of
P(jmaz)- The resulting covariance estimate then includes an additional log(A;/v/270;) where
A; is the histogram interval.

This analysis illustrates that although the log-likelihood function can be related to a mea-
sure similar in form to mutual information, as with many image processing algorithms which
borrow equations from physics, this is not the theoretical foundation of the approach. While
it is convenient to refer to the resulting algorithm as maximisation of “mutual information”
the similarity of the underlying statistical theory and true mutual information is purely co-
incidental. Indeed the body of theory from which true mutual information measures arise
would not be capable of defining a covariance. It is therefore important that algorithmic
design choices are not made on the basis of this chance similarity in the misguided belief
that this interpretation is in some way optimal. For example, the quantisation of data nec-
essary for the constuction of a correlation histogram is not only theoretically unnecessary
but algorithmically unsound (as it leads to local minima in the cost function). It is probably
better to strive to work with approximations to continuous distributions wherever possible,
as in the original work [5]. The second term remaining in the standard approach relating
to the “peakiness” of the data distribution is a particular cause for concern and can only be
reconciled with statistics by interpreting it as a badly normalised second likelihood or a prior
probability distribution. Although this term has sensible behaviour it does not have a fully
justifiable form. It is issues such as this which may have caused some researchers to have
difficulty in implementing these algorithms despite the apparent simplicity of the approach.



This should perhaps lead us to consider alternative formulations which have more validity.

The covariance expression has been derived assuming uncorrelated data terms Y, in the
log-likelihood formulation. Spatial correlation in the data will inevitably reduce the effective
number of degrees of freedom, thereby scaling the estimated covariances. Agreement be-
tween theory and experiment has been achieved here using only a fraction of the data avail-
able for coregistration (three orthogonal panels rather than the entire volume). In general
comparison of the true localisation error versus that estimated using the above covariances
is likely to behave in a similar manner to all data fitting processes. The estimated errors on
the covariances are likely to be smaller than practically observed until the model complexity
matches the data. Before this point the main contribution to the error on localisation will
be due to an inability of the model to fit the data rather than the stability of estimated pa-
rameters. The work of West et al [6] would seem to suggest for example that medical data
sets are only rigid to an accuracy of 0.1 voxels. Estimates of covariances for rigid coregis-
tration which predict voxel alignments with accuracy much greater than this are therefore
likely to be optimistic. Techniques which attempt deformable coregistration will of course
have may more free parameters, the statistical error on these parameters would be expected
to dominate accuracy.
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